
Efficient Mobile Computation Offloading with Hard
Task Deadlines and Concurrent Local Execution

Peyvand Teymoori, Terence D. Todd and Dongmei Zhao
Department of Electrical and Computer Engineering

McMaster University
Hamilton, Ontario, CANADA

Email: {teymoorp,todd,dzhao}@mcmaster.ca

George Karakostas
Department of Computing and Software

McMaster University
Hamilton, Ontario, CANADA

Email: karakos@mcmaster.ca

Abstract—This paper considers the problem of algorithmic ef-
ficiency in mobile computation offloading with Concurrent Local
Execution (CLE). Online energy optimal algorithms can be devel-
oped when CLE is used to guarantee hard task deadlines while
offloading over Markovian wireless channels. Unfortunately,
these algorithms often have a high computational complexity,
which prohibits their use in online mobile implementations. Three
algorithms are introduced to reduce this complexity: Markovian
Compression (MC), Time Compression (TC) and Preemption Us-
ing Continuous Offloading (Preemption-CO). MC and TC reduce
the state space of the offloading Markovian process, by using a
novel notion of geometric similarity, or by running an optimal on-
line offloading algorithm in periodic time steps. In Preemption-
CO, while a task is offloaded preemptively, the offloading decision
at every time-slot is based on non-preemptive calculations. Our
simulations show that, by applying these methods, the running
times of the algorithms can be significantly reduced without
suffering unreasonable performance degradation compared with
the optimal energy performance.

Index Terms—Cloud computing, mobile computation offload-
ing, energy efficiency, time efficiency, hard task deadline con-
straints, concurrent local execution.

I. INTRODUCTION

Mobile computation offloading (MCO) is a mechanism
where devices can choose to execute tasks remotely, rather
than running them locally on the device itself [1]. This is
especially useful for devices with limited energy resources,
since the energy needed for task execution can be incurred
by the remote cloud server. The decision to offload a task
however, is not always straightforward, since the offloading
itself will incur both wireless communication energy and
latency costs. This is particularly true when the mobile device
must interact with the cloud over stochastic transmission
channels and/or network conditions. In [2], this issue was
studied and an energy model was proposed that considers both
mobile computation and communication energy components
using statistical inputs. This work assumed that the wireless
channel remains unchanged throughout the entire computation
offload. In more general scenarios, the wireless channel may
evolve randomly during the computation offload.

Offloading over stochastic channels is particularly diffi-
cult when the execution completion time of the task to be
offloaded must satisfy hard time deadlines. Reference [3]

flagged execution time constraints as an important criterion
for many interactive applications, and has highlighted the
problem of achieving this under stochastic channel conditions.
In [4], energy optimal mobile cloud computing was considered
assuming random wireless channels but without hard task
execution deadlines. In [5], mobile CPU frequency scheduling
and transmit power control was used to mitigate wireless
channel effects and control task offload execution times. Since
this approach cannot always ensure that hard task execution
deadlines are met, a parameter was introduced that sets the
rate at which deadlines can be violated.

Reference [6] studied 1-Part offloading, i.e., once the offload
starts, it occurs contiguously in one piece without interruption.
It introduced concurrent local execution (CLE) as a method of
enforcing hard task execution time constraints, and presented
a provably optimal on-line mobile computation offloading
algorithm. CLE guarantees that deadlines are satisfied by
allowing simultaneous local task execution during the offload,
if it may be needed to complete the task execution on time.
This mechanism ensures that deadlines are met even in worst-
case situations, such as where the wireless channel suffers
a complete outage during the offload. CLE is the method
adopted in the current paper.

Mobile device energy can sometimes be further improved
by splitting the task upload into multiple parts [6]. This allows
the mobile device to adapt to channel conditions at the end of
each upload part, provided that the added latency is acceptable.
Preemptive Offloading is a generalization of this, where the
decisions to continue the upload are made at the start of
each time-slot packet transmission. Although provably optimal
offloading algorithms exist for general Markovian wireless
channels and for multi-part offloading, their high computa-
tional complexity prohibits their application in practice. In this
paper we introduce ways of mitigating this complexity using
three different mechanisms: Markovian Compression (MC),
Time Compression (TC) and Preemption Using Continuous
Offloading (Preemption-CO). The new methods are based
on a time-dilated absorbing Markov chain (TDAMC) that
was used to define the optimal offloading decisions in [6].
The TDAMC size dictates the time complexity of on-line
offloading algorithms. In MC, the TDAMC is reduced by

aggregating its states using a novel method based on the notion
of geometric similarity. In TC, the TDAMC is traversed in ag-
gregated time steps, so that algorithm computation is reduced.
In Preemption-CO, while a task is offloaded preemptively, the
offloading decision at every time-slot is based on calculations
performed on the (much smaller) 1-Part TDAMC. By applying
these methods, the running times of the algorithms can be
significantly reduced without suffering unreasonable perfor-
mance degradation. A wide variety of comparisons are made
that illustrate their performance.

II. SYSTEM MODEL

A mobile device generates computational tasks that can
either be executed locally, or can be offloaded over a stochastic
communications channel to a cloud server for remote ex-
ecution. Following a common convention (cf. [6] and the
references therein), the stochastic communication channel is
modelled as a Markov Chain, which transitions amongst states
of different bit-rates in every time-slot, and is known to the
mobile device.

For every task, it is assumed that its hard completion
deadline tD, number of bits to be uploaded S, remote ex-
ecution time Texec, and result downloading time Tdown are
known at its release time-slot. Due to the stochastic channel,
the time to upload the data from the mobile device to the
cloud server Tup is a random variable, dependent on the
evolution of the channel state as a given upload occurs. For
simplicity, we will assume that Texec and Tdown are both
deterministic, and communicated to the mobile device by the
cloud server. We study two scenarios for remote execution:
The task is either uploaded as a single contiguous block (1-
Part offloading), or preemption is allowed, i.e., at any time-slot
we can decide whether uploading (some of) the task happens
or not (Preemptive offloading). In order to guarantee the task
completion before tD, a concurrent local execution (CLE)
model [6] is used, i.e., the task starts local execution at time-
slot tL = tD − TL + 1, where the local execution time TL
is known, as is the local execution energy consumption EL.
If remote execution completes before local execution finishes,
the latter is abandoned.

III. PROBLEM FORMULATION, OPTIMAL & APPROXIMATE
SOLUTIONS

We are interested in developing on-line algorithms which
solve the CLE offloading problem, i.e., given the CLE setting
of Section II, decide whether to upload part of the task or not at
every time-slot, so that the expected task energy consumption
is minimized. Note that the decision to upload is made once
(if at all) for 1-Part offloading, while it is made repeatedly (if
at all) for Preemptive offloading.

In order to develop optimal algorithms for the CLE offload-
ing problem, [6] incorporated both offloading and time in a
new Markov Chain, called a time-dilated absorbing Markov
chain (TDAMC), to model the task uploading evolution,
when it starts at the current time-slot t and is done contigu-
ously (for 1-Part offloading), or preemptively (for Preemptive

offloading). Recall that we assume prior knowledge of the
channel Markovian states, and the transition probabilities Pij

for all states i, j. An example of a TDAMC for a 2-state
(i.e., Gilbert-Elliot) channel and 1-Part offloading can be
seen at the top of Figure 1: The channel goes through two
states G,B (i.e., Good or Bad channel conditions), with bit-
rates Bmax, Bmin, respectively, with transition probabilities
PGG, PGB , PBG, PBB . TDAMC(t) is constructed by (i) un-
rolling the evolution of the stochastic channel Markov Chain
from the current time-slot t, up to absorbing states indicating
the time of task execution completion, and (ii) uploading
at every state according to its bit-rate (in case of 1-Part
offloading), or branching according to whether the decision for
uploading at the current time-slot is made or not. In Figure 1.
the TDAMC(1) root state G1,1 indicates that the current
t = 1 channel state is G, and the task is being uploaded with
bit-rate Bmax. Then (t = 2) the channel either transitions to B
with probability PGB , or remains in G with probability PGG,
and the TDAMC(1) transitions to B2,1 or G2,1, respectively.
The evolution of the TDAMC(1) continues in the same
fashion, with its states layered as Gt,l, Bt,m for time-slot t,
and l,m = 1, 2, . . . In general, TDAMC(t) is a layered tree-
like Markov Chain, starting with the current state as the root
at time-slot t, and going through layers corresponding to time-
slots t+1, t+2, . . . up to time-slot tD+1, or earlier absorbing
states if offloading was finished earlier than tD.

For the Preemption offloading case, the initial (t = 1)
TDAMC(1) is enhanced to be a Markov decision process
as follows: For every time 1 ≤ t ≤ tD + 1, we define
a set of states (Xt, St), where Xt is a channel state and
0 ≤ St ≤ S is the number of task bits that are up-
loaded up to t. Let BXt be the bit rate of channel state
Xt. The TDAMC(1) states are again arranged in layers
for t = 1, 2, . . . , tD + 1. The set of actions contains two
actions, a0, a1, corresponding to not uploading, or uploading,
respectively. A state (Xt, St) branches to a0 and a1; then a0
branches to states (Xt+1, St) with probabilities PXt,Xt+1

, and
a1 branches to states (Xt+1, St+min{BXt , S−St}) with the
same probabilities. States of the form (Xt, S) branch only to
action a0 (no uploading). At layer t = 1 there is only one
state (X1, 0), where X1 is the initial channel state, while the
states at layer tD +1 are absorbing. TDAMC(t) is similarly
constructed for any current time-slot t.

Using classical Markovian stopping theory, [6] proved that
the following simple on-line algorithm solves the CLE offload-
ing problem optimally for 1-Part offloading (and the same can
be shown for Preemptive offloading1): At every time-slot t,
compare the expected energy cost of starting uploading at t,
to the expected energy cost if we wait to check again at t+1,
by using Dynamic Programming (DP) on TDAMC(t) and
TDAMC(t + 1) respectively; if the former is less than the
latter, then upload at t.

1The Dynamic Programming for Preemptive offloading is more complicated
due to the fact that TDAMC states also record the remaining bits to be
uploaded, but exactly the same arguments go through.

Figure 1: Markovian Compression of the original TDAMC (left) to a smaller TDAMCapprox (right).

The DP running time depends on the size of TDAMC(t),
since the DP recursion subproblems correspond to
TDAMC(t) states. As a result, the optimal algorithm
becomes impractical even for simple channel models, such
as the 2-state Gilbert-Elliot model; this phenomenon is even
more pronounced in the Preemptive offloading case, since the
TDAMC(t) states are much more numerous, because they
have to also record the remaining task bits to be uploaded.

More specifically, we identify three sources of inefficiency
when implementing the optimal offloading algorithm:

A. The size of the TDAMC as a Markov Chain (i.e.,
number of states and transitions).

B. Running the optimal algorithm at every time-slot, im-
posing a large computational load on the mobile device.

C. In Preemptive offloading, several different uploading
time-slots must be picked (instead of a single uploading
time-slot for 1-Part offloading). Hence, every state of
the TDAMC has to record not only the channel state
at a particular time, but the remaining task bits to be
uploaded, in order to accurately capture the multiple
uploading time-slot combinations.

We address the forbiddingly high running time of the optimal
algorithm by designing algorithms addressing each one of
these factors. We will evaluate their performance, separately
or combined, in Section IV.

A. Markovian Compression (MC)

The large size of the TDAMC in the optimal algorithm
is the main reason for the high DP calculation of expected
energy consumption. In effect, the DP traverses recursively
all possible root-to-leaf tree-paths, and collects the energy
spent on each path, weighted by the path probability, in order
to compute the total mean energy consumption (the exact
recursive process for 1-Part offloading is described in detail in
Section VI of [6], and it is similar for Preemptive offloading).
If one is to replace the original TDAMC with a smaller
TDAMCapprox, then the latter must approximate well this

energy computation, i.e., its (much fewer) paths must be of
about the same expected mixture of bit-rates, as in the original
TDAMC paths. The key observation on how to do this, is
motivated by a geometric analogy (see Figure 1).

We create a new channel Markov Chain model (which will
generate TDAMCapprox) with the same number of states as
the original Markov Chain that generated TDAMC. In order
to determine the new state bit-rates and transition probabilities
in TDAMCapprox, we sort the original TDAMC paths from
the shortest to the longest (see Figure 1, left). Recall that each
path corresponds to the upoading of S bits along its states, so
the left-most (i.e., shortest) path consists of only highest bit-
rate states, and the right-most (i.e., longest) path consists of
only lowest bit-rate states. Intuitively we would like TDAMC
and TDAMCapprox, seen as ‘triangles’, to be similar in
the following sense: The energy consumption on shortest
paths AB,EF should equal the ratio of energy consumption
on longest paths AC,EG, while the corresponding number
of states ratios should also be equal. Hence, in order for
triangles (ABC) and (EFG) to be similar with a scaling
factor of lMC , we scale up all the original state bit rates by
a factor of lMC ; these are the new bit-rates for the channel
Markov Chain generating TDAMCapprox. Next, focusing
again on paths AB,EF or AC,EG, we observe that the
transitions in the new Markov Chain are in fact transitions
in the original Markov Chain, transitioning from the last
state of a group of lMC states with bit-rates Bmin or Bmax,
respectively, to the first state of the next group. Hence, we
set the transition probabilities of the new Markov Chain to be
equal to the original transition probabilities, so that a path
AD’s probability ends up away from AB’s probability by
about the same amount that its similar path EH’s probability
ends up away from EF ’s probability. To summarize, if P,B
are the original transition matrix and state bit-rate vector, then
P approx = P,Bapprox = lMC · B for the new approximate
channel Markov Chain. After TDAMCapprox has been de-

fined, our algorithm runs the optimal on-line algorithm on
TDAMCapprox.

B. Time Compression (TC)

In order to avoid running the optimal algorithm at ev-
ery time-slot, our algorithm simply runs it every lTC time-
slots, and compares the expected energy consumption of
TDAMC(t) and TDAMC(t+lTC) (instead of TDAMC(t)
and TDAMC(t + 1)). Note that in this case, if the decision
is made to upload, the uploading starts at time t + lTC with
the channel in state Xt+lTC , while the DP computations were
done assuming that the current channel state is Xt. This is an
additional source of approximation error for the algorithm.

C. Preemption Continuous Estimate (Preemption-CO)

In Preemptive offloading, the optimal algorithm DP is run
over a TDAMC whose states record also the remaining
task bits to be uploaded, in order to account for all possible
combinations of upoading time-slots, when it is estimating the
expected energy consumption. In our algorithm, we propose
that the estimate of expected energy consumption by the
DP be done not on the preemptive TDAMC, but on the
1-Part one, instead. Note that this algorithm should not be
confused with the 1-Part optimal offloading algorithm; if the
algorithm decides to upload at t, it uploads BXt bits (where
BXt is the bit-rate at the channel state Xt), but continues
to check whether to upload some of the remaining bits in
the next time-slot, etc., as opposed to 1-Part offloading where
once uploading is initiated, it continues automatically until it
finishes.

IV. SIMULATION RESULTS

In this section, computer simulation is used to evaluate
the performance of the proposed approximation methods. A
Gilbert-Elliot model, which is widely used for describing
burst error patterns in transmission channels [4] [5] [7] [8]
[9] [10] [11], is assumed for uploading. The channel is
modelled as a two-state Markov chain with a “Good” (G)
state having bit rate Bg and a “Bad” (B) state having bit rate
Bb, and Bg > Bb. Simulations are conducted by applying the
proposed approximation methods to the 1-Part Offloading and
Preemption Offloading algorithms. For comparison, we also
simulate Local Execution, in which the entire task is executed
at the mobile device.

The default parameters used in the simulations are given
as follows. All tasks are released at time-slot zero. Each time-
slot is 1ms, and the transmit power is 1W, which results in the
transmission energy in one time-slot as Etr = 1mJ. The local
execution energy per CPU cycle is vl = 2× 10−6mJ and the
local computation power fl = 1M CPU cycles per time-slot
[12] [13]. The computation load of each task is D = 10M
CPU cycles, and the local execution time is TL = D/fl = 10
time-slots. The local energy consumption EL = vlD = 20mJ.
The data transmission rates are Bg = 50 Mbps and Bb = 12.5
Mbps. The channel state transition probabilities are PGG = 0.3
(from G to G) and PBB = 0.7 (from B to B). In the results

below, each value of average energy consumption or running
time is obtained by averaging 1000 random i.i.d. runs of the
wireless channel.

1-Part-MC: By applying the proposed MC method on
the 1-Part Offloading algorithm, we have 1-Part-MC. The
compression factor is set as lMC = (S

Bb
)

2−α
2 , where α ∈ [0, 2]

with α = 0 corresponding to the maximum compression and
α = 2 corresponding to no compression.

Figure 2a compares the running time of 1-Part-MC versus
task size S with different α values. When α = 0, the whole
TDAMC is compressed into one node, and the algorithm can
be run in a constant amount of time for any values of S. When
α > 0, the running time increases with both α and S, since
the size of the approximated TDAMC increases with both.

Figures 2b and 2c, respectively, show the average energy
consumption of the 1-Part-MC algorithm versus S and tD
with different α values. As α decreases (i.e., lMC increases),
more compression is done, resulting in less accurate offloading
decisions that increase the average energy consumption of the
mobile device. When α is small, the 1-Part-MC approaches
the Local Execution faster as S increases (Figure 2b), and it
requires larger tD in order to achieve lower average energy
consumption than the Local Execution (Figure 2c).

1-Part-TC: This is done by applying the TC method to
1-Part Offloading. The compression factor is lTC = tD

2−β
2 ,

where β = 0, 1, 1.5, and 2. As a special case, when β = 2
(lTC = 1), there is no compression.

Figure 3a shows the running time of the 1-Part-TC algorithm
as S increases for different β values. By increasing lTC (using
smaller β) the running time of the algorithm can be reduced
significantly. The compression factor is the largest when β =
0, in which case only one offloading decision is made for the
whole task at the release time, and the running time keeps
almost constant as S increases.

Figures 3b and 3c show the average energy consumption
versus the task size S and deadline tD, respectively. As the
compression factor increases, the less accurate decisions result
in higher energy consumption of the mobile device. When
the compression factor is the largest (β = 0), the energy
consumption of the mobile device is close to that of Local
Execution. However, when β = 1 and 1.5, the compression
causes a moderate increase in energy consumption but reduces
significant reduction in the running time.

1-Part-MC-TC: In this set of simulations, the MC and
TC methods are applied simultaneously to approximate 1-
Part Offloading. Figure 4a shows that the running time can
be more significantly reduced by using both the compression
methods, compared to 1-Part-MC and 1-Part-TC. However,
by applying both the methods at the same time, 1-Part-MC-
TC suffers higher approximation errors and results in higher
energy consumption as shown in Figures 4b and 4c.

Preemption-CO-MC: This is obtained by applying MC to
the Preemption-CO 1-Part estimate (cf. Section III-C). The
MC method is used to approximate the optimal expected
offloading cost at each time-slot. Figure 5a shows the running
time of Preemption-CO-MC as the task size changes for

50 100 150 200 250 300 350 400 450 500 550 600

Job Size (kb)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
u
n
n
in

g
 T

im
e
 (

s
)

10
-3

1-Part (=2)

=1.5

=1

=0

(a) tD=60ms

100 150 200 250 300 350 400 450 500 550 600

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(b) tD=60ms

10 20 30 40 50 60 70

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(c) S = 200kb

Figure 2: Approximation of 1-Part offloading using 1-Part-MC for different values of α

50 100 150 200 250 300 350 400 450 500 550 600

Job Size (kb)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
u
n
n
in

g
 T

im
e
 (

s
)

10
-3

1-Part (=2)

=1.5

=1

=0

(a) tD=60ms

100 150 200 250 300 350 400 450 500 550 600

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(b) tD=60ms

10 20 30 40 50 60 70

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2)

=1.5

=1

=0

(c) S = 200kb

Figure 3: Approximation of 1-Part offloading using 1-Part-TC for different values of β

100 150 200 250 300 350 400 450 500 550 600

Job Size (kb)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
u
n
n
in

g
 T

im
e
 (

s
)

10
-3

Local Execution

1-Part (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

(a) tD=60ms

100 150 200 250 300 350 400 450 500 550 600

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

1-Part (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(b) tD=60ms

10 20 30 40 50 60 70

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

1-Part (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(c) S = 200kb

Figure 4: Approximation of 1-Part offloading using 1-Part-MC-TC for different combinations of α and β

different compression factors, where α is defined the same
as in 1-Part-MC. By increasing the compression factor the
running time can be reduced considerably. Figures 5b and 5c
show the average energy consumption of the mobile device
versus the task size and deadline, respectively. By decreasing
α (increasing compression factor), the approximation error
becomes larger, and the energy consumption increases. As
a reference, we also plot Preemption Offline, which finds
the optimal uploading times to offload the task preemptively
by assuming a complete knowledge of all future channel
states. The gap between Preemption-CO-MC with α = 2 (no
compression) and Preemption Offline is due to the fact that
the former is ignorant of future channel states.

Preemption-CO-MC-TC: All three approximation algo-
rithms in Section III are applied simultaneously to implement
Preemption Offloading. Figure 6a shows that more signifi-
cant reductions are achieved in running time, compared to
Preemption-CO-MC. Figure 6b shows that the average energy
consumption approaches Local Execution energy faster as
S increases, and Figure 6c show that Preemption-CO-MC-
TC requires a larger tD to achieve lower average energy
consumption than Local Execution.

V. CONCLUSIONS

This paper has presented new algorithms and results that
address the issue of algorithmic efficiency in mobile com-

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

1

2

3

4

5

6

7
R

u
n
n
in

g
 T

im
e
 (

s
)

Preemption-CO (=2)

=1.5

=1

=0

(a) tD=60ms

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2)

=1.5

=1

=0

(b) tD=60ms

20 40 60 80 100 120 140 160

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2)

=1.5

=1

=0

(c) S = 350 kb

Figure 5: Approximation of Preemption offloading using Preemption-CO-MC for different values of α

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (kb)

0

1

2

3

4

5

6

7

R
u
n
n
in

g
 T

im
e
 (

s
)

Preemption-CO (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(a) tD=60ms

100 200 300 400 500 600 700 800 900 1000 1100 1200

Job Size (Kb)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2 & =2)

=1.5 & =1.5

=1 & =1.5

=0 & =1.5

=1.5 & =1

=1 & =1

=0 & =1

=1.5 & =0

=1 & =0

=0 & =0

(b) tD=60ms

20 40 60 80 100 120 140 160

Job Completion Deadline (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Local Execution

Preemption Offline

Preemption-CO (=2 & =2)

=1.5 & =1.5

=1.5 & =1

=1.5 & =0

=1 & =1.5

=1 & =1

=1 & =0

=0 & =1.5

=0 & =1

=0 & =0

(c) S = 350 kb

Figure 6: Approximation of Preemption offloading using Preemption-CO-MC-TC for different combinations of α and β

putation offloading. The case was considered where tasks to
be run must always satisfy execution time deadlines. Hard
deadlines are typically difficult to ensure in conventional
computation offloading due to the stochastic nature of wireless
channels used during the computation offload. Concurrent
local execution (CLE) was used in order to ensure that all
task execution deadlines are met. Offloading procedures have
been formulated that can achieve the optimum minimum
energy performance when the offloading occurs over stochastic
Markovian wireless channels. The resulting algorithms, how-
ever, have a computational complexity that is too high for
use in practical mobile implementations. The paper introduced
three ways of reducing this complexity, namely, Markovian
Compression (MC), Time Compression (TC) and Preemption
Using Continuous Offloading (Preemption-CO). By applying
these methods, the running times of the algorithms were
shown to be significantly reduced without suffering significant
performance loss.

REFERENCES

[1] Z. Gu, R. Takahashi, and Y. Fukazawa, “Real-time resources allocation
framework for multi-task offloading in mobile cloud computing,” in 2019
International Conference on Computer, Information and Telecommuni-
cation Systems (CITS). IEEE, 2019, pp. 1–5.

[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, 2010.

[3] H. A. Lagar-Cavilla, N. Tolia, E. De Lara, M. Satyanarayanan, and
D. OHallaron, “Interactive resource-intensive applications made easy,”

in ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer, 2007, pp. 143–
163.

[4] W. Zhang, Y. Wen, and D. O. Wu, “Collaborative task execution in
mobile cloud computing under a stochastic wireless channel,” IEEE
Transactions on Wireless Communications, vol. 14, no. 1, pp. 81–93,
2014.

[5] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, 2013.

[6] A. Hekmati, P. Teymoori, T. D. Todd, D. Zhao, and G. Karakostas,
“Optimal mobile computation offloading with hard deadline constraints,”
IEEE Transactions on Mobile Computing, 2019.

[7] T. Blazek and C. F. Mecklenbräuker, “Measurement-based burst-error
performance modeling for cooperative intelligent transport systems,”
IEEE Transactions on Intelligent Transportation Systems, no. 99, pp.
1–10, 2018.

[8] A. Botta and A. Pescapé, “Ip packet interleaving for udp bursty losses,”
Journal of Systems and Software, vol. 109, pp. 177–191, 2015.

[9] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
The Bell System Technical Journal, vol. 42, no. 5, pp. 1977–1997, 1963.

[10] M. Zafer and E. Modiano, “Minimum energy transmission over a
wireless fading channel with packet deadlines,” in 2007 46th IEEE
Conference on Decision and Control. IEEE, 2007, pp. 1148–1155.

[11] L. A. Johnston and V. Krishnamurthy, “Opportunistic file transfer over
a fading channel: A pomdp search theory formulation with optimal
threshold policies,” IEEE Transactions on Wireless Communications,
vol. 5, no. 2, pp. 394–405, 2006.

[12] M. Nir, A. Matrawy, and M. St-Hilaire, “An energy optimizing scheduler
for mobile cloud computing environments,” in Computer Communica-
tions Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on.
IEEE, 2014, pp. 404–409.

[13] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” Wireless Communications, IEEE Transactions
on, vol. 11, no. 6, pp. 1991–1995, 2012.

