
Algorithms and recursion
Read: Chapter 13 from textbook

• What programs implement is recipes for solving problems. These recipes are called algorithms.
• We have already seen (in the practice problems from a previous lab) an algorithm for searching 

a list of integers nums for a given integer x. The algorithm does the following:

1. Go over all elements in nums from the first to the last:
if x==current element then return position of current element

2. Return -1

The algorithm is called linear search (for obvious reasons) and returns either the first position 
where x is found (note that nobody told us that each list element appears only once), or -1 if x is 
not found. You can find the code in Section 13.1.2.

• If, in addition, we can guarantee that the list nums is sorted from the smallest to the largest, 
then we can do better (=faster). The algorithm can be described as follows:
 
1. Currently we search in the range [low..high] (Initially low=0, high=len(nums)-1)
2. If low>high then return -1
3. Let mid=(low+high)//2 be the position of the middle element in the searching range
4. If x==nums[mid] then 

return mid 
else if x>nums[mid] then

low = mid+1
 else high = mid-1

5. Go to step 1.
 
You can find the code for this algorithm in Section 13.1.3. It is called binary search. The basic 
idea is to break the searching range in three pieces: [low..mid-1], mid, [mid+1..high]. If x is not 
the mid element, then it must be either in the lower half [low..mid-1] (if x<nums[mid]) or the 
upper half (if x>nums[mid]); you can say this because your list is sorted. Now, it must be 
obvious where the advantage over linear search comes from: If we consider our most basic 
operation to be something like “pick up a list element and compare it with x”, then binary 
search continuously cuts the list in half, keeps the half that is relevant to x and throws away the 
other half (i.e., it will never examine elements in that half).  
 
Practice problem: Implement both searching methods and test them by searching for x=1, 99, 
999, 9999, 99999, 999999, random() in a sorted list of numbers 0 – 1,000,000. 
Practice problem: To see that binary search works only when the list of numbers is sorted from 
the smallest to the largest, built an example list and an x where binary search outputs the wrong 
result (while linear search, of course, produces the correct result).
 
From the first practice problem it should become clear that for x=999999 binary search is much 
faster than linear search. Why? Because linear search had to “touch” (pick-up and compare to x) 
999999 elements, while binary search “touched” only one list element per halving. How many 
halvings were there? To go from 1,000,0000 elements to 1 (which is the worst that can happen 



to binary search, since it may get lucky and finish earlier) we need 
((((1,000,000/2)/2)/2) ...)/2=1→1,000,000∗2−k=1 →k =⌈log 1,000,000⌉+1≈25halvings

or only at most 25 list elements being examined (as compared to 999,999). Therefore, the 
worst-case for binary search in a sorted list with n elements is logn+1 basic operations, while 
for linear search it is n. If we use the worst-case as a measure of performance for algorithms, 
then binary search is much much better than linear search.
 
Practice problem: What would be a worst-case (max # of basic operations) input for binary 
search? 

Recursion

• We have already encountered recursion before, in the recursive definition of functions such as 
factorial. If we view problems such as searching also as functions (as they indeed are; we write 
functions to implement such algorithms), in general the recursive definition of 
functions/problems has two main ingredients:
1. A direct way to calculate/solve very small instances (called base cases).
2. A way to calculate/solve an instance using the calculations/solutions of strictly smaller 

instances of exactly the same function/problem.

We have already seen this, e.g., in the definition of Fibonacci sequences:
1. fib(0)=1, fib(1)=1
2. fib(n) = fib(n-1) + fib(n-2),  n=2, 3, ...  

 
Note that we emphasized the strictly smaller instances used in the definition; this is important 
because it makes sense out of the definition: for example, we can calculate fib(n) by calculating 
f(0), f(1), f(2),...,f(n-2), f(n-1) in this order. 
 
Functions like Fibonacci or Factorial have straight-forward recursive definitions. But what 
about problems like searching a list? The idea is still the same: split the problem instance into 
strictly smaller instances of exactly the same problem, until you reach base cases for which you 
know the solution directly. For the linear search algorithm, we can reduce the given instance (x, 
list) into solving a instance (x, list') with a list' that is strictly smaller than list. How? The basic 
idea is that linear search can be broken into 2 parts: first check whether x is the first element of 
the list list[0]; if it is, then return 0, else return the result of linear search for x in the list list[1:] 
(the original list minus the first element that we have already checked). There are two base 
cases for which we know the answer: first, the case of the empty list [] (return -1), and, second, 
the case of x=list[0] (return 0). 

def linear_search(x, nums):
if nums==[]: #  base case: nums is empty

return -1
elif x==nums[0]: # x is the first element of list nums

return 0
else: 

return linear_search(x, nums[1:]) # linear-search the rest of the list



 
You may have already seen the problem with this recursive algorithm: while it will return the 
right answer (-1) if x is not in the list, it always returns 0 as the position if x is in the list! To see 
this, try to run the code by hand for, say, x=3 and nums=[1,2,3,4]. Where exactly is the 
problem? Well, notice that the way we shrink the problem is the reason! Here is the running of 
the algorithm in the suggested example:
 
Initial call:

Current instance Returned (i.e., calculated) value

linear-search(3, [1,2,3,4]) ?

First recursive call:

Current instance Returned (i.e., calculated) value

linear-search(3, [1,2,3,4]) ?

linear-search(3, [2,3,4]) ?

Second recursive call:

Current instance Returned (i.e., calculated) value

linear-search(3, [1,2,3,4]) ?

linear-search(3, [2,3,4]) ?

linear-search(3, [3,4]) 0

After the second recursive call returns:

Current instance Returned (i.e., calculated) value

linear-search(3, [1,2,3,4]) ?

linear-search(3, [2,3,4]) 0

After the first recursive call returns:
 

Current instance Returned (i.e., calculated) value

linear-search(3, [1,2,3,4]) 0

Finally, the original call returns 0.
 
The root of the problem is clearly the second recursive call, that (correctly) identifies x=3 in the 
current list=[3,4], but (incorrectly) sees x as the first element of that list (position 0). There are 
at least two ways to remedy this mistake: a straight-forward one and a somewhat more involved 
one.



Practice problem: Change the algorithm to check whether x is equal to the last element of 
nums instead of the first; change the answer of the second base case.  
Practice problem: Add one more parameter to the function linear_search, that keeps track of 
how many elements of the original list have been dropped so far. So the definition should look 
like:
 
def linear_search(x, nums, drop)
 
and initially you call it with drop=0. Now you know what to return (instead of 0) when x is 
found.

• Take a better look at the consecutive calls of linear_search as described in the table above. We 
record every new call right after the last call (which is the call that induced the new call), until 
the last call doesn't make any more recursive calls because it has reached a base case; then it 
returns the answer to its caller and is removed from the table. Therefore, in order to keep track 
of the execution of a recursive algorithm, all we need is to keep a table: (i) We add at its end 
every new call we make, after we have recorded some information for the caller to be able to 
continue its execution after the new call returns (such as the current line of code, the current 
values of parameters and variables). (ii) We remove the last call in the table when it returns 
(note that it is the last call that will be the first to return!) The table and its evolution looks like 
an upside-down stack of “plates”, where new “plates”/calls are added to or removed from its 
top. Hence, such a scheme is called, in general, a stack and the addition/removal operations are 
called push and pop respectively. 

• Now it should be clear that base cases end up being the last “plate” pushed to the top of the 
stack, and after them we can start popping “plates” by returning calculated values. If we miss 
one or more base cases, we run the danger of continuously pushing “plates” to the stack without 
ever popping anything, until we either crush by running out of memory or some other error 
occurs (e.g., running out of bounds)! To see this, rewrite the code for linear_search but leaving 
out the case nums==[]. Then run it for (x=3, nums=[1,2,3,4]) and for (x=33, [1,2,3,4]). The first 
case should work as expected, but the second produces an “out of bounds” error! See Section 
13.2.3 for an example of running out of memory because of infinite recursion. 
 
Practice problem: Figure 13.1 shows the sequence of calls for the recursive implementation of 
Factorial in Section 13.2.2. Follow the figure step-by-step building a table like the one above 
along the way. (By the way, in the first call, the figure shows n as having no value; that is 
wrong: n=5 for the initial call.)
Practice problem: To see how the recursive calls are “stacked”, write a recursive algorithm 
that takes a number in base 10 and prints the same number in base 8. Recall that the 
mathematical procedure is to start with the number n, n%8 is the least significant digit in base 8, 
and continue with the conversion of the number n//8 to base 8, until the number to convert 
becomes 0 (then you stop). So your recursive function probably would look like:

1. if n==0: 
2.       return;
3. digit = n%8
4. convert(n//8)
5. return 



 
The question is where exactly do you put the print(digit)? Between lines 3-4 or between lines 
4-5? Try to think about this (i.e., build the tables...) before you go ahead and try it in the code.
 

• Binary search was also described as a recursive algorithm (although we implemented it as a 
loop). It is actually described in more detail in p. 432. Note that the recursive implementation 
passes low and high as parameters, for exactly the same reason we had to pass drop in 
linear_search (verify this!); the Python code can be found in Section 13.2.6. 
 
Practice problem: Compare the running times of the iterative and recursive implementations of 
linear_search with a huge list (say, 1,000,000 elements) and an x around the middle. You should 
see a big deference, with the recursive implementation being slower; obviously, all this stack 
book-keeping takes time. More details can be found in Section 13.2.7. 
Practice problem: There is a recursive algorithm for fast exponentiation in Section 13.2.5. 
Change the definition so that instead of dividing the exponent n by 2, we divide it by 3. (Hint: 
The number of base cases is equal to the remainders in the division of the exponent n: if the 
exponent is divided by 2, then there are two possible remainders n%2 = 0 ,1; if divided by 3, 
then there are three possible remainders n%3 = 0, 1, 2.)
 

• Searching is a very basic computational problem. An equally basic problem is that of sorting. 
Sorting can be applied to a list of items for which we have an ordering, i.e., a way of comparing 
two items. In Section 13.3 there is the description (and implementation) of two well-known 
sorting algorithms: selection-sort and merge-sort. 
 
Practice problem: What is the worst-case unsorted list for selection-sort? What is the worst-
case list for merge-sort? (worst-case means a list that forces the algorithm to do the most 
possible work)
Practice problem: Implement both algorithms and try them for lists with 10, 1000, 100000 
numbers in reverse order. Try the same with lists constructed with random numbers (using 
random(), for example). Are your running times consistent with Figure 13.4? (Read Section 
13.3.3 to make sense of this.)
Practice problem: From the previous problem and Section 13.3.3 one starts realizing that 
selection-sort needs about n2 steps in the worst case and merge-sort needs about nlog 2 n
steps, and that's why merge-sort is faster once n becomes big enough. But these worst-case 
running times are peanuts compared to the 2n steps needed for the Towers of Hanoi problem 
in Section 13.4.1. Implement the algorithm, to see how huge the running time becomes even for 
small n. And yet, even that is peanuts compared to the Halting Problem described in Section 
13.4.2: this problem has no algorithm!!! So we have seen worst-case running times whose 
dependence on the size of the input n is polynomial (selection-sort, merge-sort), exponential 
(Towers of Hanoi), or the problem may be undecidable (Halting Problem).    
Practice problem: Do all textbook problems (except the ones related to graphics).


