
Writing simple programs
Read: Chapter 2 from textbook

• Start the command-line interpreter. 
• Start again IDLE and open the text editor window. Open your file chaos.py.

We are going to study the various components of chaos.py more carefully.  

• Names (identifiers): We have already used names for our modules, functions, variables. Some 
names cannot be used (keywords); look at Table 2.1 in the text. There are also specific rules for 
forming names (e.g., a name cannot contain space(s), it must start with a letter or '_' etc.); read 
Section 2.3.1.
 
Variables are used to store values, as we have seen. In chaos.py there are 2 variables, x and i. 

• Expressions: An expression is a piece of code that computes a new value (data). The simplest 
expressions are variables and literals1. Several expressions can be combined using operands to 
form more complex expressions. 
 
In chaos.py the piece of code 3.9*x*(1-x) is an expression; 3.9 is a literal (also an expression); 
x is a variable (also an expression). (1-x) is also an expression that is built by the literal 1 and 
the variable x combined by the arithmetic operator -; the parentheses are used in order to set the 
ordering in which the (sub-)expressions should be calculated (here (1-x) is calculated first and 
then 3.9*x*(1-x)).  Type the following. The first line is an assignment statement (more about 
this later), but each one of the rest is an expression; each time, the interpreter will try to 
evaluate the expression to its value.
 
>>> x = 5
>>> x
>>> 3.9*x*(1-x)
>>> 32
>>> “32”

Notice that 32 evaluates to the integer number 32, but “32” evaluates to the string '32'. In the 
first case, your data is of type int (integer), and in the second case of type str (string). In 
general, you can mix only data of the same type in your expressions. For example, try the 
following:
 
>>> 32+”32”
 
You should get an error like the following:
 
Traceback (most recent call last):
        File "<stdin>", line 1, in <module>

1 A literal is a value itself, e.g., 5, 10.3, John (as opposed to, e.g., variables that contain a value).



TypeError: unsupported operand type(s) for +: 'int' and 'str'
 
The last line tells you that operator + cannot be used to combine an int(eger) with a str(ing). 
It's like trying to combine apples and oranges!  By the way, recall that you can use either single 
or double (but not both at the same time) quotes to define a string literal in Python. So, typing 
“32” or '32' makes no difference; they both evaluate to the sequence of characters '32' (a 
character (not number!) '3' followed by a character '2'). Now, if you try 
 
>>> “32”+”32”
 
it should work fine. What do you get? Operator + apparently works differently when it is 
applied to strings than when it is applied to integers:
 
>>> 32+32

That's one major reason for knowing exactly the type of our values/expressions! 
• Assignments: In the previous example, we said that 

 
>>> x = 5
 
is an assignment statement. In general, an assignment statement has the following format:
 
<variable> = <expression>

What happens here is that first the <expression> in the RHS is evaluated, and then this value 
becomes the value stored in <variable>. Try the following:
 
>>> x = 5
>>> x
>>> x = x+1
>>> x

Notice that variable x appears in both RHS and LHS in the third line. But it is not treated the 
same in both sides: In the RHS it participates in an expression so its value is used (since the 
expression is being evaluated); currently its value is 5, so the RHS evaluates to 6, and THEN 
this new value (6) becomes the value of the variable in the LHS (which here happens to be x).
 
Python allows you to do multiple assignments. Try the following:
 
>>> x , y = 6 , 7
>>> x
>>> y
 
Notice that x takes the value 6 and y takes the value 7. You can simultaneously assign more than 
two variables if you want. Again the values in the RHS are computed first, and then these 
values are assigned to the variables in the LHS. More details can be found in Section 2.5.3. 



• Now that we know something about variables, expressions, assignments, and types, we can start 

examining some of the more mysterious aspects of chaos.py. 
◦  Function eval(<string>) takes a single string argument value <string>, it strips it of its 

quotes, and treats what's left as an expression. Try the following:
 
>>> x = eval(“3+2*5”)
>>> x
>>> x = eval(2+2*5)
 
The first call to eval should have given the value 13 to x and the second call should have 
produced an error. The following example should be clear now:
 
>>> x = “2+3”
>>> result = eval(x)
>>> result
 

◦ Function input(<string>) will print the <string> and will wait for the user to type 
something; then it returns whatever has been typed as a string. Try the following (when the 
interpreter waits for you to type something, go ahead and type your name without quotes):
 
>>> name = input(“Enter your name : “)
>>> name   
 
Note that variable name now has a string value that is what you've typed (in quotes 
because it is of the str(ing) type). Also, note that the interpreter first waits for you to type 
something, and then it goes ahead to assign this value to variable name. Why? (Hint: In 
which order is the RHS and LHS of the assignment statement executed?) To clarify things, 
try running the following lines three times: first type 10+19, then try typing Caramba! 
(without any quotes), and then try “Caramba!” (with the quotes). What do you get?
 
>>> x = eval(input(“Give me something to evaluate:”))
>>> x
 

◦ Function print is examined in detail in Section 2.4. To see how it behaves, try the following 
examples:
 
>>> print(“2+4”)
>>> print(“The answer is”, 2+4)
>>> print()
>>> print(“My”, “name”, “is”, 40+54)
>>> print(“My”, “name”, “is”, 40+54, sep=”BLAH”)
>>> print(“My”, ”name”, “is”, end=” “)
>>> print(40+54, end=”THIS IS THE END, NO NEW LINE”)



>>> print(40+54)
>>> print(40+54, end=”THIS IS THE END, WITH NEW LINE\n”)
>>> print(40+54) 
 

◦ In loops below we are going to use function range in the form range(<expression>). It 
produces a sequence of <expression> consecutive integers (starting from 0). To see the 
sequence, we can transform it into a list (much more about lists later) using list():

>>> list(range(10))
>>> x = 5
>>> list(range(3*x)) 
 

• Definite loops: A definite loop is a mechanism to repeat a sequence of statements (the <body>) 
a predefined (definite) number of times. The general format is the following:

for <var> in <sequence>:
<body>

Try the following:

>>> for i in [0,1,2,3]:
print(i)

Note that variable i takes the values in the list [0,1,2,3] one-by-one in this order. You can 
achieve the same result by replacing [0,1,2,3] with range(4) which creates the same 
sequence:

>>> for i in range(4):
print(i)

>>> x = list(range(4))
>>> x
 
We needed to transform the sequence range(4) into a list with the list() function because list 
is a data type (just like int and str) but sequence is not. In general, range(M) produces the M 
numbers 0, 1, 2, ..., M-1 in this order, which you can either use them directly in a loop, or put 
them in a list, and then use the list:
 
>>> x = list(range(4))
>>> x
>>> for i in x:

print(i)



• The built-in function range() can do many more things. Its general format is

range(start, n, step)

It produces a sequence of integer numbers, starting from number start, going up to number n 
by increments of step. Not all arguments have to be present. We have already seen it in the 
form range(n):
 
>>> list(range(12))
 
You can use it in the form range(start, n):
 
>>> list(range(2,12))
 
You can use it in the full form range(start, n, step):
 
>>> list(range(2,12,3))
 
To test yourself, first guess what list of numbers list(range(-3,12,3)) will produce, and then 
try it out to confirm your guess.

Practice problems

1. Try to do all the book problems.
2. Write a for-loop that prints all numbers from 10 to 100, but every 3 numbers (i.e., 10, 13, 16, 

etc.), and calculates their sum. Repeat, but this time start from 100 and count down to 10 every 
3 numbers.

3. Write a for-loop that goes through the list ['3', '5', '9+6', '8/4', '5', '39', '54', '25'] (notice that it is a 
list of strings), evaluates each string to its arithmetic value, and calculates their sum.

4. Assign strings ”32” and “65” to variables x1, x2 (try to also do it with a single assignment 
statement). Assign x3 = x1 + '+' + x2. What's the value of x3? what's the value of eval(x3)?

5. Write a program that asks for two numbers x1, x2 from the user, and then uses a for-loop to 
compute and print x1+x2, x1-x2, x1*x2, x1/x2 in order. (Hint: The for-loop must go through 
the list ['+', '-', '*', '/']; study again problem (3).)

6. Try
 
eval("print('this is a piece of code', 4+5)")
 
What does eval() do? Try to evaluate other pieces of code.

7. How can you put a double quote (“) inside a string? A single quote (')? 


