
CS 1XA3 Winter 2016 Project  
Tic-tac-toe 

 
In this project we are going to build the data structures and the AI algorithms needed to play tic-tac-toe with the computer. 
We will implement three different AI algorithms for the machine: minimax, reinforcement learning (a form of 
evolutionary machine learning), and alpha-beta pruning (a form of fast searching for a winning strategy). 
 
Any game between two players, where the latter take turns in playing their moves, can be described by a game tree. An 
example of a game tree for tic-tac-toe is the following: 
 
 

  
 
This is the tic-tac-toe game tree when the initial state of the board being the one at the root of the tree (top); in case we are 
using a simple list representation of a game state, this is the list [O,O,X, ,X, ,O,X, ]. Note that with this initial state (equal 
numbers of Xs and Os, X-player always plays first, this is not a terminal (winning or draw) state), we know that the first to 
move is the X-player. The next level of the tree shows the three new states that can result from X-player’s move (there are 
three such possible moves, so that’s why we have three alternatives). The next level of the tree shows all possible game 
states after the O-player moves, etc. Note the leaf states of the tree (those with a blue number next to them); these are all the 
possible terminal states this particular initial state can produce. Moreover, by following the tree path starting at the root and 
finishing at a leaf/terminal state, we can also derive which move each player must play in order to finish the game in this 
particular leaf. 
 
So far, the game tree encodes all possible plays (starting from a particular initial state) that can be played by the two players, 
and all possible states that can produced during the game, but doesn’t yet encode who’s the winner, i.e., we are missing an 
evaluation for each particular position. This is the role of the numbers you see next to each state. For tic-tac-toe, let’s 
assume that the X-player tries to make the final result as positive as possible (i.e., she’s a MAXimizer), and the O-player 



tries to make the final result as negative as possible (i.e., he’s a MINimizer). Let’s assume that the maximum possible (most 
positive) value is +1, and the minimum possible (most negative) value is -1. Then it’s easy to do the evaluation of the 
terminal states (blue numbers in the figure): if the X-player wins at a terminal state, then the value for this state is +1, if the 
O-player wins, then the value is -1, other wise (draw) the value is 0. Similarly, the value of a game state that is an internal 
node of the tree is an estimate of the profit this particular state can lead to: the more positive this value is, the more 
favourable for the MAX player this state is, and the opposite will hold for the MIN player.  
 
Unfortunately, the leaves (terminal states) are the only states whose value we know a priori, i.e., from the state itself and 
without looking at the tree. For the rest of the states, we need to look ahead (i.e., deeper in the tree) for a few moves, and 
somehow use values we have calculated in deeper levels to calculate a value for the current state; after these values have 
been calculated, the player will move to the most positive or negative (depending on whether it’s the MAX or MIN player 
that moves, respectively) of the available next states (i.e., in game-theoretical jargon, we assume rational players). For 
example, if the values calculated are the ones shown in the figure above, the best alternative for the X-player at the initial 
state is to make the rightmost move; of course, her best prospects have been calculated to be a draw (value=0), but this is 
still better than a final outcome of -1! The algorithm that calculates these values, therefore, is at the heart of the AI in a 
game. We will implement three such algorithms. 
 
• Minimax: This is the algorithm that implements the value calculation outlined above. It goes over the whole game tree, 

calculating the values recursively: the base cases are obviously the leaves, and after calculating the values of all the 
children for a state, the value of this state is the maximum (minimum) children value, if in this state it is the MAX 
(MIN) player’s turn to move. You can find the algorithm in pseudo-code in Yosen Lin’s page:  
 
https://www.ocf.berkeley.edu/~yosenl/extras/alphabeta/alphabeta.html  
 
1. (10 points) Implement an algorithm TreeBuild(S,player) that, given an initial state S and player=X or O, 

returns a list of all game states generated by the game tree with root S and starting with player moving, each in the 
following format: [game board, value, whose move, move]. For example, for the root state in the figure above, the 
state description is [O,O,X, ,X, ,O,X, ,0,X,(1,0)], where the first 9 elements of the list describe the 
board, then comes the value (0), then the player who is to make the next move (X-player), and finally the move (an X 
at (1,0)). Note that the coordinates of the upper-left corner is (0,0) and those of the lower-right (2,2). Write a program 
testminimax.py that, after asking the user for an initial S and player, runs TreeBuild and prints all the 
states in the game tree, one at a line as follows: 
… 
State=[O,O,X, ,X, ,O,X, ], Value=0 
… 

2. (10 points) Build a tic-tac-toe game minimaxttt.py that has three modes for the user to pick: 0-player, 1-player, 
2-player. In the 0-player mode, the computer plays the role of both the X-player and the O-player, in the 1-player 
mode the computer plays the O-player, and in the 2-player mode both players are human. The user also picks an 
initial state for the game. Any time the computer has to play a move, it calls TreeBuild(S,player) to compute 
the value of the current state and the next move. Then it makes that move, and the game continues.  
 

• Alpha-beta pruning: The exhaustive search of the whole game tree that the Minimax algorithm performs in order to 
calculate a position value and the next move becomes prohibitively slow when applied to a more complicated game like 
chess. In order to avoid this exhaustive search, we can try to avoid (i.e., prune) subtrees that we know for sure are not 
going to give a better value for the player at the current state. In alpha-beta pruning, at every node of the tree we 
maintain two values, alpha and beta. Alpha is the current estimate of the best possible move the player of the state can 
make. Beta is the current estimate of the best possible move the opponent can make. If at any time, alpha >= beta, then 
the opponent's best move can force a worse position than the player’s best move so far, and so there is no need to further 
evaluate the current state, and we can ignore the whole subtree of the game tree rooted at this state. The same pruning 
condition applies for both MAX and MIN cases: if the current state player is MAX, then we are looking for the move 
that yields the best alpha, while it is the MIN player, we are looking for the move that yields the best beta. A detailed 
description of the alpha-beta pruning algorithm can be found in Bruce Rosen’s page: 
 
http://web.cs.ucla.edu/~rosen/161/notes/alphabeta.html 
  
and pseudocode for the algorithm can be found in Yosen Lin’s page: 
 
http://web.cs.ucla.edu/~rosen/161/notes/alphabeta.html 



3. (10 points) Implement an algorithm TreeBuildAB(S,player) that works like TreeBuild(S,player) 
above, but implements the alpha-beta pruning algorithm, i.e., instead of a single value it now maintains two numbers, 
alpha and beta. Then implement testab.py that works exactly as testminimax.py, but uses 
TreeBuildAB(S,player) instead of TreeBuild(S,player), and with output 
… 
State=[O,O,X, ,X, ,O,X, ], Value=0 
… 

4. (10 points) Build a tic-tac-toe game abttt.py that works exactly as minimaxttt.py but the computer uses 
alpha-beta pruning to pick its next move. 

 
• Reinforcement learning: In the previous evaluation algorithms, the underlying assumption the computer makes is that 

its opponent is rational, i.e., the opponent always uses the same method to evaluate a state as the computer, and always 
picks the move that leads to the highest value. But what can be done if this assumption is not true? For example, can the 
computer use the history of previous games played against an opponent to ‘learn’ this opponent’s ‘behaviour’? A 
method for doing exactly that is the reinforcement learning method. An introduction to this method can be found in 
Chapter 1 of the following book (available as an e-book from McMaster’s Library): 
 
“Reinforcement Learning: An Introduction”, by R. S. Sutton and A. G. Barto, MIT Press, Cambridge, MA, 1998 
 
In fact, this is an excellent book for anybody who is interested in AI, machine learning, or even neuroscience, but we are 
going to use only Chapter 1. Note that now the state values we calculate are probabilities of winning instead of profit 
estimates. Initially all values for the terminal states are either 1 or 0 (either the player of that state or none (draw) wins 
immediately at such a state). But the computer has no idea what this probability of winning is for all other states, so it 
gives them all the value 0.5 (50% chance of winning). After each game played, these values are updated according to the 
method defined in Section 1.4 of the book. There are two basic ideas: (i) the result of the current move is used to update 
the value of the earlier state, and (ii) although usually the move is picked greedily (i.e., highest winning probability), 
with a certain (small) probability another exploratory move is picked, in order to explore other possibilities (although 
their current probability of winning estimate is lower). 
 
5. (10 points) Build a tic-tac-toe game learningttt.py that works exactly as minimaxttt.py but uses 

reinforcement learning to calculate the state values. After a game ends, a new one should start (maintaining the 
already calculated values and from the same initial state, of course), until an upper limit (say, 30 games) is reached or 
the human player choses to end the loop. When a sequence of games is ended, the program should output all states 
together with their current values. Note that you should use variables explore and stepsize for the probability 
of deviation from the greedy choice, and the step-size parameter, respectively (maybe you want to ask the user for 
the values of these variables, in order to study the behaviour of your program under different circumstances).  

  
 

 


