
Energy Efficient Offloading for Competing Users on
a Shared Communication Channel

Erfan Meskar, Terence D. Todd and Dongmei Zhao
Department of Electrical and Computer Engineering

McMaster University
Hamilton, Ontario, CANADA

Email: {meskare,todd,dzhao}@mcmaster.ca

George Karakostas
Department of Computing and Software

McMaster University
Hamilton, Ontario, CANADA

Email: karakos@mcmaster.ca

Abstract—In this paper we consider mobile users that employ
computation offloading. In computational offloading, users can
reduce energy consumption by executing jobs on a remote cloud
server, rather than locally. In order to execute a job in the cloud,
a mobile user must upload the job over a base station channel
which is shared by all of the uploading users. The jobs are subject
to hard deadline constraints, and since the channel quality may
be different for each user, this may restrict the users ability to
reduce energy usage. The system is modelled as a competitive
game where each user is interested in minimizing its own energy
use. The game is subject to the real-time constraints imposed
by job execution deadlines, user specific channel bit rates, and
the competition over the shared communication channel. The
paper shows that for known classes of parameters, a game
where each user independently adjusts its offload decisions always
has a pure Nash equilibrium, and a Gauss-Seidel-like method
for determining this equilibrium is presented. Results are then
presented which illustrate that the system always converges to
a Nash equilibrium using Gauss-Seidel. Data is presented which
show the number of Nash equilibria that are found, the number
of iterations required, and the quality of the solutions obtained.
In particular, we find that the solutions perform well compared
to a lower bound on total energy performance.

I. INTRODUCTION

Mobile cloud computing (MCC) has rapidly evolved and
has already started to revolutionize mobile device operation.
MCC can improve application performance and reduce mobile
user energy requirements by migrating computational tasks
and data storage functions away from the user, and onto
infrastructure-based cloud servers. This enables mobile users
to benefit from computationally intensive applications, which
would otherwise tax the resources of the user if they were
run locally [1]. These capabilities have been enabled, in part,
by virtualization techniques that permit cloud-based servers
to run applications on behalf of their mobile counterparts [2].
According to a recent study by Cisco Inc., mobile cloud traffic
is expected to increase by a factor of twelve over the next five
years, with a compound annual growth rate of over 60 percent.
Cloud based application support is expected to account for 90
percent of total mobile data traffic by 2018 [3].

In this paper we consider computation offloading, where
mobile battery life is improved by offloading job execution
to remote cloud servers, rather than performing the compu-
tations locally. The work in reference [4] has shown that
remote application execution can significantly reduce mobile

user energy usage in these types of situations. Computation
offloading benefits from the use of fast infrastructure-based
cloud servers with significantly more resources than that of a
typical mobile user. There is also work which has looked at
computation offloading from an application viewpoint, where
jobs to be executed can be partitioned into multiple local
and remote execution components [5]. In this case, algorithms
must determine the best partition to be selected and executed
remotely.

Reference [6] proposes an architecture referred to as MAUI,
which dynamically controls computation offloading for run-
time .NET applications. MAUI utilizes .NET features to profile
the application and formulates the offloading problem as a
linear program (LP). The work in [7] proposes a similar
architecture for Android applications. Recent research has
also proposed a variety of application offloading mechanisms
[7][8][9][10]. Various cloud-assisted mobile platforms have
also been proposed, such as cloudlet servers [8] and cloud
clones [7]. In the latter case, each mobile user is associated
with a system-level cloud-hosted clone which runs in a virtual
machine, executing applications on behalf of the mobile user.

There have been some studies on the use of game theory in
mobile cloud computing. In [11], a scenario was considered
where multiple service providers cooperatively offer mobile
services, and game theory was used to share revenue. Ref-
erence [1] aims to reduce energy consumption in MCC on
both the server and user side, to achieve sustainability. A
congestion-based game and optimization framework is used,
where each mobile user is a player and the strategy is to
select servers for computation offloading. A nested two stage
game formulation for MCC is provided in [12], in which
the objective of each mobile user is to minimize both power
consumption and service response time. In [13], game theory is
used as a framework for designing decentralized algorithms,
so that users can self-organize and make good computation
offloading decisions.

In this paper we consider a set of mobile users which access
infrastructure-based cloud servers over a wireless communica-
tion channel. An example of the system is shown in Figure
1. The mobiles can choose to use computation offloading
to reduce their energy use, by uploading and executing jobs
on the remote cloud servers. The users share a base station



Base Station

Cloud Servers

Shared Uplink Channel

2

n

1

Fig. 1. Mobile Computation Offloading Model. n mobile wireless users ac-
cess infrastructure-based cloud servers over a shared communication channel.

communication channel which is used for job uploading and
where time slots are dynamically allocated among all of
the users currently uploading. The channel quality may be
different for each user however, and the achievable bit rate
in a given time slot may vary greatly between users. Since
the arriving jobs have hard deadline completion constraints,
this may restrict the use of computation offloading when job
completion deadlines cannot be met.

The system is modelled as a competitive game where the
users attempt to minimize their own energy use. This activity
is subject to the real-time constraints imposed by the job
execution deadlines, different bit rates due to varying channel
quality, and the competition over the shared communication
channel. If too many users choose to offload, for example,
the per user data rate may decrease to the point that job
execution time constraints are violated. This may force users
to withdraw from computation offloading. The paper shows
that for certain classes of parameters, a game where each user
independently adjusts its offload decisions always has a pure
Nash equilibrium. A Gauss-Seidel-like method is presented
for determining this equilibrium and results are presented
which illustrate that the system always converges to a Nash
equilibrium using the Gauss-Seidel method. Data is presented
which show the number of equilibria that are found, the
number of iterations required, and the quality of the solutions
obtained. In particular, we find that the solutions perform well
compared to a lower bound on total energy performance.

II. SYSTEM MODEL

The system is shown in Figure 1 where n mobile users
use cloud-based computation offloading through a shared
communication channel. Table I summarizes the notation used
in following development.

User Um, for m ∈ {1, 2, . . . , n} is characterized by the
tuple (Jm, Lm, Rm, T

max
m ), which contains the following in-

formation:

• Jm = (Dm, Bm), where Dm is the number of required
CPU cycles in order to execute job Jm, and Bm denotes
how many bits Um needs to upload to the cloud in order
to execute the job remotely.

• Lm = (vlm, f
l
m), where vlm is the energy consumption per

CPU cycle, and f lm is the number of CPU cycles executed

TABLE I
TABLE OF NOTATION

Dm required CPU cycles
Bm input bits
vlm local energy consumption (joules/CPU cycle)
f lm local computation power (CPU cycles/second)
fs cloud server computation power (CPU cycles/second)
T l
m local execution response time (seconds)

El
m local execution energy consumption (joules)

P t
m transmission power (watts)
rm channel data rate (bps)
T off
m offloading time delay (seconds)
Eoff

m offloading energy consumption (joules)
T s
m server execution time delay (seconds)
T r
m total remote execution response time (seconds)

Er
m total remote execution energy consumption (joules)

Tm total response time (seconds)
Em total energy consumption (joules)
Tmax
m maximum tolerable response time (seconds)
βm exclusive data uploading time(seconds )
τm maximum tolerable data uploading time(seconds)
Φm negative uploading time margin(seconds)
Um mth user
n number of users

per second if Um decides to execute its job locally, i.e.,
without uploading it to the cloud.

• Rm = (P t
m, rm), where P t

m is the wireless transmission
power consumption, and rm is the wireless uplink data
rate for Um if it can use the channel exclusively.

• Tmax
m is Um’s maximum tolerable response time.

In order to simplify our notation in the following, we also
define βm = Bm/rm, and Φm = T off

m − τm.
Each user Um has a decision variable am that indicates

whether the user decides to execute its task locally (am = 0)
or upload it to the cloud (am = 1). On the cloud server
side, we will use fs to denote the server computation power.
We emphasize that the server computation power is not a
system bottleneck, i.e., there are always enough cloud servers
to execute uploaded jobs.

The game can be imagined to be played as a sequence of
iterations: During each iteration, each user Um communicates
its current decision value, am, to a cloud-hosted controller. The
controller then provides feedback to the users, indicating the
achieved response times which are attained by each. Following
this, the users update their decisions and continue on until
an equilibrium is reached. Once this happens, job uploading
and processing occurs. In reality, the controller will collect
the users’ parameters and will simulate the game itself; when
the simulation ends at equilibrium, it will communicate to the
users the calculated equilibrium delays, so that the users will
be ‘forced’ to decide according to the equilibrium.

A. Local Processing

In the case where user Um decides to execute its job locally,
we use the simple model described in [14] where the local
execution energy consumption El

m and the time delay due to



local computation T l
m are defined as follows:

T l
m =

Dm

f lm
, El

m = vlmDm.

B. Remote Processing

In the case of uploading, we describe both the wireless
communication model used, and the cloud server execution
model, in terms of energy consumption and time delay.

Wireless Channel Sharing: All users share a single wireless
communication channel to upload their jobs. It is assumed that
if m users decide to upload, time slots are shared in a round-
robin fashion between them. Without loss of generality, we
assume that the users are sorted so that β1 ≤ β2 ≤ · · · ≤ βn
and that user Um’s upload time is given by T off

m . After user Um

finishes its data transmission, user Um+1 continues sharing
the channel with the remaining users. Assuming that the job
upload times are large compared to the time slot duration, it
can easily be shown that

T off
m+1 = T off

m + (βm+1 − βm) ηm+1 (1)

where ηm+1 is the number of users who are still uploading
after user m finishes its data transmission, and 1/ηm+1 is the
normalized per user data rate. Hence ηm+1 =

∑n
i=m+1 ai,

and, therefore, (1) implies for an uploading user Um (i.e.,
am = 1), that

T off
m =


(1 +

∑n
i=m+1 ai)βm if m = 1∑m−1

i=1 aiβi + (1 +
∑n

i=m+1 ai)βm if 1 < m < n∑m−1
i=1 aiβi + βm if m = n

(2)
T off
m is the energy consumption due to uploading via the

wireless channel and can be calculated as transmission power
times exclusive uploading time, i.e.,

Eoff
m = P t

mβm (3)

Cloud server execution: We assume that once a job has
been uploaded to a cloud server, it starts executing without
delay, i.e., the congestion is on the shared channel, not the
cloud server. The server execution time for Um is given by

T s
m =

Dm

fs
(4)

Then the total remote execution time and the total remote
energy consumption are given by

T r
m = T off

m + T s
m (5)

Er
m = Eoff

m = P t
mβm (6)

and, by taking into account Um’s decision variable am, we
find that its total response time and energy consumption are
given by

Tm = amT
r
m + (1− am)T l

m (7)

Em = amE
r
m + (1− am)El

m (8)

Note that in this development we have assumed that other
system delays, such as the communication latency between

the base station and the cloud servers, is negligible compared
to the others. However, these delays can be included in the
formulation, if desired.

III. CENTRAL DECISION MAKING

In conventional mobile cloud computing, a central scheduler
is used to determine the decision variables am for all users,
so that the overall energy consumption is minimized, ensuring
that all users’ response time constraints are respected. There-
fore, the central scheduler solves the following mathematical
program (OPT).

min
{a1,a2,...,an}

n∑
m=1

Em s.t.

Tm ≤ Tmax
m , ∀m ∈ {1, . . . , n}

am ∈ {0, 1}, ∀m ∈ {1, . . . , n}

(OPT)

Using (2), (6) and (8), the objective function can be written
as

n∑
m=1

Em =

n∑
m=1

P t
mβmam +

n∑
m=1

(1− am)vlmD
l
m (9)

IV. SELFISH DECISION MAKING

One of the characteristics of cloud computing is the lack of
a central coordinator that can force users to upload their jobs to
the cloud. Therefore, in our model we allow the mobile users
to act as selfish agents, i.e., they decide by themselves whether
to perform their computation remotely or locally, according to
their own cost function. As a result, the value of am is set by
user Um itself; the role of the central scheduler of Section III
is to just provide the agents with channel information. As a
result, we adopt a game theoretic approach in order to study
our setting.

In our model, each user wants to minimize its own energy
consumption. The objective for a user Um can be modeled as
follows: Let a−m = (a1, ..., am1, am+1, ..., an) be the tuple
of the offloading decisions by all other users except user
Um; then, given a−m, user Um would like to set its decision
variable am ∈ {0, 1} to the solution of the following:

min
am

Em s.t.

Tm(am, a−m) ≤ Tmax
m

am ∈ {0, 1}

(mOPT)

Note that (8) implies that the objective depends only on am,
and, in fact, the optimal decision would be am = 1, since,
in this case, there is no local execution energy consumption
incurred by Um. But this may not be possible since the
time constraints may be violated. Therefore, (mOPT) is an
optimization problem with a non-trivial solution.

Following the classic definition of Nash equilibria, suppose
that there is a vector ā = (ā1, . . . , ān) such that for each Um,
the value ām solves (mOPT) with a−m fixed to ā−m. Then ā
is called a (generalized) Nash equilibrium.

In order to measure the (in)efficiency of Nash equilibria,
Koutsoupias & Papadimitriou [15] introduced the notion of



Algorithm 1 Gauss-Seidel Algorithm
1: procedure FindNashEquilibrium
2: sort users so that β1 ≤ β2 ≤ · · · ≤ βn
3: randomly pick a binary vector a = (a1, . . . , an)
4: NE = FALSE
5: S = ∅
6: for m = 1→ n do
7: if am = 1 then
8: add m to the set S
9: endfor

10: while NE = FALSE do
11: N = {1, 2, . . . , n}
12: for k = 1→ n do
13: m← a randomly picked number from the set N .
14: xopt ← solution of (mOPT) for user Um

15: if xopt 6= am then
16: am ← xopt
17: if xopt = 0 then
18: remove m from the set S
19: else
20: add m to the set S
21: go to line 27
22: else
23: remove i from the set N .
24: if |N | = 0 then
25: NE = TRUE
26: return a
27: endfor
28: endwhile

the Price of Anarchy (PoA). This is defined as the ratio of
the worst-case overall (social) cost of a Nash equilibrium over
the overall (centralized) optimal cost. In our experiments we
do not compute necessarily the worst-case equilibrium, but
we will abuse the notation by defining the ‘price of anarchy’
as the ratio of the cost of the reached equilibrium over the
(centralized) optimal cost. We leave the estimation of PoA in
the sense of [15] as an open problem.

In order to find a Nash Equilibrium (albeit not neces-
sarily the worst-case one), we use the classic Gauss-Seidel
method (Algorithm 1). In the first step we randomly choose
a = (a1, a2, . . . , an) where ai ∈ {0, 1} as our starting point.
In most cases the starting point is not feasible (some time
constraints may be violated). Then, in each iteration, user Um

is selected randomly and we solve its (mOPT) with the given
a. If the optimal solution of (mOPT) is different to the current
decision value am, we set am to the new optimal solution;
otherwise, we randomly select another user and continue. This
iterative procedure continues until none of the user decision
variables change anymore, at which point the algorithm returns
the Nash equilibrium.

V. NASH EQUILIBRIUM EXISTENCE

In this section we prove the existence of Nash equilibria
for the special cases of homogeneous and semi-homogeneous
systems.

In general, each user Um solves (mOPT) throughout the
duration of the game. If we define

τm = Tmax
m − Dm

f lm
, (10)

then we can rewrite (mOPT) as

min
am

amβm + (1− am)Dmv
l
m s.t.

amT
off
m (am, a−m) ≤ amτm

am ∈ {0, 1}

(mOPT’)

Definition 1. An MCC system is semi-homogeneous iff

τi = τj , ∀i, j ∈ {1, . . . , n}.

We start Algorithm 1 with initial decisions am = 0,∀m.
In each iteration, the user with the next smallest β value
is selected to solve problem (mOPT’), i.e., the users are
examined in increasing order of β values. We will show that if
we force the algorithm to terminate when it either encounters a
user who prefers not to offload due to its time constraint, or all
users decide to offload, then it has reached a Nash equilibrium.

Suppose that user Uk+1 is the next one to be examined by
the algorithm in iteration k + 1. Since the algorithm has not
terminated yet, we have Sk = {1, 2, . . . , k} and

T off
k+1 =

k∑
i=1

aiβi + (1 +

n∑
i=k+2

ai)βk+1 =

k+1∑
i=1

βi (11)

Theorem 1. If user Uk+1 decides to offload in iteration k+1
and j ∈ Sk, then j ∈ Sk+1, for all j < k + 1.

Proof: Under the conditions of the theorem, we have

T off
j =

j−1∑
i=1

aiβi + (1 +

n∑
i=j+1

ai)βj =

j−1∑
i=1

βi + (k − j + 2)βj

and, by using (11) and semi-homogeneity, we get that

T off
k+1 − T off

j > 0⇒ Φj ≤ Φk+1

Since user Uk+1 can offload, i.e., Φk+1 ≤ 0, we have Φj ≤
Φk+1 ≤ 0.

Theorem 2. If user Uk+1 cannot offload in iteration k + 1,
then user Uj cannot offload either, for all j > k + 1.

Proof: Recall that during iteration k+1, and for any user
j > k + 1, we have that aj = 0 and

T off
j =

j−1∑
i=1

aiβi + (1 +

n∑
i=j+1

ai)βj =

k∑
i=1

βi + βj .

Therefore (11) implies that

T off
k+1 − T off

j ≤ 0⇒ Φj ≥ Φk+1

Since user Uk+1 could not satisfy its time constraint, we have
Φk+1 > 0, and, therefore, Φj ≥ Φk+1 > 0.

Theorems 1, 2 imply that any decision change for a user
incurred by the algorithm does not result in simultaneous
changes for other users. Hence, when the algorithm termi-
nates there is no user that would like to change its decision
unilaterally, i.e., we have reached a Nash equilibrium.

Definition 2. An MCC system is homogeneous iff

βi = βj and τi = τj , ∀i, j ∈ {1, . . . , n}.



Since an homogeneous system is also semi-homogeneous,
a Nash equilibrium can always be found in the same way as
above.

VI. EXPERIMENTAL RESULTS

To evaluate the efficiency of the game theoretic model,
the convergence time and the energy consumption attained at
the Nash equilibrium points (NEP) is compared to the social
optimum cost. Our simulation results demonstrate that the
Gauss-Seidel method always converges to a Nash equilibrium
point, in both homogeneous and heterogeneous parameter
cases. In order to cover a wide range of scenarios, multiple
random configurations were generated and each was executed
multiple times with different starting decision values and
random seeds. In all configurations, parameters were generated
using a random uniform distribution. The required CPU cycles,
D, were chosen randomly between 1 and 10 Gcycles. Input
data size, B, is between 0.42 to 42 Mb and the channel
data rate, r, ranged from 6.4 to 64 Mbps. Local computation
power, f l, was selected randomly from 0.5, 0.8 or 1 giga CPU
cycles/sec and cloud server computation power, fs, was taken
to be 100 giga CPU cycles/sec. Data transmission power, P t,
was between 0.75 to 1 watts. Local energy consumption, vl,
is considered to be equal to P l/f l and local execution power
consumption, P l, was chosen randomly from 20 , 22.5 and 25
watts.

Figure 2 shows the number of discovered Nash equilibrium
points. Generally, we can see that the number of points
increases with the number of users which is consistent with
what would be expected. In this experiment, five hundred
random configurations were generated and each configuration
was executed one hundred times with a random initial decision
vector and random user selections with different seeds. For
small numbers of users (up to 12) we can see a linear
increase in the number of NEPs. To cover as many scenarios
as possible, we repeated this experiment more than 50000
times and that is the reason that we can see large changes
for N > 12.

In Figure 3 the average and maximum game convergence
time is shown, which increases linearly with the number of
users. Computing the centralized optimal computation offload-
ing solution involves solving the integer linear program which
is very time consuming. This shows that the game theoretic
computation offloading mechanism scales well with the size of
the problem. For this experiment, five hundred configurations
were generated and each random configuration was executed
one hundred times with random initial decision vectors and
user selections.

Figure 4 illustrates the average offloading ratio value
in 10000 runs, which is defined as the ratio of the number
of remote executions to the number of users, as well as the
variation between the maximum and minimum ratio for each
system population. As the number of users increases, propor-
tionally fewer users end up offloading at equilibrium. This
is expected since the channel capacity is kept constant, and,

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Number of users

N
u
m

b
e
r 

o
f 
fo

u
n
d
 N

E
P

s

Fig. 2. Number of Nash Equilibria

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

Number of users

N
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

 

 

Maximum in 10000 experiments

Average in 10000 experiments

Fig. 3. Number of Iterations vs. Number of Users

therefore, the remote execution delay becomes prohibitively
bigger for an ever greater proportion of users.

To calculate the ratio of overall energy consumption to the
social optimum, we generated 500 random configurations for
each number of users. In order to estimate the worst Nash
equilibrium we ran the Gauss-Seidel algorithm 100 times for
each configuration with random initial decision vectors and
different random seeds. Figure 5 shows the ratio of the total
cost at equilibrium over the optimal social cost (OPT). More
specifically, we show the ratio for the worst (total cost-wise)
equilibrium reached, the best (total cost-wise) equilibrium
reached, and the average over all reached equilibria. This
was done by generating 500 random configurations for each
number of users and then running the Gauss-Seidel algorithm
100 times for each configuration, with random initial decision
vectors and different random seeds. We note that in our case



0 10 20 30 40 50 60 70 80

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of users

O
ff
lo

a
d
in

g
 r

a
ti
o

 

 

Variation in 10000 experiments

Average in 10000 experiments

Fig. 4. Offloading Ratio versus Number of Users

the best equilibrium cost is virtually the same as the social
optimum (the ratio is 1), but we have examples where this
is not true. While the cost for the worst equilibrium may be
even 16% higher than the social optimum, the average cost of
a reached equilibrium is much closer to the social optimum.
Therefore the lack of central coordination doesn’t result in a
prohibitive increase of the total energy needed for supporting
offloading. We leave open the question of theoretical upper
bounds for the worst-case equilibrium ratio (i.e., the PoA as
defined by [15]).

30 35 40 45 50 55 60 65
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Number of users

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
s
t

 

 

Worst case in 500 × 100 experiments

Average in 500× 100 experiments

best case in 500×100 experiments

Fig. 5. Normalized Social Energy Consumption

VII. CONCLUSIONS

In this paper we considered a system where mobile users use
computation offloading, where energy consumption is reduced
by executing jobs on a remote cloud server, rather than locally.
In order to perform remote execution, a mobile user uploads

the job over a base station channel which is shared by all
of the uploading users. The jobs are subject to hard deadline
constraints, and because the channel quality may be different
for each user, this may restrict the ability to reduce energy
usage. The system was modelled as a competitive game where
users are interested in minimizing their own energy use. The
paper showed that for known classes of parameters, a game
where each user independently adjusts its offload decisions
always has a pure Nash equilibrium. Results were presented
which illustrate that the system always converges to a Nash
equilibrium using the Gauss-Seidel method. Data was also
presented which shows the number of Nash equilibria that
were found, the number of iterations required, and the quality
of the equilibria obtained. In particular, we found that the
solutions perform well compared to a lower bound on total
energy performance.

REFERENCES

[1] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu, “A Game Theoretic Resource
Allocation for Overall Energy Minimization in Mobile Cloud Computing
System,” in ISLPED. ACM, July 2012, pp. 279–284.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[3] [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white paper c11-520862.

[4] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving
Portable Computer Battery Power through Remote Process Execution,”
Journal of ACM SIGMOBILE on Mobile Computing and Communica-
tions Review, vol. 2, no. 1, pp. 19–26, 1998.

[5] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic Resource Allocation and Parallel Execution in the Cloud for
Mobile Code Offloading,” IEEE INFOCOM, pp. 945–953, March 2012.

[6] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in The 8th International Conference on Mobile
Systems, Applications, and Services. ACM, June 2010, pp. 49–62.

[7] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic Execution between Mobile Device and Cloud,” in The sixth
conference on Computer systems. ACM, April 2011, pp. 301–314.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for
VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive Comput-
ing, vol. 8, no. 4, pp. 14–23, 2009.

[9] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, and H.-I.
Yang, “The Case for Cyber Foraging,” in The 10th Workshop on ACM
SIGOPS European Workshop, July 2002, pp. 87–92.

[10] M. Satyanarayanan, “Pervasive Computing: Vision and Challenges,”
IEEE Personal Communications, vol. 8, no. 4, pp. 10–17, 2001.

[11] D. Niyato, P. Wang, E. Hossain, W. Saad, and Z. Han, “Game Theoretic
Modeling of Cooperation among Service Providers in Mobile Cloud
Computing Environments,” in Wireless Communications and Networking
Conference (WCNC). IEEE, April 2012, pp. 3128–3133.

[12] Y. Wang, X. Lin, and M. Pedram, “A Nested Two Stage Game-
Based Optimization Framework in Mobile Cloud Computing System,”
in 7th International Symposium on Service Oriented System Engineering
(SOSE). IEEE, March 2013, pp. 494–502.

[13] X. Chen, “Decentralized Computation Offloading Game for Mobile
Cloud Computing,” IEEE Transactions on Parallel and Distributed
Systems, 2014.

[14] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can
Offloading Computation Save Energy?” IEEE Computer, vol. 43, no. 4,
pp. 51–56, 2010.

[15] E. Koutsoupias and C. Papadimitriou, “Worst-case Equilibria,” in
16th Annual Symposium on Theoretical Aspects of Computer Science
(STACS), March 1999, pp. 404–413.


