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Abstract—Smart scheduling can be used to reduce infrastruc-
ture energy costs in vehicular roadside networks [1]. In this paper
we consider the scheduling problem when there are multiple
roadside units (RSUs) in tandem. In this case it is often desirable
to load balance the energy consumption across the roadside units
so that energy provisioning costs can be reduced as much as
possible. We first derive an integer linear programming bound
on the min-max energy usage of the roadside units for a given
input sample function. This bound is used for comparisons with
two proposed on-line scheduling algorithms. The first is a low
complexity First-Come-First-Assigned (FCFA) scheduler which
makes greedy RSU selections followed by a minimum energy
time slot assignment. The second algorithm, the Greedy Flow
Graph Algorithm (GFGA), makes the same RSU selection but
reassigns time slots whenever a new vehicle is assigned to the
same RSU. This is done using a locally optimum integer linear
program that can be efficiently solved using a minimum cost
flow graph. Results from a variety of experiments show that the
proposed scheduling algorithms perform well when compared to
the energy lower bounds. Our results also show that near-optimal
results are possible but come with increased computation times
compared to our heuristic algorithms.

I. INTRODUCTION

In certain vehicular installations, the location of vehicles

passing through roadside unit radio coverage can be predicted

with a high degree of accuracy. This information can then be

used to reduce downlink infrastructure-to-vehicle energy com-

munication costs [1] by scheduling traffic when vehicles are in

favourable energy locations. An example of this is illustrated

in Figure 1. In this example, vehicle v is shown at two different

times, t1 and t2, and at corresponding distances from the RSU

given by d1 and d2, respectively. Communication at time t2
may be preferred by the RSU, if the energy costs are lower

compared with those at time t1.

In this paper we consider the scheduling problem when

there are more than one roadside units (RSUs) in tandem.

When this is the case it may be desirable to energy balance

the load across the roadside units so that energy provisioning

costs are minimized as much as possible. An integer linear

programming bound for the min-max energy usage of the

roadside units is derived for a given input sample function.

This bound is used for comparisons with two proposed on-

line scheduling algorithms. The first is a low complexity First-

Come-First-Assigned (FCFA) scheduler which makes greedy
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Fig. 1. Roadside Unit (RSU) Example. Vehicle v is shown at two
different times, t1 and t2 , and distances from the RSU, where d1 ≫ d2.
Communication at time t2 is preferred in terms of RSU energy cost.

RSU selections followed by a minimum energy time slot

assignment. The second algorithm, the Greedy Flow Graph

Algorithm (GFGA), makes the same RSU selection but reas-

signs time slots whenever a new vehicle is assigned to the

same RSU. This is done using a locally optimum integer

linear program that can be efficiently solved using a minimum

cost flow graph. Results from a variety of experiments show

that the proposed scheduling algorithms perform well when

compared to the energy lower bounds. Our results also show

that near-optimal results are possible but come with increased

computation times compared to our heuristic algorithms.

A. Related Work

Recent research in vehicular networks has included topics

such as routing algorithms [2], applications [3], security [4],

and medium access control performance of the IEEE 802.11p

standard [5]. For example, studies have illustrated the suitabil-

ity of IEEE 802.11p for highway applications [6] [7]. In [8][9]

[10], proxy vehicles are used to decrease vehicle contention

and improve roadside unit utilization.

Vehicle transmitter power control has been used as a

mechanism for trading off network connectivity and reduced

inter-vehicle interference [5] [11] [12]. However, the energy

efficiency for vehicular ad hoc networks has typically not been

addressed, as vehicles are usually assumed to have unlimited

energy reserves. In addition, from the roadside infrastructure

point of view, most work assumes that wired power is available

at reasonable cost, which may not always be the case.
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Fig. 2. Multiple Roadside Units (RSUs). Vehicles pass through the coverage areas of M roadside units, any of which can provide the required vehicular
communications.

Traffic scheduling at the roadside unit has been considered

in [13] where simple schedulers were based on transmission

requirements and packet deadlines, but without considering

the energy consumption of the infrastructure. In [14], an

optimization is used to maximize the total throughput of an

RSU given the locations and velocities of vehicles within

the RSU coverage range. A scheduler was considered which

was designed for use in the IEEE 802.11e contention free

periods. As in the other studies referenced above, the energy

consumption of the RSU was not taken into consideration, and

this is the focus of our paper.

II. SYSTEM MODEL AND MIN-MAX ENERGY BOUND

A roadside scenario is considered which consists of a tan-

dem set of M roadside units (RSUs). This type of arrangement

will be common in cases where high capacity is needed to

accommodate peak traffic periods. An example of this is given

in Figure 2 where vehicles are shown traveling in the same

direction, but bidirectional traffic is allowed. In the figure,

RSU 1 and RSU M are shown communicating with vehicles

i and j, respectively. In our development we will assume that

all vehicles pass by the same set of RSUs, but this is not a

requirement. It is assumed that when a vehicle v enters the

coverage area of RSU 1, it communicates its speed, direction

and communication requirements, given by Rv bits, to the

system. We assume that each RSU has a single radio and can

communicate with only one vehicle at a given time, but the

RSUs can operate independently without interference. Channel

time is assumed to be time-slotted and power control is used

on the downlink (i.e., RSU-to-vehicle direction) so that each

time slot can carry B bits, regardless of vehicle location within

a given RSU coverage area. This can be accomplished in

different ways such as using a short two-way handshake prior

to downlink user data transmission.

The objective is to schedule incoming vehicular requests

so that downlink (DL) energy use is load-balanced across the

multiple RSUs. Due to the coverage range associated with

RSUs, the average power consumption of an energy efficient

RSU design may be strongly dominated by downlink transmis-

sion power. Note that since the vehicular radios operate from

the vehicle engine, they are assumed to have unlimited energy

reserves. For this reason, the RSU prefers to communicate with

nearby vehicles rather than more distant ones. In the example

shown in Figure 1, communications at time t2 is preferable to

time t1 since d1 ≫ d2. To use this option however, requires

that there is sufficient packet delay tolerance, and in this paper

we assume that any vehicle can be served from any of the M
RSUs. The scheduling must also be done in a way which

guarantees the packet reception requirements of the vehicles

are fulfilled.

Given an input sample function of arriving vehicles with

known speed and traffic requests, a lower bound on the

optimum min-max scheduling is derived. In the input sample

function we assume that there are N vehicles indexed by

the set N = {1, 2, . . . , N}, M RSUs indexed by the set

M = {1, 2, . . . ,M} and that there are T time slots given

by the set T = {1, 2, . . . , T } over which the scheduling is to

occur. Rv is the communication requirement for vehicle v in

bits, which requires Hv , ⌈Rv/B⌉ time slots. We define the

following set of binary scheduling variables.

Ki,j,t =





1 if RSU i sends to vehicle j in

time slot t,

0 otherwise.

(1)

The energy cost for downlink communications from RSU i to

vehicle j during time slot t is defined by ǫi,j,t. A lower bound

on total energy use can then be computed using the following

integer linear program (ILP).

minimize
Ki,j,t

∑

t∈T

∑

i∈M

∑

j∈N

ǫi,j,t Ki,j,t (2)

subject to
∑

i∈M

∑

t∈T

Ki,j,t = Hj , ∀j ∈ N (3)

∑

j∈N

∑

t∈T

ǫi,j,t Ki,j,t ≤ E , ∀i ∈ M (4)

∑

j∈N

Ki,j,t ≤ 1, ∀i ∈M, ∀t ∈ T (5)

Ki,j,t ∈ {0, 1}, ∀{i ∈ M, j ∈ N , t ∈ T } (6)

In ILP 2 to 6, the objective function is simply the total DL

energy used by the RSUs. Constraint 3 ensures that vehicle

communication requirements are fulfilled by summing the

appropriate values of Ki,j,t over all RSUs, i.e., vehicle j can

be served its full requirement by multiple RSUs. Constraint 4

places a common upper bound, E , on the total energy used



by each RSU. Since E is not known a priori, we can do a

binary search on its value, solving ILP 2 to 6 each time, to

get the minimum value of E that achieves an optimal min-max

energy bound, i.e., a bound on the best load balancing possible.

Constraint 5 ensures that a given time slot can only contain a

single transmission, but allows for simultaneous operation of

the M RSUs.

ILP 2 to 6 can be solved directly using branch and bound

techniques, and CPLEX 8.1.0 has been used with data gener-

ated from MATLAB. These results are used for comparisons

with on-line algorithms to be introduced in the next section.

III. ONLINE SCHEDULING ALGORITHMS

The results in Section II give a lower bound on the

downlink min-max RSU energy needed to fulfill vehicular

packet requirements. In order to compute these bounds, the

energy costs associated with a given packet transmission, ǫi,j,t,
must be known. Although it is difficult to precisely know

this information in general situations, in certain scenarios

excellent estimates of this cost can be readily made [15][16].

Accordingly, we consider a highway scenario where vehicles

may travel at different speeds, but maintain their own speed

throughout the RSU coverage areas [17]. When vehicles enter

the RSU coverage area, they announce their location, direction

and speed, information that can subsequently be used to

estimate future energy transmission costs assuming distance

dependent exponential path loss propagation [15][16].

In the following sections we present two algorithms that

operate to load balance the energy use across the RSUs, with

varying levels of complexity and performance.

A. First-Come-First-Assigned (FCFA) Scheduler

The First-Come-First-Assigned (FCFA) scheduler uses both

a greedy RSU selection and a greedy assignment of time slots.

The details are shown in Algorithm 1. When a vehicle enters

the network of RSUs, the RSU with the least accumulated

energy usage is selected. This is shown in Step 5 and this

vehicle is added to the set of vehicles assigned to that RSU,

i.e., Sr. Time slots (Hv for vehicle v) are then assigned from

those available (i.e., from the set Ur,t) which minimize the cost

of serving that vehicle. This is shown in Step 6. Once these

time slots have been allocated, in Step 7 they are removed from

Ur,t and are unavailable to any subsequently arriving vehicles.

The value of Ci,t is also updated. In the version of FCFA used

for the results in this paper, rather than assigning the vehicle

to a particular RSU, we view the Hv time slot requirement for

vehicle v to be Hv separate one time slot vehicles, allowing

them to be assigned across multiples RSUs.

B. Greedy Flow Graph Algorithm (GFGA)

As in the FCFA algorithm, in the Greedy Flow Graph

Algorithm (GFGA), RSU selection is made for a newly

arrived vehicle based on minimum RSU energy use. Once

the target RSU is chosen, time slots are allocated to the

vehicles which are assigned to that RSU based on a minimum

cost energy schedule. This is computed using all currently

Algorithm 1 First-Come-First-Assigned (FCFA) Scheduler

1: Ur,t = set of unassigned RSU r time slots at time t.
2: Cr,t = accumulated energy usage of RSU r at time t.
3: for all t ∈ {0, 1, . . .} do

4: for each vehicle v that arrives to the system (at time t)
do

5: Assign v to RSU r = argmini∈M Ci,t.
(i.e., Sr ← Sr ∪ v.)

6: Assign time slots to v from the set Ur,t that mini-

mizes the energy cost of communication with vehicle

v.

7: Update Ur,t by removing those time slots assigned

in Step 6 and update the value of Ci,t to account for

the new assignments.

8: Update the schedule for RSU r using the solution

generated in Step 6.

9: end for

10: Using the current schedule for each RSU, continue

RSU-to-vehicle transmission (at time slot t).
11: end for

available vehicular information and remaining backlog, and

is recomputed whenever a new vehicle arrival occurs. The

algorithm is shown in Algorithm 2 and is described in detail

as follows.

When a new vehicle arrives to the system, it is assigned

to the RSU which currently has the minimum accumulated

energy usage. Ci,t is defined to be the energy usage for RSU

i at time t as shown in Step 6. Sr ⊆ N is defined to be the

set of active vehicles currently assigned to RSU r. In Step 7

we update the set of time slots for which all vehicles assigned

to RSU r will be active. Then in Step 8 we use these updated

inputs to find the minimum energy time slot assignment by

solving the following ILP.

minimize
Kr,j,t

∑

t∈Tr

∑

j∈Sr

ǫi,j,t Kr,j,t (7)

subject to
∑

t∈Tr

Kr,j,t = H̃j , ∀j ∈ Sr (8)

∑

j∈Sr

Kr,j,t ≤ 1, ∀t ∈ Tr (9)

Kr,j,t ∈ {0, 1}, ∀{j ∈ Sr, t ∈ Tr} (10)

ILP 7 to 10 is similar to ILP 2 to 6 except that it solves

the minimum energy schedule for a single RSU r, using

the currently available inputs Sr and Tr. The objective func-

tion therefore only considers the energy cost for RSU r.

Constraint 8 satisfies the residual (i.e., remaining unserved)

transmission requirement for vehicle j, denoted by H̃j . The

other constraints follow similarly from ILP 2 to 6. In Step 8,

once the new assignments are made, the value of Ci,t is

updated. As in the FCFA scheduler, rather than assigning

the vehicle to a particular RSU, we view the Hj time slot

requirement of vehicle j to be Hj separate one time slot

vehicles, allowing them to be assigned across multiples RSUs.
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Algorithm 2 Greedy Flow Graph Algorithm (GFGA)

1: Cr,t = accumulated energy usage of RSU r at time t.
2: Sr = set of vehicles currently assigned to RSU r.

3: Tr = set of time slots for which vehicles in Sr are within

RSU r coverage.

4: for all t ∈ {0, 1, . . .} do

5: for each vehicle v that arrives to the system (at time t)
do

6: Assign v to RSU r = argmini∈M Ci,t.
(i.e., Sr ← Sr ∪ v.)

7: Update Tr to the union of time slots for which all

vehicles in Sr are within RSU r coverage.

8: Solve ILP 7 to 10 for RSU r using the vehicles in

Sr for the time slots in Tr. This can be done in time

which is polynomial in |Tr| using a minimum cost

flow graph. Update the value of Ci,t to account for

the new assignments.

9: Update the schedule for RSU r using the solution

generated in Step 8.

10: end for

11: Using the current schedule for each RSU, continue

RSU-to-vehicle transmission (at time slot t).
12: end for

The form of ILP 7 to 10 is such that it can be solved in

time complexity which is polynomial in the number of time

slots using a minimum cost flow graph formulation [18]. This

is shown for RSU r in Figure 3, where G = (V,E) is defined

by a set V of vertices (nodes) and a set E of edges (arcs)

connecting the nodes. For each edge (i, j) ∈ E there is a

capacity ui,j that gives the maximum flow on the edge, and

an associated cost, ci,j , that denotes the cost per unit flow on

that edge. These are written as ordered pairs, (ui,j , ci,j), on

each graph edge in Figure 3.

The flow enters and exits the graph at dummy nodes S
and D, respectively. The first column of nodes represents

all vehicles in Sr, where Nr = |Sr|. The second column

represents all time slots in Tr, where Tr = |Tr|. Each vehicle

node has edges connected to the time slot nodes during which

the vehicle is inside the RSU r coverage area. The capacity for

an edge from the source S to a vehicle node is the residual

communication requirement for vehicle j in time slots. The

capacity for an edge from any time slot node to the destination

D is 1 which prevents time slots from being used more than

once. The edges between vehicle and time slot nodes also

have a capacity of 1 which ensures that only one unit of

transmission requirement can be assigned to a given time

slot. The cost for using the edges originating from Node S
or terminating at Node D is zero. Finally, the cost of the

edges between the vehicle and time slot nodes is given by

ǫr,j,t which is the energy cost of communication from RSU r
to vehicle j at that time. Finding the minimum cost flow for

graph G provides the minimum energy the RSU must consume

to schedule vehicle transmission requirements for the given set

of inputs. The Integrality Property Theorem [18] ensures that

provided input flows and capacities are integer, the resulting

minimum cost flow will also be integer. Since our vehicle to

time slot edge capacities are 1, the resulting path flows are

binary and give the optimum values for Kr,j,t.

Once the schedule for RSU r has been updated via Step 8 in

Algorithm 2, this becomes the active schedule for that RSU.

Finally, in Step 11 all RSUs will transmit if time slot t has

been assigned.

IV. PERFORMANCE RESULTS

The performance of the proposed algorithms is investigated

in this section. The theoretical bound for min-max RSU energy
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Fig. 4. Three Vehicle Classes. Light loading case with 1/15 vehicles/sec
arrival rate. Vehicular speed classes of 20, 25 and 30 m/sec.

consumption as derived in Section II is referred to as Bound in

the graphs and is compared to the online algorithms discussed

in Section III. A highway environment is also assumed where

vehicles are known to maintain relatively constant speed for

long time periods. The models used include Poisson vehicle

arrivals taken from References [15], [17] and [19]. The online

algorithms use knowledge of vehicle position and associated

estimates of downlink transmission energy costs. In this paper

we assume that an accurate prediction of energy costs is

possible based on a deterministic path loss scenario using a

distance dependent exponential path loss model with a path

loss exponent of α = 3. For all the experiments we assume

that M = 4 and that the RSU coverage radius is 1 Km. The

value of the points in the graphs are normalized to the first

point of the Bound graph in each figure.

In the first set of results we consider three classes of vehicles

with the same arrival rate but different speeds of 20, 25 and 30

m/s, i.e., vehicles within each class have the same speed. The

graphs show the maximum energy use for the RSUs (referred

to as Max RSU Energy) as a function of varying vehicular

demands. Figures 4 and 5 show a comparison of the algorithms

under light and heavy loading scenarios, and the vehicle arrival

rates are 1/15 and 2/21 vehicles/sec, respectively.

From these two figures it can be seen that, as one would

expect, the maximum RSU energy increases as vehicular

demands increase. This is due to having to serve the vehicles

at less favourable locations further from the RSU because of

both vehicular movement and contention for downlink time

slots. It can also be seen that in both graphs the GFGA

algorithm performs significantly better from a min-max RSU

energy point of view. It also does well when compared with

the optimum bound. In Figure 4 the worse-case performance

difference is about 50% higher than the lower bound. This

increases to about 90% in the heavy load case in Figure 5.
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Fig. 5. Three Vehicle Classes. Heavy loading case with 2/21 vehicles/sec
arrival rate. Vehicular speed classes of 20, 25 and 30 m/sec.

Note that although we know that Bound is a true lower bound,

its tightness is not known. In contrast, the FCFA algorithm

performs significantly worse, with worse-case values of about

500% and 1000% times the lower bound for the light and

heavy loading cases, respectively. However, as mentioned in

Section III, FCFA is much less complex, and therefore much

faster. From the two curves we can also see that if vehicle

demands are very light, there is little value in the more

complex algorithm.

In the second set of results, it is assumed that there are two

classes of vehicles. The first class has a speed of 20 m/sec

and the speed of the second class is varied over the values 20,

25, 30, and 35 m/sec. The results are plotted in Figures 6 and

7 which show the maximum RSU energy versus the second

vehicle class speeds given above for both the light and the

heavy vehicle demand cases. The vehicle arrival rates for the

two classes in the light and heavy demand cases are 2/15

and 1/15, and, 4/21 and 2/21 vehicles/sec, respectively. As

in the previous set of graphs, we see that increasing vehicle

speeds leads to increased maximum RSU energy use since

faster moving vehicles are in energy favourable locations for

less time than slower moving vehicles. We can also see that

the relative performance of the FCFA and GFGA schedulers is

qualitatively similar to that found in the previous experiment.

As before, we find that the more complex algorithm, i.e.,

GFGA, performs quite well compared with the lower bound

and FCFA is much worse especially when the vehicle speeds

are high. These results are representative of other comparisons

that we have done for the two scheduling algorithms.

V. CONCLUSIONS

In this paper we have considered the issue of energy

efficient scheduling in vehicular networks when there are

multiple roadside units (RSUs) in tandem. The objective is to

minimize energy use as much as possible while load balancing
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the energy costs across the roadside units. An offline lower

bound was derived for the min-max energy usage of the

roadside units for a given input sample function, which was

used for comparisons with two proposed on-line scheduling

algorithms. The first is a low complexity First-Come-First-

Assigned (FCFA) scheduler which makes greedy RSU selec-

tions followed by a minimum energy time slot assignment.

The second algorithm, the Greedy Flow Graph Algorithm

(GFGA), makes the same RSU selection but reassigns time

slots whenever a new vehicle is assigned to the same RSU.

This is done using a locally optimum integer linear program

that can be efficiently solved using a minimum cost flow graph.

Results from a variety of experiments show that the GFGA

algorithm performs well when compared to the energy lower

bound, but deviates at higher values of vehicular demand and

vehicle speed. In contrast, the FCFA scheduler performance

is significantly worse when demands and vehicle speeds are

high. The comparisons of the two algorithms give an indication

of the trade-off between algorithm complexity and maximum

RSU energy performance.
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