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Abstract

Smart traffic scheduling can be used to reduce downlink roadside unit (RSU) energy use in green vehicular

roadside infrastructure. In this paper we consider the problem of downlink schedule generation when the RSU-to-

vehicle radios use a variable bit rate (VBR) air interface. We first present offline scheduling formulations that provide

lower bounds on the energy required to fulfill vehicle requests. An integer linear program (ILP) is introduced which

can be solved to find optimal offline VBR time slot schedules. We then prove that this problem is NP-complete by

a reduction from the well-known Santa Claus Problem. Two flow graph based models are then used to solve the

minimum energy VBR scheduling problem. The first uses Generalized Flow (GF) graphs which represent time slots

as individual graph nodes. The second uses time expanded graphs (TEGs) which model the temporal evolution of

the system. Both of these models provide lower bounds on energy performance and provide the basis for energy

efficient online schedulers. The first scheduler introduced, First Come First Serve (FCFS) is very simple and treats

all vehicles equally and in order of arrival. The second, Fastest First (FF), gives priority to faster moving vehicles

since their transit time through the RSU coverage area is less than slower moving vehicles. The Greedy Generalized

Flow (G-GF) and Greedy Time Expanded Graph (G-TEG) algorithms are two implementations of the two flow

graph based models. The proposed algorithm performance is examined under different traffic scenarios and they are

found to perform well compared to the lower bound. Our results show that less computational intensive algorithms

(FCFS) and (FF) can perform well under light load, but (G-GF) and (G-TEG), while more computational intensive,

can provide near optimal throughput and with reasonable drop rates. The results also show that the G-GF and

G-TEG algorithms are much more fair than the simpler algorithms in heavy load situations.

I. INTRODUCTION

In the future, a wide variety of new systems and applications will be enabled using vehicular ad hoc

networks (VANETs). Although the initial focus will be on improving road safety, applications such as

traffic management, location aware advertising and infotainment are expected to follow. In the USA,

VANETS are licensed to operate using dedicated short range communications (DSRC) in the 5.9 GHz

frequency band [1]. Wireless Access in Vehicular Environment (WAVE) is a recent addition to the IEEE

802.11 wireless LAN standards family [2] that is designed specifically for enabling VANET applications.
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VANETs can have three modes of communication, vehicle-to-vehicle (V2V), vehicle-to-infrastructure

(V2I), and hybrid V2V-V2I communications. In V2I, fixed roadside units (RSUs) are used to interact with

passing vehicles for purposes such as, the relaying of inter-vehicle messages, broadcasting information, and

access to Internet information services. Unlike most traditional ad hoc networks, vehicles move quickly

and spend a relatively short amount of time inside RSU radio coverage range. This imposes certain

constrains on the RSU response time for a vehicle request. Moreover, as multiple vehicles can be moving

inside the RSU range with different speeds and communication requirements, the service order becomes

crucial in to ensure that satisfactory performance is obtained.

Deploying RSUs in roadside locations can be difficult due to the unavailability of wired electricity. In

many locations, power grid connections are not possible, while in others, the connection costs are too

prohibitive. As an alternative, the RSUs can be powered using renewable energy sources, such as solar

or wind power. A deployment analysis was presented in [3] which was included in the US Department

of Transportation Vehicle Infrastructure Integration (VII) Initiative. Cost projections were given for a

vehicular infrastructure deployment that would focus initially on safety and monitoring applications. The

report estimated that 40% of rural highway infrastructure would have to be solar powered, and that over

63% of the roadside unit costs would be spent on solar energy provisioning. It is clear from this study

that costs can be significantly reduced by energy efficient designs.

It has been shown that smart scheduling can be used to reduce roadside unit (RSU) energy costs in

green vehicular roadside infrastructure [4]. In this paper we focus on the problem of downlink schedule

generation when the RSU-to-vehicle air interfaces use variable bit rate (VBR) transmission, rather than the

constant bit rate case considered in [4]. Offline scheduling formulations are first introduced which provide

lower bounds on the energy needed to satisfy arriving vehicular traffic demand. An integer linear program

(ILP) formulation is given which can find optimal offline VBR time slot schedules. The paper then shows

that the scheduling problem is NP-complete by a reduction from the well known Santa Claus Problem.

We then introduce two flow graph based models that can solve for minimum energy VBR schedules. The

first uses generalized flow (GF) graphs which represent time slots as individual graph nodes. The second

is based on time expanded graphs (TEGs) which model the system’s temporal evolution. TEGs have been

used to model scheduling when vehicle-to-vehicle forwarding is used [5] [6]. Both of these models can be

efficiently solved and provide lower bounds on energy performance. They also motivate some proposed

online schedulers. The first, First Come First Serve (FCFS) is a simple algorithm which treats all vehicles
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equally and assigns time slots in vehicle arrival order. The second, Fastest First (FF), gives priority to

faster moving vehicles. This is motivated by the fact that their transit time through the RSU coverage area

is less than slower moving vehicles. The Greedy Generalized Flow (G-GF) and Greedy Time Expanded

Graph (G-TEG) algorithms are two implementations of the two graph models. The results from various

experiments show the good performance of the proposed algorithms in comparison with the energy lower

bounds. Our results also show that less computational intensive algorithms, FCFS and FF, can perform

well under light loading conditions, but (G-GF) and (G-TEG), while more computational intensive, can

provide near optimal throughput and with reasonable values of request dropping. The results also show

that the G-GF and G-TEG algorithms are much more fair than the simpler algorithms in heavy load

situations.

The remainder of the paper is organized as follows. Section II summarizes related research results. Sec-

tion III described the assumptions used in our system model and Section IV presents the ILP formulation

of our problem for the variable bit rate time slot case. In Section IV-A this scheduling problem is shown

to be NP-complete. Following this, in Section IV-B the off-line energy bounds are introduced. In Section

V, four online scheduling algorithms are then proposed. The bound and the online algorithm performance

are studied in Section VI and in Section VII, the paper presents the conclusions of our work.

II. RELATED WORK

Recent vehicular ad hoc networking work has covered a broad range of topics. For example, application

requirements and their relation to networking technologies are explored in [7], and reference [8] surveys

routing protocols and related mobility models. The specific challenges relating to vehicular security have

been studied in reference [9]. In [10] and [11], the performance of the IEEE 802.11p standard in highway

environments was considered, and in [12] its performance was studied. Extending vehicular ad hoc network

connectivity, improving utilization and decreasing contention were examined in [13], [14] and [15].

Roadside unit traffic scheduling has been studied using simple schedulers based on message size and

their deadlines but without considering the energy consumption of the infrastructure [16]. Reference [17]

maximizes RSU throughput given messages with different priorities. The RSU channels are viewed as

machines and messages as jobs using a model based on parallel machines. In [18], an RSU throughput

optimization is used given the locations and velocities of the vehicles. A scheduler was also proposed

which can be used in the IEEE 802.11e contention free period.
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Energy efficiency in VANETs has typically not been an issue, since vehicles are usually assumed to have

unlimited energy reserves. Also, from the roadside infrastructure viewpoint, most work assumes urban

settings where wired power is available at reasonable cost. However, recent work addresses the energy

consumption needed by a group of RSUs by switching them on and off in order to maintain connectivity

for the vehicles while minimizing RSU energy use [19]. The purpose of this paper is to optimize the RSU

energy consumption, but with a focus on smart scheduling at the RSU.

Energy consumption at the RSU was considered in reference [20]. This work assumed a constant bit

rate air interface and focused on reducing downlink energy costs in the case where vehicle communication

requirements are delay tolerant. Time expanded graphs were used used to model scheduling in vehicle-

to-vehicle forwarding [5] [6] and in [21], scheduling was considered when there are multiple RSUs. The

variable bit rate model is the starting point for our paper.

III. SYSTEM DESCRIPTION

The system considered consists of a single Roadside Unit (RSU) which communications with passing

vehicles as shown in Figure 1. The figure shows the vehicles moving in one direction, but multi-directional

traffic is also easily accommodated. The focus is on the energy required by the radio interface used by

the RSU to fulfill vehicle communication requirements in the downlink direction. We are not concerned

about vehicular energy efficiency since the vehicle radio is powered by the car’s engine.

The objective for the RSU is to generate and execute downlink transmission schedules that fulfill

vehicular communication requirements. We assume that a vehicle’s communication requirement is delay

tolerant in that it can be satisfied at any point during the vehicle’s RSU transit time [20]. Upon entering the

RSU range, each vehicle announces its requirements, location and velocity to the RSU. This information

can then be used to estimate the downlink energy costs of communicating with the vehicle as it passes

through the coverage area. The objective is to use these inputs to create a downlink transmission schedule

so that energy use is minimized. In [20] schedule generation was considered when the air interface uses

a constant bit rate (CBR). In the CBR case, power control is used to maintain a fixed bit rate over the

RSU-to-vehicle links as the channel path loss changes. In this case the objective is to schedule downlink

transmissions such that the required average downlink power consumption is minimized. However, as in

[5], we assume a variable bit rate (VBR) air interface where the transmission power is assumed to be

fixed, and changes in channel path loss are compensated for by varying the bit rate used over the RSU-

to-vehicle links. A packet transmission may therefore occupy a different amount of time on the channel
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depending upon the bit rate used when it is transmitted. In this case, the objective is therefore to create a

downlink transmission schedule such that the total time that the RSU spends transmitting is minimized.

Note that the bit rate needed can be set in a variety of ways such as using a short two-way handshake

prior to actual vehicle data packet transmission. The schedule generation problem is more formally stated

as follows.

INPUT: The scheduler is given a sample function of V vehicles indexed by the set V = {1, 2, . . . , V },

where each vehicle v ∈ V has a residual RSU-to-vehicle communication requirement, dv, bits. We

consider two different transmission arrangements.

1) Time Slotted (TS): The entire time over which scheduling is to occur consists of T fixed duration

time slots given by the set T = {1, 2, . . . , T}. The scheduler is given estimates of the number

of bits that can be carried in each time slot t ∈ T for vehicle v, denoted by bv,t. This is referred

to as the variable bit rate time slotted or TS case.

2) Time Framed (TF): The entire time over which scheduling is to occur consists of transmission

frames given by the set F = {1, 2, . . . , F} and their duration, τf , for all f ∈ F . We are also

given estimates of the bit rate that can be achieved in each frame f , for vehicle v, denoted by

Bv,f . This is referred to as the time framed or TF case. Time frame durations are such that Bv,f

is constant for all vehicles inside the RSU range.

OUTPUT: A scheduler output gives a downlink RSU-to-vehicle transmission schedule. Given the inputs

defined above, the scheduler will try to generate a downlink transmission schedule so that all

vehicle communication requirements are satisfied, and so that the downlink RSU energy cost is

minimized, i.e., the scheduler tries to minimize the total time needed to fulfill all downlink vehicular

transmissions. In the TS case the scheduler output gives xv,t for all v ∈ V and t ∈ T , which are

binary decision variables equal to 1 if vehicle v is allocated to time slot t, and 0 otherwise. In the

TF case, the scheduler output gives xv,f for all v ∈ V and f ∈ F , which is the number of bits which

are sent to vehicle v in time frame f .

The schedules that are generated can be either offline or online. In offline scheduling, the entire set of

inputs for all t ∈ T (or for all f ∈ F ) are provided to the scheduler at once. Optimum offline schedules

are derived in Section IV-B and are used as lower bounds on energy performance for comparisons with

the online algorithms. In online scheduling the inputs are provided to the scheduler in real time and it

must create a schedule in real time using these causal inputs. Online scheduling algorithms are given in
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Fig. 1: RSU Example. Vehicle i is shown at two different times t1 and t2 at distances di,t1 and di,t2 from

the RSU, respectively

Section V. In the following section, we formalize these definitions and derive optimum offline schedules

for the energy needed for RSU-to-vehicle communication.

IV. OFFLINE VARIABLE BIT RATE SCHEDULING

The offline scheduling task is modelled as an Integer Programming (IP) optimization. We first consider

the time slotted (TS) model where the offline scheduling problem can be written as an ILP, referred to

as VBR-OPT, as follows.

minimize
xv,t

∑

v∈V

∑

t∈T

xv,t (VBR-OPT)

subject to
∑

v∈V

xv,t ≤ 1, ∀t ∈ T (1)

∑

t∈T

bv,txv,t ≥ dv, ∀v ∈ V (2)

xv,t ∈ {0, 1}, ∀t ∈ T , v ∈ V (3)

In VBR-OPT, xv,t are binary decision variables equal to 1 if vehicle v is allocated to time slot t and

0 otherwise. The objective is to minimize the total number of time slots the RSU will be transmitting.

Constraint (2) ensures that the number of time slots allocated to each vehicle satisfies the vehicle demand,

while Constraint (1) prevents time slots from being assigned more than once.

Note that since optimization VBR-OPT is an ILP, it may have an exponential worse-case complexity,

which precludes its use for reasonable problem sizes. In fact, we show next that VBR-OPT is NP-complete.

However, we can generate a less complex lower bound on energy by relaxing constraint (3) to xv,t ≥ 0

for all t ∈ T , v ∈ V . This permits us to obtain a bound by solving a conventional linear program. This is

discussed further in Section IV-B.
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A. Time Slotted Variable Bit Rate Scheduling Complexity

In this section we prove the NP-completeness of time slotted version of the offline scheduling problem

formulated in Section IV. This is done by a reduction from the well known Santa Claus Problem [22]. In

the Santa Claus Problem, Santa has a set G of presents (gifts) that he wants to distribute among a set K,

of kids. There is a given level of satisfaction, pk,g, associated with giving present g to kid k, for all g ∈ G

and k ∈ K. The total satisfaction for a kid consists of the sum of satisfactions of each present received.

Given these inputs, the decision version of the Santa Claus Problem must answer the question: Given a

satisfaction threshold, S, is there an assignment of presents to the kids such that each kid receives at

least a satisfaction of S?

The decision version of the Santa Claus Problem can be easily written as an integer linear program

feasibility test as follows.

minimize
xk,g

0 (SC-OPT)

subject to
∑

k∈K

xk,g ≤ 1, ∀g ∈ G (4)

∑

g∈G

pk,g xk,g ≥ S, ∀k ∈ K (5)

xk,g ∈ {0, 1}, ∀g ∈ G, k ∈ K (6)

where xk,g is a binary decision variable, equal to 1 when kid k is given present g and 0 otherwise.

Constraint (4) ensures that each present, is assigned to at most one kid and Constraint (5) guarantees that

the each kid achieves the minimum satisfaction threshold, S. We now show the following result.

Theorem 1. The time slotted variable bit rate vehicular scheduling problem is NP-complete.

Proof: We first divide both sides of Constraint (5) by S, and define p′k,g = pk,g/S. This constraint

now becomes
∑

g∈G

p′k,g xk,g ≥ 1, ∀k ∈ K (7)

where p′k,g can be viewed as a normalized satisfaction. Similarly, we divide both sides of Constraint (2)

by dv and define b′v,t = bv,t/dv. This constraint now becomes

∑

t∈T

b′v,t xv,t ≥ 1, ∀v ∈ V (8)
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where b′v,t can be viewed as a normalized time slot capacity. Note the similarity that these two normalized

constraints create for ILPs VBR-OPT and SC-OPT.

Now assume that we are given an instance of the Santa Claus Problem defined above. We define an

instance of the variable bit rate scheduling problem where |V| = |K| and |T | = |G|. We set b′k,g = p′k,g

for all k ∈ K and g ∈ G. Clearly this transformation can be done in linear time.

Using the above inputs we now solve ILP VBR-OPT. If a valid solution is obtained, then from the above

construction, the time slot assignments from ILP VBR-OPT are clearly a feasible solution to ILP SC-OPT.

Now assume that ILP VBR-OPT is infeasible, i.e., no minimum energy solution to VBR-OPT exists. If a

solution to the Santa Claus Problem instance exists however, then from the same construction, the solution

from ILP SC-OPT could be used to create a feasible solution for ILP VBR-OPT. This contradicts the

infeasibility of the ILP VBR-OPT solution. Therefore, the solution to any instance of the Santa Claus

Problem can be answered by testing if a solution to the variable bit rate scheduling problem exists. This

establishes the NP-completeness of the variable bit rate scheduling problem.

B. Offline Scheduling using Generalized and Time Expanded Graphs

In this section we introduce two methods to compute the minimum energy that an optimal offline

scheduler can achieve. Since they are offline, the entire input is given to the scheduler at once, and the

schedulers may produce fractional time slot allocations. In Section V we adapt these models for online

use. The first proposed method models the time slotted (TS) version of the scheduling problem as a

Minimum Cost Generalized Flow Graph. Recent combinatorial algorithms [23] can solve this type of

problem in time complexity which is strongly polynomial compared to general purpose LP optimization

solvers which at best can achieve weakly polynomial times. The second method models the time framed

(TF) version of the scheduling problem as a Time Expanded Graph.

1) Generalized Flow (GF) Graph Model: In this section, we introduce on offline scheduling method

using a generalized flow graph construction for the TS model. This technique has advantages over solving

an LP relaxation of ILP VBR-OPT in that due to the cycle cancelling algorithms used for its solution

[23], it directly manipulates the underlying graph and tends to generate integral time slot allocations. This,

combined with careful design of the generalized flow graph model for our problem has led to a dramatic

decrease of the number of time slots that the scheduler shares between multiple vehicles. By reducing the

percentage of shared time slots, the difference between the solutions obtained by the approximate schedule

and an optimal IP scheduler is minimized. This is discussed further in Section V. In addition, when general
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Fig. 2: Generalized Flow Graph Illustration. Part of the graph is shown for a single vehicle v. The format

of the edge labels is given by the triplet “cost/capacity/multiplier”.

purpose LP methods are used to find an optimal schedule for a problem modeled as a generalized flow,

they are weakly polynomial. Their complexity will depend on the size of the cost, capacity and gain

factors [23], while combinatorial algorithms designed specifically for Generalized Flow problems can be

strongly polynomial.

Generalized Flow Graphs (GFGs) [24] are similar to conventional flow graphs in that they consist of

nodes interconnected by directional edges. As in conventional flow graphs, each node can introduce flow

into the graph (supply), subtract flow from the graph (demand), or be a transship node (the sum of flows

into the node is the same as the sum of the flows out). Each GFG edge has a maximum flow capacity

which must not be exceeded. The edges also have costs associated with the use of that edge, and for each

unit of flow along an edge, the total edge cost incurred is the product of the flow along the edge and the

edge cost. A feasible flow across the graph must satisfy all the nodes supply and demand, as well as flow

conservation, while not violating the edge capacities.

Generalized flow graphs differ in that each edge also has a multiplier, which is referred to as the edge

gain factor. Edge (i, j) has a multiplier, γi,j, and flow f entering this edge will emerge at the other end

of the edge as flow fγi,j . The gain factors can be less (or greater) than 1 in which case the flow reaching

the destination is reduced (or magnified), respectively.
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We will present a simple example to show how the variable bit rate scheduling problem can be modelled

as a GFG. For this example we assume a simplified case where only three bit rate levels are used, high

(H), medium (M) and low (L). Clearly, the bit rate that can be used for a given vehicle will depend upon

the quality of the downlink during a time slot. In the example we assume that a flow of 2 (in units of

high bit rate time slots) is required for vehicle v. We also assume that two and three M and L time slots

are needed to accommodate one H bit rate time slot, i.e., a flow of 1 H time slots can be serviced by 2

M bit rate time slots, etc. A section of the final generalized flow graph is shown in Figure 2. The input

flow to node v is shown at the left. The L, M and H nodes correspond to using time slots with those

bit rates. Each node in the right hand column corresponds to a time slot, and the edges connecting the

middle and right hand columns correspond to the bit rate which is possible for v during that time slot. The

multipliers on the edges leaving node v correspond to the relative bit rates of the center column nodes

used. For example, the v-to-M multiplier is 2 which will cause a unit flow input from v to become a two

unit flow leaving node M . This will ensure that two M time slots will be required to satisfy this flow.

In the example, the 2 units of flow entering v emerge as three units of flow from the time slot column.

This indicates that one unit of flow each is passing along the H-to-t3, M-to-t2 and M-to-t4 edges. The

requirement for v has therefore used one H time slot and two M time slots. Note however, that the

amount of flow that is leaving the section of the graph shown is not the same as the flow entering. The

cost for a particular solution comes from the middle to right hand column edges, each of which are unit

costs. The total cost for this solution is therefore 3.

In general a vehicle demand R is represented in terms of multiples of the highest bit rate level used

for a full time slot. If vehicle v demand can be served during time slots connected to the H node, it can

receive the highest bit rate achievable. Thus, it can be served in exactly R time slots. The multiplier on

the edges connecting v to H , γv,H , is equal to 1. This is because a unit demand can be served by a unit

of flow from H to the time slot node t3, assuming the second highest bit rate level, M , is half the H

bit rate. Serving vehicle v demand using only time slots connected to M would require the use of 2×R

time slots, t2 and t4. This is reflected in the multiplier γM being equal to 2. The same idea applies to

lower bit rates. So we have γH < γM < γL. The multipliers over edges connecting nodes H,M and L

and time nodes are set to be 1.

For algorithmic convenience reasons, circulations instead of flows are used. To achieve this, the above

design is “mirrored” as shown in Figure 3. In this example we show a complete graph with the same
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Fig. 3: Generalized Flow Graph Model Example

time slot bit rates as before, showing 7 time slots and two vehicles. By mirroring, the flow coming from

vehicle nodes in column V out flows to bit rate level nodes in column BRout to time slots column Tout.

At this stage the mirrored design starts where flow from Tout nodes pass through T in nodes. This in

turn is collected in the bit rate level nodes in the column BRin and finally to V in vehicle nodes. The

feedback flow allows excess flow to be fed back into the network, forming a circulation.

The values of capacity and multiplier over the edges in the mirrored part of the graph are kept the same,

except for the edges connecting the mirrored bit rate level nodes BRin to vehicles in the V in column

where the value of the multipliers are the inverse of those connecting V out vehicles nodes to BRout.

In this design, the same time slot can be used by any vehicle that happens to be inside the RSU range

during this time slot. In order to limit the flow from multiple vehicles into a single time slot to one unit,

the mirror column of time slots is used where each time slot t′i is connected to ti with an edge capacity

limited to 1.
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This design allows combinatorial algorithms to detect flow generating cycles and flow absorbing cycles

[23]. Together they form what are called “bicycles” which can be eliminated when searching for a minimum

cost flow solution. After solving this minimum cost flow problem, the final schedule can be obtained from

the flows between the bit rate level nodes BRout and time nodes Tout. However, note that generalized

flow graph solutions do not produce integral flows, so optimum solutions may allocate fractional time

slots. In Section V we propose a method based on rounding that generates integral solutions which can

be used in practical schedulers.

2) Time Expanded Graph (TEG) Model: The generalized flow graph mode discussed in Section IV-B1

specifically identifies time slots which are then assigned by the GFG optimization. In this section we

consider the time framed (TF) version of the problem modeled as a time expanded graph. An advantage

of this approach is that fractional flow assignments will be in units of bits rather than units of time

slots. This makes it easier to accommodate practical packet constraints. Also, typically the achievable bit

rate for a given vehicle does not change over many time slots, which means that the GFG size can be

unnecessarily large.

Unlike a conventional flow graph, a TEG is time-expanded, i.e., the graph models the evolution of

the system in time [25]. Accordingly, we consider the system to evolve over multiple time frames. An

example of a TEG is shown in Figure 4 consisting of three time frames. In this example there are three

vehicles V1, V2 and V3 with downlink demands of 7, 5 and 15, respectively. The graph is time-expanded

which means that the vehicle nodes and the RSU node are duplicated across the three time frames, as

shown. The temporal node replications also model the carrying of flow (i.e., bits) over from one frame

to the next, e.g., the RSU may fulfill a vehicle’s job requirement over multiple frames. Note that node

D is simply a flow collection node. The cost of communicating between the RSU and vehicle i at time

frame j is denoted by ci,j . When the vehicle is closest to the RSU and the achievable bit rate is highest,

the cost is lowest, and as the achievable bit rate drops, the cost increases. The edge capacity denotes the

maximum number of bits that can be transmitted to vehicle i if it used the entire frame j. The cost over

this arc is inversely proportional to the bit rate Bi,j vehicle i can achieve during frame j.

The TEG can easily be expressed in terms of the following LP.

minimize
xv,f

∑

f∈F

∑

v∈V

xv,f/Bv,f (DNTG-LP)
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D

Fig. 4: Time Expanded Graph Example

subject to
∑

f∈F

xv,f ≥ dv ∀v ∈ V (9)

∑

v∈V

xv,f/Bv,f ≤ τf ∀f ∈ F (10)

xv,f ≥ 0 ∀v ∈ V, f ∈ F (11)

where V is the set of vehicles, F is the set of time frames, xv,f is the number of bits sent to vehicle

v ∈ V during frame f ∈ F and Bv,f is the achievable bit rate to this vehicle during this time frame. The

objective in DNTG-LP minimizes the total time that the RSU transmits. Constraint (10) ensures that the

sum of all time durations allocated to vehicles during a frame f does not exceed the frame duration, τf .

Vehicle v demand dv (in bits) is guaranteed to be satisfied by Constraint (9). This LP can be solved in

polynomial time and provides an offline bound to the energy required to serve the vehicles in V during

time period F .

V. ONLINE SCHEDULING ALGORITHMS

In this section, algorithms are proposed which perform energy efficient online scheduling in real time.

The scheduling decisions made by the online scheduler can only be made using causal input data, i.e.,

consisting of past and current inputs.
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Algorithm 1 FCFS Algorithm

1: for all t ∈ {0, 1, . . .} do

2: if time slot t is assigned to vehicle k, i.e., xk,t = 1 then

3: Transmit to vehicle k.

4: end if

5: if vehicle v arrives then

6: Set residual demand, rv, to the vehicle v demand dv.

7: while rv > 0 do

8: Select an unassigned time slot, t′, for vehicle v which maximizes its bit rate,

i.e., t′ = argmaxt∈Tv bv,t, where Tv is the set of unused time slots available to v.

9: Assign t′ to vehicle v, i.e., xv,t′ = 1.

10: Reduce rv by the payload available for vehicle v in time slot t′, i.e., rv = max(0, rv−bv,t′).
11: end while

12: end if

13: end for

A. First-Come-First-Serve (FCFS) Algorithm

FCFS is a very low complexity scheduler motivated by the CBR version proposed in [4]. The algorithm

is executed whenever a new vehicle enters the RSU radio coverage range. Upon arrival, the scheduler

assigns enough time slots to satisfy the vehicle’s communication requirements. This is done by assigning

time slots in “highest bit rate first” order for the arriving vehicle. A more formal description of the

algorithm is shown in Algorithm 1.

In step 2 the algorithm executes the current schedule, xk,t, for the current time slot, t. If xk,t = 1,

vehicle k is communicated to by the RSU for time slot t. Vehicle k therefore receives bk,t bits which is

the available payload. The demand for vehicle k, dk, is then reduced by bk,t.

In step 5, if a vehicle v arrives, the current schedule is updated. This update does not interfere with

anything previously allocated for other vehicles. A temporary variable rv is initially set to vehicle v

demand dv. In step 8, the algorithm searches for a free time slot t′ during which newly arrived vehicle

v can receive the highest possible bit rate from the RSU. Once this time slot is found, it is reserved in

the schedule xt′,v for some future time slot t′. This process is repeated, steps 10 to 14, until vehicle v is

assigned enough time slots to satisfy its demand.

The description in Algorithm 1 is written in terms of variable bit rate time slots. However, the algorithm

can also operate using the time framed (TF) model with very little change, i.e., instead of assigning

maximum data rate time slots, variable length time periods are assigned in frames at the maximum data

rate possible.

In Section VI it will be shown that FCFS is most suitable when vehicle speeds and demands are
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relatively close and traffic load is light. When vehicle speeds are quite different, there are advantages to

distinguishing them on this basis. This is the FF algorithm introduced in the next section, and motivated

by a similar algorithm in [4] used in the CBR air interface case.

B. Fastest-First (FF) Algorithm

In this algorithm, the schedule is re-computed upon each vehicle arrival. Time slots are assigned using

the same “highest bit rate first” priority as in the FCFS algorithm, however, the vehicles are processed in

“fastest-first” order. As before, each vehicle is allocated enough time slots to satisfy its remaining demand.

A more formal description of the algorithm is given in Algorithm 2.

Algorithm 2 FF Algorithm

1: for all t ∈ {0, 1, . . .} do

2: if time slot t is assigned to vehicle k, i.e., xk,t = 1 then

3: Transmit to vehicle k.

4: end if

5: if a new vehicle arrives then

6: Reset schedule: xk,t = 0 for all k ∈ K, t ∈ T
7: while unscheduled vehicles exist do

8: Select vehicle v with highest speed from unscheduled vehicles.

9: Set residual demand rv to the vehicle v demand dv.

10: while rv > 0 do

11: Select an unassigned time slot, t′, for vehicle v which maximizes its bit rate,

i.e., t′ = argmaxt∈Tv bv,t, where Tv is the set of unused time slots available to v.

12: Assign t′ to vehicle v, i.e., xv,t′ = 1.

13: Reduce rv by the payload available for vehicle v in time slot t′,
i.e., rv = max(0, rv − bv,t′)

14: end while

15: end while

16: end if

17: end for

As in the FCFS algorithm, in step 2, the algorithm executes the current schedule, xk,t, for the current

time slot, t. If xk,t = 1, vehicle k is communicated to by the RSU. Vehicle k receives bk,t bits during that

time slot. The demand for vehicle k, dk, is then reduced by bk,t.

In step 5, if a new vehicle v arrives, the current schedule is re-computed. In step 8, the vehicles are

selected to be scheduled according to their speed. A temporary variable rv is set to the currently selected

vehicle v’s remaining demand dv. In step 11, the algorithm assigns a free time slot t′ during which vehicle

v can receive the highest possible bit rate from the RSU. This process is repeated, steps 10 to 14, until

vehicle v is assigned enough time slots to satisfy its remaining demand dv. All other vehicles are then
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processed in the same fashion. As in the FCFS algorithm, FF assumes fixed size time slots.

The description in Algorithm 2 is written in terms of variable bit rate time slots. As in the FCFS case,

the algorithm can also operate using the time framed (TF) model with very little change, i.e., instead

of assigning maximum data rate time slots, variable length time periods are assigned in frames at the

maximum data rate possible.

The idea behind this algorithm is to provide better fairness across vehicles with different speed, since

faster moving vehicles spend less time inside the RSU radio coverage range. Note that FF is more

computationally expensive than FCFS, but as it will become clear later, it provides better fairness when

there are vehicles with different speed.

C. Greedy Generalized Flow (G-GF) Algorithm

In section IV-B we introduced two designs that compute bounds on the minimum energy of the offline

scheduling case. These algorithms can be run in polynomial time, and in this section a greedy online

version of these algorithms is proposed. The Greedy Generalized Flow Algorithm (G-GF) is based on the

Generalized flow construction shown in Figure 3. Since it is an online algorithm it must schedule vehicles

as they arrive to the RSU. The algorithm is shown in Algorithm 3 and is described as follows.

Algorithm 3 includes a function declaration, GFG-SCHEDULER, which accepts a set of vehicles V ,

time slots T , remaining vehicle demand di and the number of bits available to vehicle i in time slot j,

bi,j . When this function is called, it constructs a generalized flow graph as in Figure 3 using the provided

inputs. The GFG is then solved and the resulting outputs, xv,t, become the new active schedule. As

discussed previously, these outputs may be fractional.

When a new vehicle arrives (step 3), GFG-SCHEDULER is called and an updated schedule is obtained

using all known information. This includes all known vehicles and the union of time slots available to

this vehicle set. The algorithm then tests to see if any vehicles are scheduled for the current time slot,

t, and if multiple vehicles are, it selects the one with the highest data rate, and transmits to that vehicle

(step 8). Vehicle demand is then updated and if the vehicle in question is finished, the vehicle set is also

updated. In step 10, if the vehicle had not been the only one assigned to time slot t, then a new schedule

is obtained from GFG-SCHEDULER by excluding time slot t. Note that the same process occurs if a

vehicle was assigned a fractional time slot, except that there is no need to call GFG-SCHEDULER since

the system will use the existing schedule.
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Algorithm 3 G-GF Algorithm

V : set of known vehicles

T : set of time slots available to V
dv : vehicle demand ∀v ∈ V
bv,t : bits available to vehicle v in time slot t ∀v ∈ V, t ∈ T
xv,t : current schedule

1: for all t ∈ {0, 1, . . .} do

2: if a new vehicle arrives then

3: GFG-SCHEDULER(V , T , di, bi,j) ∀i ∈ V, j ∈ T
4: end if

5: Let Kt be the set of all vehicles scheduled for time slot t, i.e., Kt = {k|xk,t > 0}.

6: if one or more vehicles are scheduled for t, i.e., Kt 6= ∅ then

7: Select vehicle k ∈ Kt with maximum available bit rate, i.e., k = argmaxi∈Kt
bi,t.

8: Transmit to vehicle k and update its demand, i.e., dk = max(0, dk − bk,t).
9: Let V ′ = {v|v ∈ V, dv 6= 0}

10: if t is not completely assigned to k: i.e., xk,t < 1. then

11: GFG-SCHEDULER(V ′ , T ′, di, bi,j), where T ′ = T − {t}, i ∈ V ′, j ∈ T ′

12: end if

13: end if

14: end for

15: function GFG-SCHEDULER(V, T , di, bi,j) ∀i ∈ V, j ∈ T
16: Construct a new GFG as in Figure 3.

17: Solve the GFG and create a new schedule xv,t for all v ∈ V, t ∈ T .

18: return xv,t for all v ∈ V, t ∈ T
19: end function

D. Greedy Time Expanded Graph (G-TEG) Algorithm

In this section we introduce an algorithm based on the design described in Figure 4. The idea is to

create a time expanded graph for vehicles inside the RSU range. Upon vehicle arrival the scheduler creates

a time expanded graph similar in design to the one in Figure 4. The vehicle nodes represent the ones

currently inside the RSU range with unmet demands. The time frames set represent the frames during

which these vehicles maintain the same achievable bit rate. The frames extend until the last vehicle of

those currently inside the range exit. The algorithm steps are similar to the steps shown in Algorithm 3,

except for function GFG-Scheduler where a time expanded graph is built and solved instead of a static

generalized flow network. As with the G-GF, G-TEG algorithm can be executed in polynomial time.

VI. PERFORMANCE COMPARISON EXAMPLES

In this section we study the performance of the proposed algorithms by showing some representative

examples of our results. The input data that was fed to the schedulers assumed a highway scenario
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where vehicles maintain constant speed throughout the RSU coverage area [26] [20]. Good estimates

of energy costs can be readily made in this type of situation [27][28] and the bit rates used for the

downlinks are based on these vehicle position estimates. A distance dependent exponential path loss

model was assumed, using a path loss exponent of α = 3. In many practical systems however, there

will be dominant deterministic propagation with random components due to propagation effects such as

shadowing. Therefore, we also include results where the scheduler input data includes random errors due

to log-normal shadowing components.

Vehicular traffic models have been extensively studied and in general, vehicle behavior is highly variable

[29] [30]. In highway scenarios however, vehicle interaction is considered to be relatively insignificant

with vehicles tending to maintain constant speeds for relatively long periods of time [31]. The vehicle

arrival process is often modeled to be Poisson [26] [32] and this what is assumed in our experiments. We

also model the traffic in different lanes as belonging to different classes each with different speeds as in

[27]. The RSU is assumed to be in the middle of the highway segment of interest with vehicles passing

by in one or more directions. The physical layer model is based on that obtained from [33] [34] where

the bit rates vary according to distance from 3 to 27 Mbps. A 2 Km coverage area is assumed for the

RSU.

The theoretical offline minimum energy derived by the models in Section IV-B are referred to as TEG

Bound in the presented graphs. The values for TEG Bound computed either using the GF model or

DNTG are very close, and therefore only one of them, i.e., DNTG, is reported in these experiments as

the theoretical bound. This Bound is compared to the online algorithms (FCFS, FF, G-TEG and G-GF)

we presented in Section V.

Results are presented for experiments using two classes of vehicles, and the experiments show the

effects of changing demand and vehicle speed. Later, the fairness of the proposed scheduling algorithms

is studied. In the graphs, each plotted point is an average of multiple runs to ensure the results are

representative of the performance of the algorithms. To heavily stress the scheduling algorithms, we often

subject the RSU to traffic conditions which the RSU cannot fully satisfy. In these experiments we keep

track of the vehicle loss rate, i.e., the probability that a vehicle’s demand cannot be satisfied. Note that

the online algorithms are designed to serve as much demand as possible, i.e., they will not drop vehicle

demand in favor of minimizing total energy use. Demand is only dropped when no time slots are available.

In the first experiment, we study the performance of the algorithms under light to medium loading
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Fig. 5: Throughput and Energy Comparisons. Low to Medium Demand.

demands. The vehicular traffic consists of two classes, c1 and c2 where the arrival rate for both is λ = 1/28

(vehicle/time slot). The two-vehicle platooning percentage is 0.05 which means that 5% of vehicles arrive

together. Vehicle speed is c1 and c2 are 18 and 30 m/s (65 and 108 KM/h), respectively.

Figure 5 shows the performance of the FCFS, FF, G-GF and G-TEG algorithms versus throughput.

It can be seen that the G-GF and G-TEG algorithm performance is very similar and generally follows

slightly about that of the Bound. The energy performance is about 25% higher than the bound under lighter

throughput values and about 7.5% under the highest values of throughput plotted. Note that the gap between

the bound comes from several reasons. The bound is clearly non-causal and benefits from knowledge of

future inputs which the online algorithms do not have. Although the G-GF and G-TEG algorithms use

myopic versions of the generalized flow and time expanded graphs, the process of rounding the fractional

outputs to integer schedules incurs some energy overhead. Finally, at larger values of throughput, the

algorithms incur a loss rate, i.e., unfulfilled demand, that decreases their energy use compared to the

bound which does not incorporate loss into its formulation. This accounts for the lower fractional spread

between the G-GF/G-TEG algorithms compared with the bound at higher values of throughput.

Under light values of throughput, the FCFS and FF algorithms can be seen to require about the same

total energy as G-GF and G-TEG. This is clearly because the scheduling problem is very simple when

there is almost no contention for downlink time slots. It is not possible to do any better than greedily

assigning the best available time slots to incoming vehicles. For this reason, under very light traffic
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Fig. 6: Demand Drop Percentage Under Low to Medium Demand

conditions there is effectively no value in going to a much more sophisticated scheduling algorithm.

Note that at lower values of throughput, all four curves eventually converge. As the throughput increases,

however, this situation changes, i.e., the simplistic design of FCFS and FF begins to adversely affect

their performance. For example, in the case considered in Figure 5, at the highest values of throughput

plotted, the energy required by the FCFS and FF algorithms is over 30% higher than that for the G-GF

and G-TEG algorithms. This is a significant improvement in energy performance.

The demand drop percentage for the experiment explained above is shown in Figure 6. Here, the load

levels are the same as in Figure 5. Under light demand, the G-GF and G-TEG algorithms experience a

very low dropping rate. This is due to the low probability of contention arising from more than one vehicle

competing for the same downlink time slots. The G-GF and G-TEG are able to resolve this contention

without the need to drop vehicle demand.

Under medium loading, the G-GF and G-TEG dropping rates are in the 1.7% range. This happens for

two reasons. First, the Bound has knowledge of all future arrivals so it can anticipate contention and

schedule vehicles before and after the contention period to achieve a good schedule. G-GF and G-TEG

are causal algorithms and can only identify contention once the vehicles creating it arrive to the RSU.

Second, the sharing of a single time slot between more than one vehicle in the Bound model is not allowed

in the online algorithms, which renders some schedules created by the Bound as infeasible.

The FF and FCFS algorithms experience zero dropping under very light load as in the first and second



21

demand levels in Figure 6. Despite their relatively simple design, FF and FCFS in this situation encounter

very little contention which they are able to resolve without dropping demand, even if the resulting schedule

is less than optimal. As the demand increases (points 3 and 4 on the plot) however, FF and FCFS starts

to experience dropping which is still below 2%. This is in contrast to the more computationally expensive

G-GF and G-TEG algorithms which are experiencing little or no dropping. If the system was designed to

allow for a small percentage of dropping (e.g., 2% or 3%) in exchange for simple to compute schedules,

using FF or FCFS would be acceptable.

Under medium loading (last point on the plot), the dropping obtained by FF and FCFS are about 6

and 7.5 times the drop percentage for G-GF, respectively. Under these conditions, even a sophisticated

algorithm like G-GF has no option but to start dropping demand while trading performance for computa-

tional simplicity. This indicates that under medium load, using a more efficient algorithm like G-GF and

G-TEG becomes more reasonable.

It can be seen that the difference in the dropping percentage between FF and FCFS is less than 2%

throughout most of these experiments. Although FF is designed to handle faster moving vehicles better

than FCFS, under a low platooning percentage of 5%, the frequency of vehicles arriving together is

limited. This allows for the simple FCFS algorithm to accommodate the demand of a newly arrived fast

moving vehicle without dropping, even if it is in a less optimal location. This encourages the use of the

less computationally expensive FCFS algorithm over the FF algorithm in traffic situations where vehicle

flow experiences lower levels of arrival fluctuation.

To further study the performance of the online algorithms, Figure 7 shows the throughput and energy

performance comparison under higher demand levels than in the previous experiment. Figure 8 shows

the corresponding dropping behavior. In this experiment, the traffic consists of two classes of vehicles

c1 and c2, where c1 speed is 18 m/s and c2 speed is 30 m/s. The vehicle arrival rate for both classes is

1/30 vehicles/time slot and the two-vehicle platooning percentage is 10%. The increased platooning and

demand levels allows for studying the algorithm behavior when experiencing heavy load conditions. The

figures show that the performance of the two greedy algorithms (G-GF and G-TEG) is very close despite

the two different modeling approaches. As slow moving vehicles or the choice of very small time slots

can cause the problem size to grow very large in the G-GF case, it is best in this situation to use the

G-TEG algorithm. Under heavy load, G-GF and G-TEG experience about 3% demand dropping. Despite

the dropping, throughput continues to grow for these algorithms and they do not experience a saturation
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Fig. 8: Dropping Performance under High Demand

phenomenon where the throughput fails to increase while the energy use increases with demand. This is

due to the fact that G-GF and G-TEG are able to resolve contention in an efficient way, even while some

dropping is needed. On the other hand, the FCFS and FF algorithm throughput saturates and the curve

starts to grow vertically under heavy load, indicating that no more demand can be served. This means

that the maximum performance for FF and FCFS is lower than their G-GF and G-TEG counterparts.

Identifying the demand threshold would be important when using any of these algorithms. We can also
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Fig. 9: Energy Use under Light Load for Different Speed Indices

see that in this experiment, there are more significant performance differences between the FF and FCFS

algorithms. This is mainly due to the fact that the platooning percentage has increased which creates more

frequent contention. In this case, FF offers faster moving vehicles a chance to make use of high bit rate

time slots which the statically assigned schedule created by FCFS would deny. This shows that if the

traffic to be served by the RSU is characterized by high variations in the arrival of vehicles, it is favorable

to use FF over FCFS.

Vehicle speed is strongly related to the amount of energy required and the drop percentage that the

vehicles demand experiences. The reasons behind this are that as velocity increases, the number of available

time slots decreases for a particular vehicle. Also, in the case of two classes of vehicles traveling at different

speeds, faster vehicles are catching up with more vehicles from the slower moving class. This creates

more frequent contention periods.

The performance of the algorithms under different speed conditions is shown in Figures 9 and 10. The

parameters for these experiments are the same as in the previous cases except for the vehicle speeds.

While class c1 maintains a velocity of 18m/s, class c2 is changed. The speed index from 1 to 4 refers to

testing c2 under velocities: 18, 22, 26 and 30 m/s. In the figures, the first point on the x-axis represents

the two classes traveling at the same speed. In Figure 9, under light loading, the energy required by FF

and FCFS is very close. This is expected as it is easy for either the static (FCFS) or the dynamic (FF)

algorithms to find a good schedule. But in Figure 10, the difference between them is about 13%. Although
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Fig. 10: Energy Use under Medium Load for Different Speed Indices

FF does not differentiate and prioritize vehicles based on their speed, the dynamic nature of FF allows

the recalculation of the schedule every time a new vehicle arrives. With no prioritization, a newly arrived

vehicle can be given the chance to communicate with the RSU during the time periods when it is enjoying

a high bit rate. On the other hand, FCFS is a statically assigned schedule. Previously arrived vehicles

keep all previously assigned time slots. In situations where the demand is high even if the traffic flow

is steady, using the more computationally expensive FF is favourable. The above reasoning also explains

why the gap between FF and FCFS under light load is smaller than the gap under heavier loading.

Table I shows results for the performance of the algorithms under different traffic speed mixtures. The

first obvious observation is that under low or medium demand levels, and for all online algorithms, as the

speed index increases, the required energy increases. The reason for this is that the algorithms are forced

to communicate with faster moving vehicles at further distances and lower bit rates, causing them to use

more time slots. However, this does not necessarily translate into a change in the throughput. First we

examine the low demand behavior. Both G-GF and G-TEG maintain constant throughput as no dropping

occurs and they are able to successfully schedule all requests even as the speed for class c2 is increasing.

In FCFS and FF, the throughput decreases with the speed index increase. FF throughput decreases by

about 1% while FCFS throughput decreases by about 2.3%. Under medium load the situation becomes

clearer. While G-GF and G-TEG throughput drops by less than 1%, with energy increases of only 17%

and 17.6%, respectively, FCFS and FF throughput drops by 7.5% and 6.9% with energy increases of 20%
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Speed Index

Demand 1 2 3 4

FCFS

Low
Throughput 993 983 981 970

Energy 1549 1816 1883 1987

Med
Throughput 1186 1147 1101 1096

Energy 2370 2715 2831 2862

FF

Low
Throughput 993 992 989 981

Energy 1534 1796 1866 1954

Med
Throughput 1213 1198 1174 1129

Energy 2125 2512 2639 2815

G-GF

Low
Throughput 993 993 993 993

Energy 1513 1698 1731 1777

Med
Throughput 1214 1213 1211 1207

Energy 2014 2212 2271 2368

G-TEG

Low
Throughput 993 993 993 993

Energy 1531 1705 1738 1781

Med
Throughput 1214 1213 1211 1206

Energy 2020 2219 2273 2377

TABLE I: Throughput and energy requirement under different demand and velocity conditions for the

online algorithms

and 32%, respectively. These results show that G-GF and G-TEG are far more suitable for medium to

high demand situations.

In the next set of results we show comparisons where the input data to the schedulers is not ideal.

This was done by including random log-normal shadowing in the propagation model estimates. This is

done to ensure that when the scheduler input data are not ideal, the algorithms do not produce results

which would be biased in some way, due to this randomness. In the results presented, this was done by

adding propagation shadowing effects to the extracted data, which result in unpredictable randomness in

these estimates. The scheduling is therefore based on this input, but the actual costs incurred include the

energy perturbations due to the random components. The random shadowing components are unknown to

the online schedulers which base their decisions on deterministic positional information only, while the

theoretical bound can make use of the shadowing information to produce a proper bound on the energy

required to serve vehicle demand.

Figure 11 shows the performance differences between the online algorithms and the Bound when these

effects are introduced with shadowing standard deviation of 4 dB. In this experiment, the two-vehicle

platooning percentage is 10%, two classes of traffic are simulated, and the arrival rate for the two classes

is both 1/30 vehicles/time slot. Vehicle speeds for c1 and c2 are 18 and 30 m/s, respectively.
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Fig. 11: Throughput Performance with Log-Normal Shadowing
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Fig. 12: Demand Drop Percentage with Log-Normal Shadowing

The effect of including the shadowing shows in the increased difference between the Bound and the

online algorithms when compared to the case in Figure 5. The reason behind this is that as the theoretical

Bound takes into account the instantaneous shadowing effect, whereas the online algorithms are only

aware of it at packet transmission time and not when the scheduling occurs. When the actual bit rate at

the execution time is different than the one the online algorithm based its decision upon, rescheduling

is triggered and extra computations need to be done in order to accommodate the change in achievable
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Fig. 13: G-GF and G-TEG Performance with and without Shadowing

bit rate. Figure 12 shows the dropping associated with this experiment. The main effect of including the

log-normal shadowing is that the drop percentage is higher compared to the previous cases. For example,

G-GF and G-TEG starts dropping at medium demand levels, which did not happen before. Faced with

instantaneous bit rates different than the ones used to create the schedule, G-GF and G-TEG are forced

to reschedule the rest of the time slots remaining for the vehicles which can result in a poorer schedule

and increased dropping. However, these algorithms have maintained their superior performance over the

simpler ones, i.e., FCFS and FF.

Figure 13 shows the effect of including the shadowing on the differences between the Bound and the two

online algorithms, G-GF and G-TEG, where the throughput for both cases (with and without shadowing)

is shown. The experiment is for low to medium demand to ensure the feasibility of the bound calculations.

The lines which represent the results of including the shadowing in both the bound and the two online

algorithms starts with “sh”. When including the log-normal shadowing, the differences between G-GF

and G-TEG on the one side and the bound on the other becomes much bigger than in the deterministic

case. We also notice that the bound for the shadowing case is lower than the bound for the deterministic

case. This is attributed to the fact that, unlike the online cases, the offline algorithms are aware of the

random channel fluctuations and can exploit them in their scheduling.

An issue that arises when vehicular demands are not fully fulfilled is one of fairness. For example, an

algorithm could choose to drop demands from faster moving vehicles whose fulfillment would result in
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Method Average Load High Load

G-TEG 0.98 0.99

G-GF 0.98 0.99

FF 0.83 0.91

FCFS 0.53 0.62

TABLE II: Jain’s Fairness for Different Algorithms

disproportionately increased energy requirements. Clearly there is a tradeoff between fairness and total

energy use. In order to assess whether vehicles of different classes are treated fairly, Jain’s Fairness Index

is used to measure the fairness across the classes. This is defined as

f(x1, x2, x3, . . . , xn) =

∑n

i=1
xi

2

n
∑n

i=1
x2

i

(12)

where the index value is in the range 0 ≤ f() ≤ 1. xi represents the percentage loss each traffic class

encounters individually. If all traffic classes are treated equally, Jain’s Fairness Index will be 1. The worst

case unfairness when there are two classes of traffic, is 0.5. We will show some representative examples

from our experiments.

Table II shows that at high speed index, G-GF and G-TEG achieve almost perfect fairness across the

vehicles. They are followed by the FF algorithm, while the FCFS suffers the most. The algorithms G-GF

and G-TEG treat all vehicles equally when it comes to dropping demand. For example, in G-GF, the cost

over the edges between vehicles and bit rate nodes depends on which bit rate is higher and does not

depend on vehicle velocity. Thus, when the dropping is needed, no distinction between vehicles is made,

which translates into good levels of fairness.

The fairness of FF compared to FCFS is shown in Tables III and IV. As mentioned earlier, the speed

index number increase refers to the difference in velocity between classes c1 and c2. Table III shows that

FF fairness actually increases as the difference in vehicle speed increases. This is because as the speed

difference increases, the priority given to faster moving vehicles becomes higher. Therefore, despite the

much shorter time they spend inside the RSU coverage range, they obtain treatment comparable to their

slower moving counterparts. Table IV shows that FCFS suffers as the difference between vehicle speeds

increases. This is due the static nature of the FCFS algorithm where it treats all vehicles as jobs in a

queue, despite the fact that faster vehicles spend less time inside the RSU coverage range, which increases

their probability of dropping.
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Speed Index Low Load Average Load High Load

2 0.54 0.61 0.66

3 0.59 0.69 0.78

4 0.72 0.85 0.92

TABLE III: FF Fairness for Different Speed Indices

Speed Index Low Load Average Load High Load

2 0.74 0.82 0.87

3 0.59 0.69 0.73

4 0.52 0.58 0.62

TABLE IV: FCFS Fairness for Different Speed Indices

VII. CONCLUSIONS

In this paper we have considered the energy efficient roadside unit (RSU) scheduling problem when the

RSU-to-vehicle radios use a variable bit rate (VBR) air interface. Offline scheduling formulations were

given which provide lower bounds on the energy needed to satisfy arriving vehicular demand. An integer

linear program (ILP) was introduced which can be used to find optimal offline variable bit rate time slot

schedules. It was shown that this problem is NP-complete by a reduction from the well-known Santa

Claus Problem.

Two flow graph based models were introduced to solve the minimum energy VBR scheduling problem.

The first uses Generalized Flow (GF) graphs which represent time slots as individual graph nodes. The

second uses time expanded graphs (TEGs) which model the system as a time expanded flow graph. Both

of these models can be efficiently solved and provide lower bounds on energy performance. They also

provide the basis for some proposed online schedulers. Four energy efficient online scheduling algorithms

were considered. The first, First Come First Serve (FCFS) is very simple and treats all vehicles equally

and in order of arrival. The second, Fastest First (FF), gives priority to faster moving vehicles since their

transit time through the RSU coverage area is less than slower moving vehicles. The Greedy Generalized

Flow (G-GF) and Greedy Time Expanded Graph (G-TEG) algorithms are two online implementations of

the two flow graph models. Results from a variety of experiments showed that the proposed algorithms

perform well compared to the energy lower bound. Our results show that less computational intensive

algorithms, i.e., FCFS and FF, can perform well under light load, but G-GF and G-TEG, while more

computational intensive, can provide near optimal throughput and minimum drop percent in demand. The

results also show that the G-GF and G-TEG algorithms are much more fair than the simpler algorithms
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in heavy load situations.
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