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Abstract. The natural approach for describing network flow problems
is to introduce side constraints that capture restrictions of a logical or
technological nature, e.g., capacity or budgetary constraints. We study
the traffic equilibria arising from selfish routing of individual users in
networks with side constraints.
For the problem without side constraints the classic Wardrop principle
suggests that in equilibrium for each origin-destination pair the latency
on all the used routes is equal or less to the latency on all unused routes.
In this paper we use a natural extension of the Wardrop principle [13]
in order to obtain results on selfish routing with side constraints. The
extended Wardrop principle suggests that in equilibrium flow is routed
along paths of minimal latency according to a modified function that
essentially incorporates penalty terms for the side constraints. This ap-
proach provides a basis for the systematic application of relevant opti-
mization theory to selfish routing problems.

1 Introduction

The natural approach for describing network flow problems is to introduce side
constraints that capture restrictions of a logical or technological nature. These
constraints describe often limitations on the availability of scarce resources (e.g.,
transportation or production capacities, investment capital available) which are
shared by several activities. In this paper we study the traffic equilibria arising
from selfish routing of individual users in networks with side constraints. We
generalize previous results to this model using techniques from the theory of
variational inequalities and complementarity problems.

Recently there has been a surge of interest in theoretical computer science
on the consequences of selfish behavior in unregulated networks. Data networks
such as the Internet motivated much of the ongoing research. We conform to
standard usage in the transportation community and refer to traffic networks.
We are given a directed network G = (V,E) with a nonnegative latency (cost)
function l on the paths describing the delay experienced by users wishing to
travel on the path as a function of the total flow using edges of the path. A set I
of origin-destination pairs is given, each corresponding to a different commodity
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with fixed demand (traffic) rate di. Individual users are thought as carrying each
an infinitesimal amount of a commodity. The quality of a traffic assignment can
be measured by the social cost, i.e.,

∑
path P fP lP (f). The problem as described

has no side constraints and was first studied from a theoretical computer science
perspective by Roughgarden and Tardos [19]. Let f be a vector of path flows and
l(f) the corresponding vector of path latencies. The solution concept deemed to
capture the selfish behavior of users is that of a traffic equilibrium, i.e., a feasible
flow f∗ that solves the following variational inequality

〈l(x), f − x〉 ≥ 0, ∀ feasible f. (1)

The classic Wardrop’s principle [23] suggests that f∗ is an equilibrium if and
only if for each origin-destination pair the travel times on all the used routes are
equal or less than the travel times on all unused routes. It is well-known that
when l is continuous and the feasible set is compact and convex the variational
inequality (1) has a solution [7].

To quantify the degradation in network performance due to lack of coordi-
nation Koutsoupias and Papadimitriou [9] introduced the notion of coordination
ratio or price of anarchy. Many equilibria may exist for an instance, so one would
like to measure the worst-case performance of uncoordinated users against the
optimal solution achieved by a centralized coordinator. This ratio ρ is defined as

ρ =
Worst equilibrium social cost

Optimal social cost
.

For the problem without side constraints the coordination ratio is unbounded
for general latency functions [19]. Roughgarden and Tardos [19] showed that
the social cost of an equilibrium for selfish users with demand vector d is upper
bounded by the latency of any feasible flow that satisfies demands 2d. In the
case of linear latency functions Roughgarden and Tardos [19] showed that the
coordination ratio is at most 4/3 and this is tight. Schulz and Stier Moses [20] (see
also [3]) introduced a definition of equilibrium under capacity constraints. Under
the definition in [20] the coordination ratio is unbounded due to an example flow
which does not conform to the different definition of equilibrium we follow (cf.
Definition 2 below), and to which the authors of [20] actually revert in order to
get their positive results. Definition 2 is standard in the math programming and
transportation communities where the study of traffic equilibria originated and
has been pursued for decades. See, e.g., [21, 5, 14, 17] and more specifically [10,
13, 16] for side-constrained equilibria.

In this paper we study traffic equilibria under general side constraints through
the Extended Wardrop Principle (cf. Thm. 1) [10, 13] that characterizes side-
constrained equilibria in terms of equilibria under a modified latency function and
without side constraints. This principle suggests that an equilibrium flow routes
flow along paths of minimal modified latency. The advantage of this powerful
approach is similar to the advantage of Lagrangean relaxation in optimization,
which transforms a constrained optimization problem to an unconstrained one.
To our knowledge the Extended Wardrop Principle has not been used before in



a theoretical computer science setting. We demonstrate the applicability of this
approach in two cases where side constraints are present: (i) the case of linear
latency functions with side constraints that define a convex set, and (ii) the
case of general continuous nonnegative latency functions with side constraints
of the form gj(f) ≤ 0, where for all j, gj(f) is convex and differentiable with
nonnegative partial derivatives.

In the case of linear latency functions, we show how one can extend the 4/3
coordination ratio under capacity constraints of Schulz and Stier Moses [20] (see
also [3]) using the Extended Wardrop’s principle. Our extensions hold for very
general descriptions of the constraints. Packing constraints such as

∑
i aifi ≤ bj

with all ai ≥ 0, form only a special case among the side constraints we can
handle. In turn, capacity constraints on the edges form a special case of packing
constraints. The only assumption we impose on the side constraints is that they
are described by a convex set D. We show that the coordination ratio is at most
4/3, which is known to be tight, therefore matching the result of Roughgarden
and Tardos [19] for the case without side constraints. In a later version of [3]
Correa, Schulz and Stier Moses observe that the 4/3 result applies to constraints
expressed by any convex set [4]. Our proof was obtained independently and is
substantially different as it relies on the generalization of Wardrop’s principle
to the setting with side constraints as given in [13]. We believe that making
the connection with the classic Wardrop principle is a significant part of our
contribution.

For the case of general continuous nonnegative latency functions we consider
side constraints of the form gj(f) ≤ 0, where for all j, gj(f) is convex and
differentiable with nonnegative partial derivatives. Using again the Extended
Wardrop Principle we formulate the traffic equilibrium as a nonlinear comple-
mentarity problem. We use a classic transformation [22] to reduce the existence
of a solution to the complementarity problem to the existence of a Brouwer fixed
point for an appropriate continuous function. Our approach is inspired by the
seminal work of Aashtiani and Magnanti [1] on traffic equilibria without side
constraints. In order to apply the fixed-point approach for the side constrained
complementarity problem, one needs to upper-bound the variables of the com-
plementarity problem, thus showing that the possible solutions lie in a cube. We
show that a method for doing this comes from the following observation: the ex-
istence of a solution for the complementarity problem with the side constraints
(which is a traffic equilibrium for the side-constrained network) implies a solu-
tion for the complementarity problem without the side constraints (which is a
traffic equilibrium for the unconstrained network). This framework can be used
to derive existence results. As an application, we show that the recent result of
Cole, Dodis and Roughgarden [2] on the existence of optimal taxes that steer the
equilibrium of a single-commodity problem with heterogeneous users towards a
minimum social cost solution can be interpreted as a proof that upper bounds
the Lagrangean multipliers of capacity constraints. Casting the rather involved
proof from [2] in this general framework makes it more intuitive. We believe that
our method can find further applications of interest.



Constructive versions of the existential results can be easily established when
standard assumptions allow the formulation of the corresponding convex opti-
mization programs. We omit the details. An early version of some of our results
appeared in [8].

2 The model

Let G = (V,E) be a directed network, and I ⊆ V ×V a set of origin-destination
pairs (si, ti). Let Pi be the set of all (acyclic) paths from si to ti and P =

⋃
i∈I Pi

the set of all origin-destination paths. Suppose that in addition we are given

– a flow demand (rate) di > 0 for every i ∈ I;
– lower and upper bounds λP , µP for every path flow fP ; i.e., λP ≤ fP ≤ µP

(if λP = µP = 0 then path P is not allowed to carry any flow);
– a travel cost function l which assigns to each flow f ∈ R|P| a vector of path

travel costs l(f) ∈ R|P|;
– a convex set D ⊆ R|P| which describes the additional side constraints im-

posed on the path flows. For example, we can impose constraints on individ-
ual edges using the path-edge incidence matrix ∆ to express the flow through
edges as fe = ∆fP ; such constraints could be edge capacity constraints of
the form fe ≤ ue, where ue is the edge e capacity, or budgetary constraints
of the form

∑
P∈Pi

(
∑

e∈P ce)fP ≤ Bi, where ce is the per unit of flow cost
for edge e and Bi is the budget for origin-destination pair i).

Let
K = K(λ, µ, d) := {f : λP ≤ fP ≤ µP ,∀P ∧

∑
P∈Pi

fP = di,∀i}

be the set of all flows that satisfy the path flow bounds and the demands (note
that they do not need to satisfy the side constraints).

Definition 1 A flow f is called feasible iff f ∈ K ∩D.

An equilibrium in this setting (see [21], [10]) is a feasible flow f∗ ∈ K ∩D such
that

〈l(f∗), f − f∗〉 ≥ 0, ∀f ∈ K ∩D. (2)

where 〈·, ·〉 denotes the inner product. If l(x) = F ′(x), where F is convex
and Gâteaux differentiable with derivative F ′, then (2) is equivalent to solv-
ing min{F (x) : x ∈ K ∩ D}. This is the assumption behind the definition of
Beckmann User Equilibria, defined in [20], but we will not need it here.

Note that (2) satisfies the general definition of an equilibrium: there is no
way for any user to profit from any change of the way his flow is routed, without
violating (2).

Definition 2 A flow f∗ ∈ K∩D that satisfies (2) is called a traffic equilibrium.



In the model without upper and lower path flow bounds (λ = 0, µ = +∞) and
without side constraints (D = R|P|), these traffic equilibria satisfy Wardrop’s
principle, i.e., no user has incentives to change his path flows. In that setting,
Wardrop’s principle implies that the travel cost for all paths P ∈ Pi with positive
flow fP > 0 is the same and equal or smaller than the travel cost of any path
with zero flow (see [19] and the references therein). This is the model studied
from the coordination ratio perspective by Roughgarden and Tardos [19] and
their analysis relies heavily on Wardrop’s principle.

Wardrop’s principle has been extended first to the model with lower and
upper path flow bounds by Maugeri [12], and more recently to the more general
model defined above by Maugeri et al. [13] (see also [10]):

Definition 3 (Extended Wardrop principle)[13] We say that f∗ ∈ K ∩D
satisfies the Extended Wardrop Principle iff there exists t(f∗) ∈ R|P| such that

〈t(f∗), f − f∗〉 ≥ 0, ∀f ∈ D, (3)

and, with l̄ := l(f∗)− t(f∗), the following holds for all i ∈ I and P1, P2 ∈ Pi,

l̄P1 < l̄P2 ⇒ f∗P1
= µP1 or f∗P2

= λP2 . (4)

Note that the second condition in the definition above is the usual Wardrop’s
principle but for the modified travel cost function l̄. The second condition is
shown in [13] to be equivalent to the following inequality:

〈l(f∗), f − f∗〉 ≥ 〈t(f∗), f − f∗〉, ∀f ∈ K. (5)

The crucial observation for extending the methods of [19] in the general setting
with side constraints is that conditions (3) and (5) are decoupling the feasibility
region: the first is a condition on D and the second is a condition on K.

Let intD be the interior of D (recall that D is a convex set). Maugeri et al. [13]
prove the following theorem that connects traffic equilibria to the Extended
Wardrop’s principle:

Theorem 1. [13] Every feasible flow, which satisfies the Extended Wardrop’s
principle is a traffic equilibrium flow. If K ∩ intD 6= ∅, then every traffic equi-
librium flow satisfies the Extended Wardrop’s principle.

Therefore, in order to be able to study traffic equilibria using the Extended
Wardrop’s principle, we make the following assumption:

Assumption 1 We assume that K ∩ intD 6= ∅.

3 Coordination ratio for linear latency functions

We study the coordination ratio for the case of linear travel cost functions
le(fe) = aefe + be, where ae, be ≥ 0 and fe :=

∑
P3e fP , for all edges e ∈ E.



In the case of the additive model used in [19], the total cost for a flow f is
C(f) :=

∑
e∈E fele(fe) =

∑
P∈P fP lP (f), where lP (f) :=

∑
e∈P (aefe + be). We

extend the analysis of [19] to incorporate the existence of side constraints that
define the convex set D. The easy proof of the following fact is in the Appendix.

Fact 1 Let a routing problem be specified on a network G = (V,E) by the pair
of convex sets (K, D) with K = K(λ, µ, d). For any δ > 0 convex sets K ′, D′

can be defined so that (K ′, D′) is a routing problem and f is feasible for (K, D)
iff f/δ is feasible for (K ′, D′). Moreover K ∩ intD 6= ∅ iff K ′ ∩ intD′ 6= ∅.

We introduce the notation [xi] to denote the vector whose ith coordinate is
equal to xi. Similarly for the matrix [xij ]. The dimensions will be clear from
the context. We will use the following characterization of the solutions to the
minimization of a convex, differentiable function F : Rm → R over K ∩D [13],
[15]:

Theorem 2. [13, 15] Under Assumption 1, x̄ ∈ Rm minimizes the convex dif-
ferentiable function F over K ∩ D iff there is a vector t(x̄) ∈ Rm such that
〈t(x̄), x− x̄〉 ≥ 0, ∀x ∈ D and1 〈∇F (x̄), x− x̄〉 ≥ 〈t(x̄), x− x̄〉, ∀x ∈ K.

Considering the fact that

∂

∂fP
C(f) =

∑
e∈P

(2aefe + be) ∀P ∈ P,

Theorem 2 takes the following form in our case:

Theorem 3. Under Assumption 1, f̄ minimizes the convex differentiable func-
tion C(f) :=

∑
P (aP f2

P + bP fP ) over K ∩ D iff there is a vector t(f̄) ∈ R|P|

such that
〈t(f̄), f − f̄〉 ≥ 0, ∀f ∈ D (6)

and
〈[

∑
e∈P

(2aefe + be)], f − f̄〉 ≥ 〈t(f̄), f − f̄〉, ∀f ∈ K. (7)

From Theorem 1, we have the following characterization of a traffic equilibrium
for the given instance:

Theorem 4. Under Assumption 1, f∗ is a traffic equilibrium iff there exists
t(f∗) ∈ R|P| such that

〈t(f∗), f − f∗〉 ≥ 0, ∀f ∈ D, (8)

and
〈[

∑
e∈P

(aef
∗
e + be)− tP (f∗)], f − f∗〉 ≥ 0, ∀f ∈ K. (9)

1 If F is simply continuous but not differentiable at some point of K, we can replace
the left-hand side of the inequality with the directional derivative at x̄ ([18], Ch. 23).



We can combine Theorems 3 and 4 to prove the following (proof in the appendix):

Lemma 1. If f̄ is a traffic equilibrium for a given instance, then f̄/2 is an
optimum flow for the instance scaled by 1/2.

Then we can prove the following (proof in the appendix)

Theorem 5. Under Assumption 1, the coordination ratio for linear latency
functions is at most 4

3 .

We remark that essentially the same proof can be used to show a 4/3 coor-
dination ratio for the alternative model where the latency of a path P is given
by lP (f) = aP fP + bP where aP , bP ≥ 0.

4 General latency functions

In this section we study existence and uniqueness of solutions, and coordina-
tion ratios for latency functions that need to satisfy only mild assumptions. The
basis for our analysis is the formulation of the Extended Wardrop Principle (Def-
inition 3) as a nonlinear complementarity problem. This formulation has been
studied by Larsson and Patriksson [10],[11], but here we study it in terms of
the existence and uniqueness of traffic equilibria following the approach used
by Aashtiani and Magnanti [1]. The latter authors studied the case of general
latency functions but without side constraints. Their elegant approach can be
easily extended to deal with broad families of side constraints (which include the
capacity and budgetary constraints that motivated our work), but it is conceiv-
able that it could be extended to even more general settings.

We start by assuming that the convex set D of Section 2 is defined by a set
of J side constraints {gj(f) ≤ 0, j = 1, . . . , J} with each gj : R|P| → R being
a convex and differentiable function. We assume a suitable regularity condition
(such as Slater’s condition which requires the existence of f̄ ∈ K such that
gj(f̄) < 0 for all j ∈ J) so that the Kuhn-Tucker conditions hold. The Slater
condition implies that K ∩ intD 6= ∅. Also we will assume that

∂gj

∂fP
(f) ≥ 0, ∀j, ∀f.

While this is a limitation to the kinds of side constraints studied here, it covers
many important ones such as linear capacity and budgetary constraints.

In what follows, we assume that the upper and lower bounds for the path
flows that define K are the trivial ones, namely λP = 0, µP > maxi di. We
also assume that Assumption 1 holds. Then Theorem 1 implies that any traffic
equilibrium f∗ is characterized exactly by Wardrop’s principle (Definition 3).
Under the assumptions above, [10] show that this principle translates into the
following:



There are J real numbers bj , j = 1, . . . , J such that:

bj ≥ 0, bjgj(f∗) = 0, j = 1, . . . , J (a)

〈L(f∗) +
J∑

j=1

bj∇gj(f∗), f − f∗〉 ≥ 0,∀f ∈ K (b)

where L(f∗) = [lP1(f
∗), . . . , lP|P|(f

∗)]T is the vector of the latencies for
all paths for f∗.

Let F (x) be a vector-valued function from Rn to itself. The nonlinear comple-
mentarity problem is to find a vector x that satisfies the system:

〈x, F (x)〉 = 0, F (x) ≥ 0, x ≥ 0.

Following [1] (Proposition 4.1, p. 219), we can show that, under certain con-
ditions, the given characterization of a traffic equilibrium is equivalent to the
solution of a nonlinear complementarity problem.

Theorem 6. Suppose that, for all paths lP (f) > 0 when fP 6= 0. Then f∗ ∈
K ∩ D is a traffic equilibrium iff there are vectors b∗ ∈ RJ , u∗ ∈ RI such that
(f∗, b∗, u∗) is a solution to the following complementarity problem:

fP (lP (f) +
J∑

j=1

bj
∂gj

∂fP
(f)− ui) = 0, ∀i ∈ I, ∀P ∈ Pi (10)

lP (f) +
J∑

j=1

bj
∂gj

∂fP
(f) ≥ ui, ∀i ∈ I, ∀P ∈ Pi (11)

ui(
∑

P∈Pi

fP − di) = 0, ∀i ∈ I (12)

∑
P∈Pi

fP ≥ di, ∀i ∈ I (13)

bjgj(f) = 0, ∀j = 1, . . . , J (14)
−gj(f) ≥ 0, ∀j = 1, . . . , J (15)

fP , bj , ui ≥ 0, ∀P, j, i (16)

Proof. Since K ∩ intD 6= ∅, by Theorem 1 it suffices to show that any (f∗, b∗)
that satisfies the equilibrium conditions (a), (b), solves the complementarity
problem, and vice versa. Maugeri et al. show (Theorem 1 in [13]) that condition
(5) is equivalent to the following:

∀i, ∃γi such that

{
lP (f∗) +

∑J
j=1 bj

∂gj

∂fP
(f∗) < γi ⇒ f∗P = µP

lP (f∗) +
∑J

j=1 bj
∂gj

∂fP
(f∗) > γi ⇒ f∗P = λP

}
,∀P ∈ Pi.

(17)
Since, by our assumption on the values of λP , µP , we have f∗P < µP ,∀P , it must
be that lP (f∗) +

∑J
j=1 bj

∂gj

∂fP
(f∗) ≥ γi, ∀i ∈ I,∀P ∈ Pi. Hence (17) implies



that f∗P (lP (f∗) +
∑J

j=1 bj
∂gj

∂fP
(f∗) − γi) = 0. Also, due to the hypotheses in

the statement of the theorem, we can increase the γi’s until we have γi ≥ 0,∀i
without violating (17). And the fact that f∗ ∈ K implies that

∑
P∈Pi

fP =
di, ∀i ∈ I. Therefore, if we also recall that condition (a) must also hold, we
see that (f∗, b∗, u∗) with b∗j := bj , u

∗
i := γi is a solution to the complementarity

problem.
For the opposite direction, let (f∗, b∗, u∗) be a solution to the complementar-

ity problem. Notice that condition (a) holds. First of all, we show that f∗ ∈ K.
For, suppose that

∑
P∈Pi

f∗P > di ≥ 0 for some i. Then (12) implies that u∗i = 0
and there is path P ∈ Pi such that f∗P > 0. Since f∗P 6= 0, the hypotheses of
the theorem imply that lP (f∗) +

∑J
j=1 b∗j

∂gj

∂fP
(f∗) > 0 = u∗i and therefore (10)

implies that f∗P = 0, a contradiction. Hence
∑

P∈Pi
f∗P = di, i.e., f∗ ∈ K. All

that remains is to see that for γi := u∗i , condition (17) is satisfied, i.e., condition
(b) is also satisfied and therefore f∗, b∗ satisfy the Extended Wardrop Principle,
and f∗ is a traffic equilibrium. ut

In what follows, let [x]+ := max{0, x}. We define the continuous mapping φ
from {0 ≤ f ≤ K1e} × {0 ≤ b ≤ Be′} × {0 ≤ u ≤ K2e

′′} ⊆ R|P|+J+I to itself as
follows:

φP (f, b, u) = min{K1, [fP + ui − lP (f)−
∑

j

bj
∂gj

∂fP
(f)]+}, ∀i,∀P ∈ Pi

φj(f, b, u) = min{B, [bj + gj(f)]+}, ∀j

φi(f, b, u) = min{K2, [ui + di −
∑

P∈Pi

fP ]+}, ∀i

where K1 > maxi di, K2 > maxP max0≤f≤K1e{lP (f) + B
∑

j
∂gj

∂fP
(f)} and B

is a positive number which will be defined later. The mapping φ has at least
one fixed point. The assumption that follows relates the possibility that some
b∗j = B with the fact that f∗ is not an equilibrium for the problem without side
constraints.
Assumption 2 There is B > 0 such that for every fixed point (f∗, u∗, b∗)
of φ with b∗j = B for some j, there is a flow f0 ∈ K such that 〈L(f∗) +∑J

j=1 b∗j∇gj(f∗), f0 − f∗〉 < 0.

Theorem 7. Under Assumption 2, and if lP (f) ≥ 0, ∀f, P and continuous,
and ∂gj

∂fP
(f), ∀j, f are continuous positive functions, every fixed point of φ is a

solution of the complementarity problem of Theorem 6.

Proof. Let B be as in Assumption 2 and (f∗, u∗, b∗) be a fixed point of φ. Then
one can show as in Theorem 5.3 of [1] that

f∗P = [f∗P + u∗i − lP (f∗)−
∑

j

b∗j
∂gj

∂fP
(f∗)]+, ∀P

u∗i = [u∗i + di −
∑

P∈Pi

fP ]+, ∀i

b∗j = min{B, [b∗j + gj(f∗)]+}, ∀j



Note that (f∗, u∗) is a solution of the complementarity problem

fP (lP (f) +
J∑

j=1

b∗j
∂gj

∂fP
(f)− ui) = 0, ∀i ∈ I, ∀P ∈ Pi

lP (f) +
J∑

j=1

b∗j
∂gj

∂fP
(f) ≥ ui, ∀i ∈ I, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0, ∀i ∈ I

∑
P∈Pi

fP ≥ di, ∀i ∈ I

fP , ui ≥ 0, ∀P, j, i

which is equivalent to the following variational inequality:

〈L(f) +
J∑

j=1

b∗j∇gj(f), f̄ − f〉 ≥ 0, ∀f̄ ∈ K.

Hence for f := f∗ we have that

〈L(f∗) +
J∑

j=1

b∗j∇gj(f∗), f − f∗〉 ≥ 0, ∀f ∈ K. (18)

If there is j such that b∗j = B, then Assumption 2 implies that there is f0 ∈
K such that 〈L(f∗) +

∑J
j=1 b∗j∇gj(f∗), f0 − f∗〉 < 0 which contradicts (18).

Therefore b∗j < B, ∀j, and b∗j = [b∗j + gj(f∗)]+, ∀j. From [22] we get that
(f∗, u∗, b∗) is a solution of the complementarity problem of Theorem 6.

ut
Theorem 7 implies that if its assumptions hold, there is at least one solution to
the complementarity problem of Theorem 6.

4.1 Uniqueness for linear edge side constraints

In many cases, the latency of a path is just the sum of the latencies of the path
edges, i.e., lP (f) =

∑
e∈P le(f) = ∆T l(f), where ∆ = [δeP ] is the edge-path

incidence matrix for G, i.e., δeP = 1 if e ∈ P , 0 otherwise. This additive model
is particularly useful if it is more convenient to talk about edge flows instead
of path flows: if fP ,∀P are the path flows, then Fe,∀e ∈ E with F = ∆f are
the edge flows. Here we show that if the le’s are strictly monotone, and the
side constraints are linear functions of the edge flows, then the solution of the
complementarity problem (if one exists) is unique.

As mentioned above, for every j the side constraint gj has the following form:

gj(f) =
∑
e∈E

ajeFe − cj =
∑
e∈E

aje(
∑
P3e

fP )− cj



where aje = 0 if gj doesn’t depend on the flow for edge e. Let A := [aje]
be the coefficient matrix for the side constraints. Then the Jacobian matrix
of the vector-valued function g(f) = [g1(f), . . . , gJ(f)]T is [kjp] = A∆ with
kjp = ∂gj(f)

∂fP
.

Recall that a function F : C → Rn, C ⊂ Rn is strictly monotone on C iff for
every x, y ∈ C with x 6= y, (x − y)(F (x) − F (y)) > 0. We prove the equivalent
of Theorem 6.2 in [1] for our case (see Appendix):

Theorem 8. If the functions le are strictly monotone, then the edge flow in-
duced by any solution of the complementarity problem (if such solutions exist) is
unique.

4.2 Application: edge taxation for heterogeneous selfish users

We cast some recent results by Cole et al. [2] in the framework of Aashtiani and
Magnanti [1] as extended here.

Suppose that in the given network, the users want to send flow from a node
s to a node t, and experience not only the latency costs, but a tax imposed to
them on every edge they go through. Given an infinite number of users with a
collective flow of one unit, there is a distribution function that assigns each user
to one of I categories (hence the heterogeneity), such that the users in category
i weigh their taxation burden with a weight a(i), i.e., these users see a cost
l̄e(fe) = le(fe)+a(i)τe per flow unit, and try selfishly to route their flow through
the cheapest s− t path. We assume that 0 < a(0) < a(1) < . . . < a(|I|) ≤ 1, and
let d0, d1, . . . , d|I| be the total flow that falls in category 0, 1, . . . , |I|. Note that
although all categories have the same source s and sink t, their path sets Pi are
treated separately.

If f̂ is a flow that minimizes the social cost
∑

e fele(fe), then define the
following convex sets K, D:

K = {f :
∑

P∈Pi

fP = di, i = 0, . . . , |I|}

D = {f :
∑
P3e

fP ≤ f̂e, for all e such that f̂e > 0}

Note that D is essentially defined by a set of artificial capacity constraints for
the given network. If we can apply the results of the previous sections to show
that there is a unique equilibrium (f, b, u) for the latency costs in K ∩D, we can
use the bj ’s to define the taxes τe so that f is also the unique equilibrium in K
for the costs with taxation.2 Then the equilibrium state in this system achieves
the minimum social cost as well.

As described in [2], one can set the taxes on edges with f̂e = 0 to τe >
n(T + lmax/a(0)), where n is the number of vertices, lmax = maxe le(1) and T

2 Note that f need not be an equilibrium flow over K under the original latency
function.



is an upper bound on the edge taxes. The existence of T is in fact what allows
the proof of existence of optimal taxes to go through, in much the same way
as in Theorem 7. Also the same arguments allow us to add dummy edges that
are never going to be used by the users (because they are too heavily taxed),
by setting their taxes to τe > n(T + lmax/a(0)). By introducing such a dummy
edge (s, t), we can make sure that the Slater conditions hold (by sending all flow
through the dummy edge, all constraints of D are strictly satisfied). This implies
that K ∩ intD 6= ∅.

We define a set of new path latency functions

l′P (f) :=
lP (f)
a(i)

=
∑

e∈P le(f)
a(i)

and assume that the functions le are strictly monotone (and non-negative). Then
Theorem 6 shows that the traffic equilibria are exactly the solutions to the
complementarity problem for the l′. Set B := T for any T ≥ 3n3lmax/a(0), and
let (f∗, u∗, b∗) be a fixed point of φ. If b∗e = B for some edge e = (v, w), let P1

be the shortest path from s to w where the edge lengths are given by b∗. P1 has
under the latency function l(f)′ +[

∑
e∈P b∗e] a shorter travel time than any path

P2 with f∗P2
> 0 that uses e. This means that f∗ cannot be an equilibrium in K,

i.e., for the problem without the capacity constraints. More precisely, if we set

f0P
:=


f∗P1

+ δ P = P1

f∗P2
− δ P = P2

f∗P , ∀P 6= P1, P2

Lemma 3.3 in [2] shows that with δ > 0

〈L(f∗) +
J∑

j=1

b∗j∇gj(f∗), f0 − f∗〉 = δ(l′P1
(f∗) +

∑
e∈P1

be − l′P2
(f∗)−

∑
e∈P2

be) < 0.

Therefore Assumption 2 holds for these particular B, f0, and Theorem 7 implies
the existence of a solution (f∗, b∗, u∗) for the complementarity problem (10)-(16).
If we set the taxes of edges with f̂e > 0 to b∗e, f∗ is also a traffic equilibrium for
the cost function l̄ defined above.

Note that the difference between the problem addressed in [2] and the capac-
itated network is that in the former the capacity constraints are not imposed by
the instance itself, but by us, and therefore one has to ‘lure’ the users into moving
towards the desired equilibrium by imposing taxes (modified cost), while in the
latter the capacities are part of the instance and hence one should argue for the
initial latency costs. This also explains the insistence that the traffic equilibria
in the first case should induce identical edge flows: without this restriction, the
users can achieve a second equilibrium without the exact same edge flows for the
same set of taxes. This equilibrium may not obey our (artificial) side constraints
(i.e., is not in K ∩D), but the users do not care about this since they are only
required to induce flows feasible in K.
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Appendix

Proof of Fact 1. The set K ′ is defined as K ′(λ/δ, µ/δ, d/δ). The only requirement
for the set D′ is that it is convex. Let D′ = {y|δy ∈ D}. Any convex combination
of two elements of D′ belongs to D′ hence D′ is indeed convex. Moreover by
construction f is feasible for (K, D) iff f/δ is feasible for (K ′, D′). The second
statement follows because f ∈ K ∩ intD iff f/δK ′ ∩ intD′. ut

Proof of Lemma 1. Fact 1 implies that if f is feasible for the given instance
(K, D), f/2 is feasible for the instance scaled by 1/2, (K ′, D′), and vice-versa, if
f ′ is feasible for the scaled instance, then 2f ′ is feasible for the initial instance.
Hence by Theorem 4 〈t(f̄), f − f̄〉 ≥ 0, ∀f ∈ D ⇒ 〈t(f̄), f

2 −
f̄
2 〉 ≥ 0, ∀ f

2 ∈ D′

for some vector t(f̄), and 〈[
∑

e∈P (aef̄e + be) − tP (f̄)], f − f̄〉 ≥ 0, ∀f ∈ K ⇒
〈[

∑
e∈P (2ae

f̄e

2 + be)− tP (f̄)], f
2 −

f̄
2 〉 ≥ 0, ∀ f

2 ∈ K ′. Theorem 3 now implies that
f̄/2 is optimal for the scaled instance (K ′, D′). ut

Proof of Theorem 5. Let f̄ be a traffic equilibrium for the given instance (K, D),
and f∗ be the flow of minimum total cost. Also, if f is a flow feasible for (K, D),
then we set f1+δ := (1 + δ)f , for any δ > 0. Note that because of Fact 1, f1+δ is
feasible for the instance scaled by 1/(1 + δ).

From the convexity of C(f), we get that

C(f) ≥ C(f∗) + 〈∇C(f∗), f − f∗〉, ∀f ∈ R|P|

which implies that

C(f1+δ) ≥ C(f∗) + 〈[
∑
e∈P

(2aef
∗
e + be)], f1+δ − f∗〉. (19)

Claim. Let f be any feasible flow for the given instance. Then

〈[
∑
e∈P

(2aef
∗
e + be)− tP (f∗)], f〉 ≥ 〈[

∑
e∈P

(2aef
∗
e + be)− tP (f∗)], f∗〉

where t(f∗) is the vector from Theorem 3 for f∗.



Proof of claim: From the discussion after Definition 3, we have that condi-
tion (7) of Theorem 3 is equivalent to

c̄P1 < c̄P2 ⇒ f∗P1
= µP1 or f∗P2

= λP2 , ∀P1, P2 ∈ P

where c̄P :=
∑

e∈P (2aef
∗
e + be) − tP (f∗). Hence c̄ defines an ordering of the

paths, so that the cheapest paths are saturated by f∗, i.e., f∗P = µP , the most
expensive have the minimum possible flow, i.e., f∗P = λP , and in between there
may be paths P1, P2, . . . with flow values λP1 ≤ f∗P1

≤ µP1 , λP1 ≤ f∗P1
≤ µP1 , . . .

Note that for the latter it must be the case that c̄P1 = c̄P2 = . . ., otherwise
condition (7) would not hold for f∗. Since for every flow f ∈ K λP ≤ fP ≤
µP , ∀P and path flows are non-negative numbers, one can reduce the value of∑

P c̄P fP by moving flow from the more expensive paths to the cheaper ones,
while keeping the flow within K. It is obvious that the smallest value is achieved
by f∗, and the claim holds. ut
For f := f1+δ

1+δ , the claim above implies that

〈[
∑
e∈P

(2aef
∗
e + be)− tP (f∗)], f1+δ〉 ≥ (1 + δ)〈[

∑
e∈P

(2aef
∗
e + be)− tP (f∗)], f∗〉

or, equivalently,

〈[
∑
e∈P

(2aef
∗
e +be)], f1+δ−f∗〉 ≥ δ〈[

∑
e∈P

(2aef
∗
e +be)−tP (f∗)], f∗〉+〈t(f∗), f1+δ−f∗〉

(20)
By combining (19) with (20) we get that

C(f1+δ) ≥ C(f∗) + δ〈[
∑
e∈P

(2aef
∗
e + be)− tP (f∗)], f∗〉+ 〈t(f∗), f1+δ − f∗〉

= C(f∗) + δ〈[
∑
e∈P

(2aef
∗
e + be)], f∗〉+ (1 + δ)〈t(f∗), f1+δ

1 + δ
− f∗〉

≥ C(f∗) + δ〈[
∑
e∈P

(2aef
∗
e + be)], f∗〉

(21)

where the last inequality holds because f1+δ

1+δ is a feasible flow for the given
instance, i.e., f1+δ

1+δ ∈ K ∩D, and condition (6) must hold for f∗.
Since f̄ is a traffic equilibrium for the given instance, f̄/2 is an optimal

flow for the scaled by 1/2 instance (Lemma 1). Then we can apply (21) for the
scaled instance, with f∗ := f̄/2 and f1+δ := any f ∈ K ∩ D: C(f) ≥ C( f̄

2 ) +
〈[

∑
e∈P (2ae

f̄e

2 + be)], f̄
2 〉 = C( f̄

2 ) + 1
2 〈[

∑
e∈P (aef̄e + be)], f̄〉 = C( f̄

2 ) + 1
2C(f̄). By

setting f := f∗, we get the following lower bound for the cost of the optimum
solution of the given instance:

C(f∗) ≥ C(
f̄

2
) +

1
2
C(f̄) (22)

Also C( f̄
2 ) =

∑
e(

1
4aef̄

2
e + 1

2bef̄e) ≥ 1
4

∑
e(aef̄

2
e + bef̄e) = 1

4C(f̄). which, in
combination with (22), implies C(f∗) ≥ 3

4C(f̄). ut



Proof of Theorem 8. In addition to A,∆, we will use the matrix Γ := [γPi], with
γPi = 1 if P ∈ Pi, and 0 otherwise. Let (f1, b1, u1), (f2, b2, u2) be two solutions
of the complementarity problem. As in [1], we use the fact that if x1, x2 are two
solutions of the complementarity problem

xT F (x) = 0, F (x) ≥ 0, x ≥ 0

then (x1 − x2)T (F (x1)− F (x2)) ≤ 0. In our case, this implies that

0 ≥(f1 − f2)T (∆T l(∆f1) + ∆T AT b1 − Γu1 −∆T l(∆f2)−∆T AT b2 + Γu2)+

+ (u1 − u2)T (ΓT f1 − d− ΓT f2 + d)+

+ (b1 − b2)T (−A∆f1 + A∆f2)

⇒ (f1 − f2)T (∆T l(∆f1)−∆T l(∆f2)) ≤ 0

⇒ (∆f1 −∆f2)T (l(∆f1)− l(∆f2)) ≤ 0

which implies that ∆f1 = ∆f2 because the functions le are strictly monotone.


