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Abstract—This paper considers a set of mobile users that
employ cloud-based computation offloading. In order to execute
jobs in the cloud however, the user uploads must occur over a
base station channel that is shared by all of the uploading users.
Since the job completion times are subject to hard deadline
constraints, this restricts the feasible set of jobs that can be
processed. The system is modelled as a competitive game in
which each user is interested in minimizing its own energy
consumption. The game is subject to the real-time constraints
imposed by the job execution deadlines, user specific channel
bit rates, and the competition over the shared communication
channel. The paper shows that for a wide range of parameters, a
game where each user independently sets its offloading decisions
always has a pure Nash equilibrium, and a Gauss-Seidel-like
method for determining this equilibrium is introduced. Results
are presented that illustrate that the system always converges to
a Nash equilibrium using the Gauss-Seidel method. Data is also
presented that show the number of iterations required, and the
quality of the solutions. We find that the solutions perform well
compared to a lower bound on total energy performance.

Index Terms—Cloud computing, shared communications, com-
putation offloading, game theory

I. INTRODUCTION

Mobile cloud computing (MCC) is already starting to rev-
olutionize mobile device operation. In addition to its other
benefits, MCC can reduce mobile user energy requirements by
moving computational tasks and data storage functions away
from the user, and onto infrastructure-based cloud servers.
This enables the users to benefit from applications that would
otherwise tax the resources of the user if they were to be run
locally [1]. This functionality is being enabled, in part, by
virtualization methods that permit cloud-based servers to run
applications on behalf of their mobile clients [2]. According to
a recent study by Cisco Inc., it is expected that mobile cloud
traffic will increase by a factor of twelve over the next five
years, with a compound yearly growth rate of over 60 percent.
Cloud based application support is projected to account for 50
percent of total mobile data traffic by 2018 [3].

The commercial success of mobile cloud computing has
motivated a wide variety of recent research. In reference [4],

three MCC architectures are discussed: centralized clouds,
cloudlets and ad-hoc cloud configurations. The work in [5]
investigated issues involving the support of MCC in het-
erogeneous networks. These, and many other studies have
illustrated the value of mobile cloud computing. This includes
work that leverages the increased cloud-based storage capacity
and remote processing, while improving mobile user energy
efficiency, resulting in improved battery lifetime [6], [7], [8].

In this paper we consider the use of computation offload-
ing, where mobile user energy consumption is improved by
offloading job execution to remote cloud servers, rather than
performing the computations locally. It has been shown that
remote application execution can significantly improve mobile
battery lifetime in these types of situations [9]. Computation
offloading exploits the use of cloud-based servers that have
significantly more resources than that of a typical mobile
user. There are also studies that have considered computation
offloading from an application execution viewpoint, where
jobs are partitioned into multiple local and remote execution
components [10]. In this case, the appropriate job partitions
must be selected for local and remote execution.

Reference [11] proposes an architecture known as MAUI,
which controls computation offloading for runtime .NET appli-
cations. Using .NET features, MAUI profiles the application
and formulates computation offloading as a linear program
(LP). Reference [12] proposes a similar architecture for An-
droid applications. Recent work has also proposed a variety of
application offloading mechanisms [12][13][14][15]. Various
cloud-enabled platforms have also been proposed, such as
cloudlet servers [13] and cloud clones [12]. In the latter case,
a mobile user is associated with a system-level cloud-hosted
clone that runs in a virtual machine, and executes jobs on
behalf of the mobile user.

Game theory has been used to model mobile cloud comput-
ing. In reference [16], multiple service providers cooperatively
offer mobile services, and a competitive game was used to
share revenue. Reference [1] reduces energy consumption at
both the server and users, so that sustainability is achieved.
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A congestion-based game and optimization framework was
used, where the mobile users are players and the strategy is to
select servers for computation offloading. A nested two stage
game formulation is used in [6], where the objective is to
minimize both power consumption and service response time.
Game theory is used in [17] [18] as a framework for designing
decentralized algorithms, so that users can self-organize and
make good computation offloading decisions.

We consider a set of mobile users that access cloud services
over a shared base station communication channel, as shown in
Figure 1. The mobile users employ computation offloading to
reduce their energy usage, by uploading and executing jobs on
the remote cloud servers. Time slots on the shared channel are
assigned in a round-robin fashion to the set of mobile users
who decide to upload their jobs (as opposed to those that
decide to execute their job locally). Since the channel quality
may be different for each user, the achievable bit rate in a given
time slot may vary greatly between users. It is assumed that
the arriving jobs have hard deadline completion constraints.
This may restrict the set of users that can use computation
offloading when job completion deadlines cannot be met.

The users compete for a common resource (the channel)
while they are trying to minimize their utility (energy con-
sumption). They act in a decentralized environment, i.e., they
are allowed to make their own uploading decisions, without
a central authority imposing such decisions, and according to
their utility and the information about the system they can
obtain from a central cloud controller/scheduler. The natural
way of modelling such a setting is as a game, which the
users play using the information provided by the controller,
until they reach a stable state where no one would benefit by
defecting, i.e., a Nash Equilibrium (NE). We emphasize that
although the controller controls the flow of system information
from and to the users, it is unable to directly impose any
uploading decisions to the users, due to the decentralized deci-
sion making setting. However, it can influence these decisions,
e.g., by manipulating the information it transmits to the users;
we are going to use this ability of the controller, in order to
enforce a Nash equilibrium on the system by first computing
a NE at the controller, and then transmitting to the users the
job delays that result from the strategies in this NE. That will
force all users to adopt the NE decisions (since, according to
what they see as the other users’ decisions, a deviation would
increase energy consumption), and will stabilize the system in
one round, without having to wait for the game to be played
until a NE is reached.

A. Contributions

Modelling of computation offloading as a competitive game
where the users try to minimize their own energy consumption
has been done in previous work, and as described above, our
model is closest to the model of [1] [17] and [18]. Unlike
[17] [18] (which do not refer to job deadlines at all), and
[1] (which does mention job deadlines, but does not include
them in the formulation of their model), our model takes
into account the constraints imposed by the job execution
deadlines. These constraints radically change the game, since
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Fig. 1. Mobile Computation Offloading Model. n mobile users access
infrastructure-based cloud servers over a shared wireless communication
channel.

if too many users decide to offload, the per user data rate may
decrease, and job completion time constraints may be violated.
When this happens, users will be forced to withdraw from
computation offloading. In an earlier version of this work [19],
the energy for a given user was independent of other users’
offload decisions. In this version however, a more sophisticated
energy model couples the users’ energy through their shared
channel contention. As a result, the Nash equilibrium proof
requires a far more sophisticated argument, and is also now
given for the general user parameter case.

The paper shows that for a variety of parameters, a game
where each user independently adjusts its offload decisions
always has a pure NE, which can be explicitly described, a
task that is significantly complicated by the existence of job
deadline constraints. This description can be used to calculate
this specific NE; alternatively, a Gauss-Seidel-like method is
introduced for calculating a (possibly different) NE, and results
are presented that illustrate that the system almost always
converges to a NE using this method.

The fact that we are able not only to prove the existence
of a NE, but to explicitly characterize and efficiently compute
it, while subject to constraints imposed by the job execution
deadlines, channel bit rates due to varying channel quality, and
the competition over the shared channel is arguably the most
significant contribution of this work. An important assumption
we make in order for this approach to work is the following
truthfulness assumption: the users report to the controller
their actual decisions and parameter values, and the controller
reports the actual execution times corresponding to the user
decisions (either the actual or, for our case, the calculated NE
ones). Enforcing this assumption is beyond the scope of this
paper, and is left as an open problem for further research. Since
there are many NE, data are presented which show the number
of iterations needed, and the quality of the solutions obtained,
by comparing the total energy consumed at the equilibrium
achieved to the optimal total energy consumption, if there
were a central coordinator with the ability to impose uploading
decisions to the users (social cost). In particular, we find that
the solutions perform well compared to a lower bound on total
energy performance.

II. SYSTEM MODEL

The system considered is shown in Figure 1. A set of
n mobile users employ cloud-based computation offloading,
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where jobs may be executed either locally, or on remote cloud
servers. If remote execution is chosen, a user must upload job-
specific data that is needed to run the job on the remote server.
When a set of users choose the remote execution option, they
upload their job data through a communication channel that
is shared among the uploading users using a round robin time
slot assignment. It is assumed that the transmit power of all
the users is fixed, and therefore the uploading bit rates may
be different for each user due to differing radio propagation
path loss values. The user data payload therefore depends on
which user is currently transmitting. It is assumed that the
upload bit rates are constant for the duration of a given job
contention/uploading cycle [17][18][20].

We are interested in the total energy needed to execute a set
of n jobs, one for each user, once the users have decided on
local or remote execution during a job contention round. If a
user decides to upload, it transitions its wireless air interface
from a low power mode into the active state. The wireless
communication channel is then shared in a round-robin fashion
between those users that have made upload decisions. While
a given station is participating in job uploading, its radio
interface transitions between time slots during which it is
actively transmitting on the uplink, and those where it is in an
active waiting state where packet reception is enabled. More
formal definitions are given in the following development, and
Table I summarizes the notation used.

User Um, for m ∈ {1, 2, . . . , n} is characterized by the
tuple (Jm, Lm, Rm, T

max
m ), which contains the following in-

formation:
• Jm = (Dm, Bm), where Dm is the number of required

CPU cycles in order to execute job Jm, and Bm denotes
how many bits Um needs to upload to the cloud in order
to execute the job remotely.

• Lm = (vlm, f
l
m), where vlm is the energy consumption per

CPU cycle, and f lm is the number of CPU cycles executed
per second if Um decides to execute its job locally, i.e.,
without uploading it to the cloud.

• Rm = (P tm, P
w
m, rm), where P tm and Pwm are the wireless

transmission and waiting power consumption respec-
tively, and rm is the wireless uplink data rate for Um.

• Tmax
m is Um’s maximum tolerable response time.

In order to simplify our notation in the following, we also
define βm = Bm/rm, and τm = Tmax

m − Dm

fs
m

.
Each user Um has a decision variable am that indicates

whether the user decides to execute its task locally (am = 0)
or upload it to the cloud (am = 1). On the cloud server
side, we will use fs to denote the server computation power.
We emphasize that the server computation power is not a
system bottleneck, i.e., there are always enough cloud servers
to execute uploaded jobs.

The game can be imagined to be played as a sequence of
iterations: During each iteration, each user Um communicates
its current decision value, am, to a cloud-hosted controller. The
controller then provides feedback to the users, indicating the
achieved response times that are attained by each. Following
this, the users update their decisions and continue on until
an equilibrium is reached. Once this happens, job uploading
and processing occurs. In reality, the controller will collect the

TABLE I
TABLE OF NOTATION

Dm required CPU cycles
Bm input bits
vlm local energy consumption (joules/CPU cycle)
f lm local computation power (CPU cycles/second)
fs cloud server computation power (CPU cycles/second)
T l
m local execution response time (seconds)

El
m local execution energy consumption (joules)

P t
m transmission power (watts)
Pw
m waiting power (watts)
rm channel data rate (bps)
T

up
m uploading time delay (seconds)
E

up
m uploading energy consumption (joules)

T s
m server execution time delay (seconds)
T r
m total remote execution response time (seconds)

Er
m total remote execution energy consumption (joules)

Tm total response time (seconds)
Em total energy consumption (joules)
Tmax
m maximum tolerable response time (seconds)
βm exclusive data uploading time (seconds )
τm maximum tolerable data uploading time (seconds)
Φm negative uploading time margin (seconds)
Um mth user
n number of users

users’ parameters and will calculate a Nash equilibrium. As
mentioned in the Introduction, we assume that the users and
the controller are truthful in reporting data to each other. Then
the controller will communicate to the users the calculated
equilibrium delays, so that the users will be “forced” to decide
according to the equilibrium. Note that it is only the collection
and dissemination of information that is centralized, not the
decisions taken; the latter are taken independently by the users,
and are not dictated by a central authority.

A. Local Processing

In the case where user Um decides to execute its job locally,
we use the simple model described in [21] where the local
execution energy consumption Elm and the time delay due to
local computation T lm are defined as follows:

T lm =
Dm

f lm
, Elm = vlmDm.

B. Remote Processing

In the case of uploading, we describe both the wireless
communication model used, and the cloud server execution
model, in terms of energy consumption and time delay.

Wireless Channel Sharing: All users share a single wireless
communication channel to upload their jobs. It is assumed that
if m users decide to upload, time slots are shared in a round-
robin fashion between them. Without loss of generality, we
assume that the users are sorted so that β1 ≤ β2 ≤ · · · ≤ βn
and that user Um’s upload time is given by T up

m . This is the
equivalent of having n users with input data of Bm

rm
bits and

an uplink data rate of 1 bit per second. User m’s uploading
time delay is denoted by T up

m . After user Um finishes its data
transmission, user Um+1 continues sharing the channel with
the remaining users. Since users have an uplink data rate of
1 bit per second, both users Um+1 and Um transmitted Bm

rm
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during the first T up
m seconds. After user Um finishes its data

transmission, user Um+1 continues sharing the channel with
the remaining users to upload the remaining data, (Bm−1

rm−1
−

Bm

rm
). Assuming that the job upload times are large compared

to the time slot duration and the link data rate does not change
during the proccess of decision making and data uploading
[17][18][20], it can easily be shown that

T up
m+1 = T up

m + (βm+1 − βm) ηm+1 (1)

where ηm+1 is the number of users who are still uploading
after user m finishes its data transmission, and 1/ηm+1 is the
normalized per user data rate. Hence ηm+1 =

∑n
i=m+1 ai,

and, therefore, (1) implies for an uploading user Um (i.e.,
am = 1), that

T up
m =


(1 +

∑n
i=m+1 ai)βm if m = 1∑m−1

i=1 aiβi + (1 +
∑n
i=m+1 ai)βm if 1 < m < n∑m−1

i=1 aiβi + βm if m = n

(2)
Eup
m is the energy consumption due to uploading via the

wireless channel and can be calculated as transmission power
times exclusive uploading time, i.e.,

Eup
m = P tmβm + Pwm(T up

m − βm) (3)

Dm and Bm are two independent parameters. A small data
upload for example, could require a large CPU execution
requirement, and vice versa, i.e., the uploading bits, Bm, and
the required CPU cycles, Dm, are not the same. Dm comes
from the computation level of the task and both local execution
time T lm and energy consumption Elm depend on Dm.

Cloud server execution: We assume that once a job has
been uploaded to a cloud server, it starts executing without
delay, i.e., the congestion is on the shared channel, not the
cloud server. The server execution time for Um is given by

T sm =
Dm

fs
(4)

We assume that the user switches to a low power sleep mode
while it is waiting for its server to execute the application,
as in [17], [20] and [22]. As in typical cellular and wireless
LAN air interface protocols, when in sleep mode the user’s
radio awakens periodically, so that the user can test for packets
waiting at the Base Station for downlink transmission. In this
way, the users can quickly re-synchronize to the cloud server
upload activity. Considering the high computation capability
of the server and low sleep power, the energy consumption
in this mode can be considered negligible by comparison.
The total remote execution time and the total remote energy
consumption are given by

T rm = T up
m + T sm (5)

Erm = Eup
m = P tmβm + Pwm(T up

m − βm) (6)

and, by taking into account Um’s decision variable am, we
find that its total response time and energy consumption are
given by

Tm = amT
r
m + (1− am)T lm (7)

Em = amE
r
m + (1− am)Elm (8)

Note that in this development we have assumed that other
system delays, such as the communication latency between the
base station and the cloud servers, are negligible compared
to the others. However, these delays can be included in the
formulation, if desired.

III. CENTRAL DECISION MAKING

In conventional mobile cloud computing, a central scheduler
is used to determine the decision variables am for all users, so
that either the overall or maximum energy consumption is min-
imized, ensuring that all users’ response time constraints are
respected. Therefore, the central scheduler solves one of the
following mathematical programs. In (OPT SUM) the central
scheduler minimizes the social (total) energy consumption:

min
{a1,a2,...,an}

n∑
m=1

Em s.t.

Tm ≤ Tmax
m , ∀m ∈ {1, . . . , n}

am ∈ {0, 1}, ∀m ∈ {1, . . . , n}
(OPT SUM)

Using (2), (6) and (8), the objective function of (OPT SUM)
can be written as

n∑
m=1

Em =

n∑
m=1

(P tm − Pwm)βmam +

n∑
m=1

(1− am)vlmDm

(9)

+

n∑
m=1

amP
w
m(

∑
i<m

aiβi + βm
∑
i>m

ai)

IV. SELFISH DECISION MAKING

One of the characteristics of cloud computing is the lack of
a central coordinator that can force users to upload their jobs to
the cloud. Therefore, in our model we allow the mobile users
to act as selfish agents, i.e., they decide by themselves whether
to perform their computation remotely or locally, according to
their own cost function. As a result, the value of am is set by
user Um itself; the role of the central scheduler of Section III
is to just provide the agents with channel information. As a
result, we adopt a game theoretic approach in order to study
our setting, which requires truthfull users and controller.

In our model, each user wants to minimize its own energy
consumption. The objective for a user Um can be modeled
as follows: Let a−m = (a1, ..., am−1, am+1, ..., an) be the
tuple of the offloading decisions by all other users except user
Um; then, given a−m, user Um would like to set its decision
variable am ∈ {0, 1} to the solution of the following:

min
am

Em s.t.

Tm(am, a−m) ≤ Tmax
m

am ∈ {0, 1}

(mOPT)

Note that (7) and (8) imply that the objective and time
constraint depend on am and a−m. Therefore, (mOPT) is an
optimization problem with a non-trivial solution.

Following the classic definition of Nash equilibria, suppose
that there is a vector Ā = (ā1, . . . , ān) such that for each
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Algorithm 1 Gauss-Seidel Algorithm
1: procedure FindNashEquilibrium
2: sort users so that β1 ≤ β2 ≤ · · · ≤ βn
3: randomly pick a binary vector A = (a1, . . . , an)
4: N = {1, 2, . . . , n}
5: for k = 1→ n do
6: m← a randomly picked number from the set N .
7: xopt ← solution of (mOPT) for user Um

8: if xopt 6= am then
9: am ← xopt

10: go to line 4
11: else
12: remove m from the set N .
13: endfor
14: return A

Um, the value ām solves (mOPT) with a−m fixed to Ā−m.
Then Ā is called a (generalized) Nash equilibrium.

In order to measure the (in)efficiency of Nash equilibria,
Koutsoupias & Papadimitriou [23] introduced the notion of
the Price of Anarchy (PoA). This is defined as the ratio of
the worst-case overall (social) cost of a Nash equilibrium over
the overall (centralized) optimal cost. In our experiments we
do not compute necessarily the worst-case equilibrium, but
we will abuse the notation by defining the ‘price of anarchy’
as the ratio of the cost of the reached equilibrium over the
(centralized) optimal cost. We leave the estimation of PoA in
the sense of [23] as an open problem.

In order to find a Nash Equilibrium (albeit not neces-
sarily the worst-case one), we use the classic Gauss-Seidel
method (Algorithm 1). In the first step we randomly choose
A = (a1, a2, . . . , an) where ai ∈ {0, 1} as our starting
point. In most cases the starting point is not feasible (some
time constraints may be violated). Then, in each iteration,
user Um is selected randomly and we solve its (mOPT) with
the given a. If the optimal solution of (mOPT) is different
than the current decision value am, we set am to the new
optimal solution; otherwise, we randomly select another user
and continue. This iterative procedure continues until none of
the user decision variables change anymore, at which point
the algorithm returns the Nash equilibrium.

V. NASH EQUILIBRIUM EXISTENCE

In general, each user Um solves (mOPT) throughout the
duration of the game. If we define

τm = Tmax
m − Dm

fs
, (10)

then we can rewrite (mOPT) as

min
am

amP
w
m(
P tmβm
Pwm

− βm + T up
m (a−m))+

+(1− am)Dmv
l
m s.t.

amT
up
m (a−m) ≤ amτm

am ∈ {0, 1}

(mOPT’)

Given Φm as follows

Φm = T up
m −min{τm,

vlmDm

Pwm
− (

P tm
Pwm
− 1)

Bm
rm
} (11)

the optimization problem (mOPT”) would be equivalent
to (mOPT’)

min
am

amΦm s.t.

am ∈ {0, 1}
(mOPT”)

We can rewrite (mOPT”) as the following two-part defini-
tion in which Φm is defined by (11)

am =

{
1 if Φm ≤ 0

0 if Φm > 0

To prove the existence of Nash equilibrium in such a
system we provide an algorithm (Algorithm 2) which assures
convergence to a Nash equilibrium. Obviously this algorithm

Algorithm 2 Finding Nash equilibrium in hetrogeneous sys-
tem

1: procedure FindNashEquilibrium(a1, . . . , an)
2: S ← {1, . . . , n}
3: A = 11×n

4: while max
t∈S

Φt(at, a−t) > 0 do
5: k ← arg max

t∈S
Φt(at, a−t)

6: ak ← 0
7: remove k from set S
8: return A

will converge in at most n iterations. We need to prove that
the convergence point is a Nash equilibrium.

Theorem 1. Algorithm 2 always converges to a Nash equi-
librium.

Proof. We claim that whenever a user leaves S, he will never
be able to get back to S (i.e., to offload) during the procedure,
without violating his deadline constraint. Moreover, at the end
of the algorithm, no user in S has an incentive to prefer local
execution instead of offloading. Together, these two claims
prove the theorem.

Claim 1. A user that has left S before iteration k (1 ≤ k ≤ n),
will not be eligible to get back to S (i.e., to offload) right after
iteration k, without violating his deadline constraint.

Proof of Claim 1. We will prove the claim using induction on
k. For k = 1 the claim is obviously true, since no user has left
S before the current one, and the latter leaves S in iteration 1
because of his time constraint violation. We assume that it is
true for all iterations 0 ≤ k ≤ m, and we prove it for iteration
m+ 1.

Let Uρm+1 be the player examined in iteration m+ 1 of the
algorithm, and Uρi (1 ≤ i ≤ m) the player removed from S
in iteration i. For instance, if U10, U2, U12, U1 are removed in
this order during the first four iterations, then ρ1 = 10, ρ2 =
2, ρ3 = 12 and ρ4 = 1. Due to the inductive hypothesis, none
of the Ui’s (1 ≤ i ≤ m) have entered S before iteration m+1.
In iteration i, Uρi (1 ≤ i ≤ m+ 1) leaves S, i.e., he changes
his decision aρi to 0 (from 1) (i.e., from offloading to local
execution instead).
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Let ~xρi (1 ≤ i ≤ m + 1) be the decision vector which
indicates that Uρi changes back to offloading (aρi = 1) after
Uρm+1 changes aρi to 0 (from 1):

~xi = (aρi = 1, aρ1 = . . . = aρi−1 = aρi+1 = . . . = 0,

aρi = 1, a−{ρ1,...,ρi})

(a−W indicates the decision variables for all users who are
not members of set W ). We want to prove that none of the
Uρi ’s (1 ≤ i ≤ m) prefer to offload right after iteration m+1,
or, equivalently,

Φρi(~xρi) > 0, 1 ≤ i ≤ m (12)

Obviously, we already have that

Φρm+1
(~xρm+1

) > 0. (13)

We show (12) by induction on i, starting from i = m and
going towards i = 1.

For the base case (i = m), we need to show that after the
departure of Uρm+1

in iteration m + 1, Uρm cannot return to
S, or, equivalently, that Φρm(~xρm) > 0. Since player Uρm left
S at iteration m, we have (due to line 7 in the algorithm)

Φρm(~a) > Φρm+1
(~a) (14)

where we define

~a = {aρm , aρm+1
= 1, a−{ρm,ρm+1}}.

There are two possible cases:

Case 1 - 1. ρm > ρm+1

Equation (2) shows that

T up
ρm(~xρm) = T up

ρm(~a)− βρm
⇒ Φρm(~xρm) = Φρm(~a)− βρm (15)

T up
ρm+1

(~xρm+1
) = T up

ρm+1
(~a)− βρm

⇒ Φρm+1
(~xρm+1

) = Φρm+1
(~a)− βρm (16)

Then equations (14), (13), (15), and (16) show that

Φρm(~xρm) > Φρm+1(~xρm+1) > 0.

Case 1 - 2. ρm < ρm+1

According to equation (2) we would have

T up
ρm(~xρm) = T up

ρm(~a)− βρm
⇒ Φρm(~xρm) = Φρm(~a)− βρm+1 (17)

T up
ρm+1

(~xρm+1) = T up
ρm+1

(~a)− βρm
⇒ Φρm+1(~xρm+1) = Φρm+1(~a)− βρm+1

(18)

Then equations (14), (13), (17), and 18 show that

Φρm(~xρm) > Φρm+1
(~xρm+1

) > 0.

Hence Uρm cannot offload right after Uρm+1 decides to
execute locally in iteration m + 1. We will assume that (12)
is true for all l ≤ i ≤ m, and we prove it for i = l− 1. There
are two possible cases:

Case 2 - 1. ρl−1 < ρm+1

If we consider indices {ρl−1, . . . , ρm+1} in ascending order,
then let ρz be the index right after ρl−1, and ρmin, ρmax be
the smallest and biggest index respectively, i.e.,

ρmin < · · · < ρl−1 < ρz < · · · < ρmax

Note that for the case we are considering, indices
ρz, ρmin, ρmax are well defined, even if the first one may
coincide with the third. We also define the sets SL and SU as
follows:

SL = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj < ρl−1}
SU = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj > ρz}

Since Uρl−1
was removed from S before Uρz , we have

Φρl−1
(~a) ≥ Φρz (~a) (19)

where we define

~a = {a{ρl−1,ρz}∪SL∪SU
= 1, a−{ρl−1,ρz}∪SL∪SU

}.

Equation (2) implies that

T up
ρl−1

(~b) = T up
ρl−1

(~a)−
∑
j∈SL

βj ⇒

Φρl−1
(~b) = Φρl−1

(~a)−
∑
j∈SL

βj (20)

T up
ρz (~b) = T up

ρz (~a)−
∑
j∈SL

βj ⇒

Φρz (~b) = Φρz (~a)−
∑
j∈SL

βj (21)

where we define

~b = {aSL
= 0, a{ρl−1,ρz}∪SU

= 1, a−{ρl−1,ρz}∪SL∪SU
}.

Equations (19), (20), and (21) show that

Φρl−1
(~b) ≥ Φρz (~b) (22)

Equation (2) also implies that

T up
ρl−1

(~c) = T up
ρl−1

(~b)− |SU |βρl−1
⇒

Φρl−1
(~c) = Φρl−1

(~b)− |SU |βρl−1
(23)

T up
ρz (~c) = T up

ρz (~b)− |SU |βρz ⇒
Φρz (~c) = Φρz (~b)− |SU |βρz (24)

where we define

~c = {aSL∪SU
= 0, a{ρl−1,ρz} = 1, a−{ρl−1,ρz}∪SL∪SU

}.

The fact that βρl−1
≤ βρz , together with equations (22), (23),

and (24), implies that

Φρl−1
(~c) ≥ Φρz (~c) (25)

Then (2) implies that

T up
ρl−1

(~xρl−1
) = T up

ρl−1
(~c)− βρl−1

⇒
Φρl−1

(~xρl−1
) = Φρl−1

(~c)− βρl−1
(26)

T up
ρz (~xρz ) = T up

ρz (~c)− βρl−1
⇒

Φρz (~xρz ) = Φρz (~c)− βρl−1
(27)
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and, therfore, from the inductive hypothesis and equations
(25), (26), and (27), we get that

Φρl−1
(~xρl−1

) ≥ Φρz (~xρz ) ≥ 0.

Case 2 - 2. ρl−1 > ρm+1

This case can be divided into two subcases.
a) Subcase 1: There exists a l−1 < z ≤ m+1 such that

ρz > ρl−1. In this case we can use exactly the same arguments
as in the previous case.

b) Subcase 2: For all l − 1 < y ≤ m + 1 we have
that ρy < ρl−1. If we consider indices {ρl−1, . . . , ρm+1} in
ascending order, then let ρz be the index right before ρl−1.
Again, we define SL and SU as follows:

SL = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj < ρz}
SU = {ρj : l − 1 < j ≤ m+ 1, j 6= z, ρj > ρl−1}

Obviously by this definition we have SU = ∅ and SL = {ρj :
j 6= z, l − 1 < j ≤ m+ 1}. Since Uρl−1

was removed before
Uρz , we have

Φρl−1
(~a) ≥ Φρz (~a) (28)

where we define

~a = {a{ρl−1,ρz}∪SL
= 1, a−{ρl−1,ρz}∪SL

}.

Equation (2) implies the same equations as (20) and (21)
(recall that SU = ∅ in ~b), and therefore we get that

Φρl−1
(~b) ≥ Φρz (~b). (29)

We also have

T up
ρl−1

(~xl−1) = T up
ρl−1

(~b)− βρz ⇒

Φρl−1
(~xl−1) = Φρl−1

(~b)− βρz (30)

T up
ρz (~xρz ) = T up

ρz (~b)− βρz ⇒
Φρz (~xρz ) = Φρz (~b)− βρz (31)

Equations (29), (30), and (31) indicate that

Φρl−1
(~xρl−1

) ≥ Φρz (~xρz ) > 0.

Claim 2. At the end of algorithm 2, all users in S will offload.

Proof (of Claim 2). The algorithm terminates either with S =
∅ or because Φj ≤ 0 in line 9. In the latter case, we have
Φi ≤ Φj ≤ 0 for all i ∈ S, and, therefore, no user in S has
an incentive to not offload.

Claims 1 and 2 together prove the theorem.

VI. EXPERIMENTAL RESULTS

The Monte Carlo method was used to evaluate the efficiency
of the game theoretic model, the convergence time and the
energy consumption attained at the Nash equilibrium points
(NEPs). In order to cover a wide range of scenarios, 500
random configurations were generated and each was executed
500 times with different starting decision values and random
seeds. In all configurations, parameters were generated using
a random uniform distribution. The required CPU cycles, Dm,
were chosen randomly between 2.5 and 25 Gcycles. Input data
size, Bm, is between 0.42 to 42 Mb and the channel data
rate, rm, ranged from 6.4 to 64 Mbps. Local computation
power, f lm, was selected randomly from 0.5, 0.8 or 1 giga
CPU cycles/sec and cloud server computation power, fs, was
taken to be 100 giga CPU cycles/sec. Data transmission power,
P tm, was between 0.75 to 1 mW [24][25]. Local energy
consumption, vlm, is considered to be equal to P lm/f

l
m and

local execution power consumption, P lm, was chosen randomly
from 8 , 9 and 10 mW [24][26][27][28].

Figure 2 shows the number of iterations required to converge
to a Nash equilibrium point. The two dashed lines show the
maximum number of iterations among all reached NEPs for
Algorithm 2 and the Gauss-Seidel algorithm. Algorithm 2
shows a better performance since it converges in at most n
iterations while the Gauss-Seidel algorithm convergence time
is random and could potentially loop forever. This behaviour
however, was not observed in any of our experiments, i.e.,
Gauss-Seidel always found a Nash equilibrium. The conver-
gence time of Algorithm 2 and the Gauss-Seidel algorithm was
studied and the results are shown in Figure 3. Algorithm 2 has
order of n2 time complexity. The average convergence time
of these two algorithms is shown by solid lines. In Algorithm
2, since in each iteration the maximum value of Φ needs to
be calculated, increasing the number of users will increase
the execution time. In addition, due to the constant channel
capacity, a smaller portion of users chooses to offload in larger
groups, thus Algorithm 2 needs to iterate more to converge.
As a result, the average execution time of Algorithm 2 in large
groups (in our simulation results, with more than 150 users) is
longer than in the Gauss-Seidel method. However, simulation
results show that the game theoretic computation offloading
mechanism scales well with the size of the problem. The social
optimum problem is NP hard and very time consuming to
solve.

Table II illustrates the average offloading ratio, which is
defined as the ratio of the number of remote executions to
the number of users (n). As the number of users increases,
proportionally fewer users offload at equilibrium. This is
expected since the channel capacity is kept constant, and,
therefore, the remote execution delay becomes prohibitively
large for an ever greater proportion of users. Consequently,
the MCC approach is more beneficial in small to moderate
size groups.

In Figure 4, three different task execution approaches were
studied. In the upper curve, all users execute their tasks locally
while in the two lower curves, Algorithm 2 and the Gauss-
Seidel algorithm were used to assign remote execution to some
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TABLE II
AVERAGE OFFLOADING RATIO

n Average Offloading Ratio n Average Offloading Ratio
10 0.7084 110 0.2602
20 0.5553 120 0.2470
30 0.4717 130 0.2392
40 0.4140 140 0.2313
50 0.3772 150 0.2215
60 0.3438 160 0.2145
70 0.3221 170 0.2091
80 0.3025 180 0.2024
90 0.2871 190 0.1977
100 0.2731 200 0.1922

users. All social energy cost values were normalized according
to the optimal social cost (OPT SUM). The game theoretic
approaches resulted in considerable energy savings. The en-
ergy cost difference between these approaches decreases by
increasing the number of users since the offloading ratio
becomes smaller.

10 15 20 25 30 35 40

2

4

6

8

10

12

Number of Users

N
or

m
al

iz
ed

 A
ve

ra
ge

 E
ne

rg
y 

C
os

t

 

 
Gauss�Seidel
Algorithm 2
Local Execution

Fig. 4. Normalized Energy Cost versus Number of Users for Algorithm 2,
Gauss-Seidel Algorithm and Local Execution

Figure 5 shows the ratio of the total cost at equilibrium
determined by Gauss-Seidel and Algorithm 2 over the optimal
social cost (OPT SUM). More specifically, we show the ratio
for the worst (total cost-wise) equilibria reached (WE/SO) and
the average over all reached equilibria (AE/SO). While the cost
for the worst equilibrium may be as much as 300% higher than
the social optimum, the average cost of a reached equilibrium
is much closer to the social optimum. Therefore the lack of
central coordination to solve (OPT SUM) does not result in a
prohibitive increase in the total energy needed for supporting
offloading. Since the number of Nash equilibrium points
increases in larger groups, the probability of hitting the worst
equilibrium will decrease. As a result, in our experiments,
by increasing the number of users, the social cost of the
worst equilibrium reached was closer to the average among all
reached equilibria. We leave open the question of theoretical
upper bounds for the worst-case equilibrium ratio (i.e., the
PoA as defined by [23]).

VII. CONCLUSIONS

In this paper we considered a system where mobile users use
computation offloading, where energy consumption is reduced
by executing jobs on a remote cloud server, rather than locally.
In order to perform remote execution, a mobile user uploads
the job over a base station channel that is shared by all of
the uploading users. The jobs are subject to hard deadline
constraints, and because the channel quality may be different
for each user, this may restrict the ability to reduce energy
usage. The system was modelled as a competitive game where
users are interested in minimizing their own energy use. The
paper showed that for known classes of parameters, a game
where each user independently adjusts its offload decisions
always has a pure Nash equilibrium. Results were presented
that illustrate that the system always converges to a Nash
equilibrium using the Gauss-Seidel method. Data were also
presented that shows the number of iterations required, and
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the quality of the equilibria obtained. In particular, we found
that the solutions perform well compared to a lower bound on
total energy performance.
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