
Loop structures and Booleans
Read: Chapter 8 from textbook

Practice problems

1. Do all problems in the textbook.
2. Do Discussion questions 1, 2, 3 on p. 261-262.
3. Check the truth value of the following expression, when you put parentheses around parts of it

(try all possible ways of parenthesization):
 not 3=>4 and 5.5==5.5 or 6^2<4*8 and not False

4. Write a program that checks whether an integer n provided by the user is prime (divisible
exactly only by 1 and itself).

5. Write a program that checks whether a positive integer n provided by the user is even or odd. In
case it is odd, check whether n-1=n1+n2 for two prime integers n1,n2.

6. Write a loop that prints all possible combinations of True/False for two boolean variables A,B
(Hint: For a single variable A, you get all possibilities by going through the list [True, False].
For two variables A,B, you do the same for A, but for each value of A you also go through all
possible values of B; this can be done with nested for-loops.)

7. Write a program that outputs the truth table of the following expression:
 ((not A and B) or C) and not False

Output the truth table like in the book in p.247 (your columns should look nice). (Hint: Nested
for-loops as in (5) will get you through all combinations of A,B,C; all you have to do in the
<body> is print out the current values of A,B,C and the expression.)

8. Write a search function that is defined as follows:

def search(x, num, low, high)

This function takes four values for its parameters: x is a number you want to find in a list of
numbers num between positions low and high (both inclusive); if the number is found, the
function returns the position in num where the number is, otherwise it should return -1. For
example:

>>> search(3, [4,7,2,3,6,9], 2, 5)
3
>>> search(3, [4,7,2,3,6,9], 0, 2)
-1

Initially, your implementation doesn't make any provision for nonsensical data (e.g., low is
negative) and other contingencies; change your code to return -1 even if such exceptions
happen.

