
Noname manuscript No.
(will be inserted by the editor)

Secure and Trusted Partial
Grey-Box Verification

Yixian Cai ·
George Karakostas ·
Alan Wassyng

the date of receipt and acceptance should be inserted later

Abstract A crucial aspect in the development of software-
intensive systems is verification. This is the process of
checking whether the system has been implemented in com-
pliance with its specification. In many situations, the man-
ufacture of one or more components of the system is out-
sourced. We study the case of how a third party (the verifier)
can verify an outsourced component effectively, without ac-
cess to all the details of the internal design of that compo-
nent built by the developer. We limit the design detail that
is made available to the verifier to a diagram of interconnec-
tions between the different design units within the compo-
nent, but encrypt the design details within the units and also
the intermediate values passed between the design units. We
formalize this notion of limited information using tabular
expressions to describe the functions in both the specifica-
tions and the design. The most common form of verification
is testing, and it is known that black-box testing of the com-
ponent is not effective enough in deriving test cases that will
adequately determine the correctness of the implementation,
and the safety of its behaviour. We have developed protocols
that allow for the derivation of test cases that take advantage
of the design details disclosed as described above. We can
regard this as partial grey-box testing that does not compro-
mise the developer’s secret information. Our protocols work
with both trusted and untrusted developers, as well as trusted
and untrusted verifiers, and allow for the checking of the cor-
rectness of the verification process itself by any third party,
and at any time. Currently our results are derived under the
simplifying assumption that the software design units are

Yixian Cai, George Karakostas, Alan Wassyng
McMaster University,
Dept. of Computing and Software,
1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada,
E-mail: {caiy35,karakos,wassyng}@mcmaster.ca

linked acyclically. We leave the lifting of this assumption as
an open problem for future research.

1 Introduction

This paper deals with protection of the intellectual property
embedded in a software component. A typical scenario is
that the manufacturer/integrator of the system provides a re-
quirements specification of a component to a sub-contractor,
and the sub-contractor eventually delivers the component to
the system manufacturer. It is common practice for the man-
ufacturer to then conduct acceptance testing, that is typically
black-box testing, since the sub-contractor may not want to
disclose information that could compromise their intellec-
tual property. However, black-box testing is likely not to be
satisfactory in discovering safety, security and dependabil-
ity flaws in the system, introduced by that component. What
the manufacturer would be better-off doing, is to perform
grey-box testing. In other words, derive test cases through
knowledge of both the requirements specification, and the
actual software design/implementation of the component.

The following scenario is a rather common example of
the design and development of a product: A car manufac-
turer needs to incorporate a fuel delivery component, made
by a sub-contracting party, into its car design. In order to do
that, it first produces the requirements specifications of the
component (described in a standard way), and provides them
to the sub-contractor. The latter implements its own design,
and delivers the component, claiming that it complies with
the specifications. The car manufacturer, in turn, verifies that
the claim is true, by running a set of test cases on the compo-
nent, and confirming that the outputs produced for these test
inputs are consistent with the specifications. After the car
design has been completed, a government agency may need
to approve it, by running its own tests and confirming that
the outputs comply with its own publicly-known set of envi-
ronmental specifications; once this happens, the car can be
mass-produced and is allowed on the road. The only prob-
lem is that both the car manufacturer and the sub-contractor
do not want to reveal their designs to any third party, since
they contain proprietary information, such as the setting of
certain parameters that took years of experimentation to fine
tune; therefore, with only the requirements specifications
publicly available, only black-box testing can be performed
by the car manufacturer (vis-a-vis the sub-contractor’s com-
ponent), and the government agency (vis-a-vis the car). It
may be the case, though, that the car manufacturer and/or the
sub-contractor are willing to reveal some partial information
about their implementation(s) (possibly information that in-
dustry experts would figure out anyways given some time).
In this case, an obvious question is the following: ”Can we
allow for testing, that possibly takes advantage of this ex-
tra information, without revealing any information beyond

2 Yixian Cai et al.

that?” The answer to this question is rather obvious for the
two extremes of (i) completely hidden information (only
black-box testing is possible), and (ii) completely revealed
information (complete grey-box testing is possible). In this
work, we present initial steps in developing a theory and im-
plementation that can answer the question in the affirmative
– in the continuum between these two extremes, i.e., for par-
tial grey-box testing.

Although our methods apply to any design whose speci-
fications and component interaction can be described using a
standard description method, like tabular expressions [1], for
reasons of clarity we are going to restrict our discussion to
the case of Software Engineering, i.e., to software products.
There are two parties, i.e., a software developer (or product
designer - we will use these terms interchangeably in what
follows), and a verifier, as well as a publicly known set of
(requirements) specifications, also in a standard description.
The two parties engage in a protocol, whose end-result must
be the acceptance or rejection of the implemented compo-
nent by the verifier, and satisfies the following two proper-
ties:

– Correctness: If the two parties follow the protocol, and
all test cases produced and tried by the verifier comply
with the specifications, then the verifier accepts, other-
wise it rejects.

– Security: By following the protocol, the developer does
not reveal any information over-and-above that informa-
tion the developer had agreed to disclose.

In this setting, the specifications may come from the de-
veloper, the verifier, or a third party, but are always public
knowledge. (Public knowledge will mean that all parties –
manufacturer, developer and regulator – are privy to it.) The
algorithm that produces the test cases tried by the verifier
is run by the latter, and is also publicly known and cho-
sen ahead of time – Modified Condition/Decision Coverage
(MC/DC), for example. Depending on the application, the
developer may be either trusted (honest), i.e., follows the
protocol exactly, providing always the correct (encrypted)
replies to the verifier’s queries, or untrusted (dishonest) oth-
erwise, and similarly for the verifier.

In this work, first we give a concrete notion of partial
grey-box testing, using tabular expressions as the descrip-
tion tool of choice. In its simpler form, a tabular expression
is essentially a tabular notation that describes the output(s)
of a function, given mutually exclusive predicates on the
inputs of the function. Each row contains a left-hand side
(LHS) predicate on the table inputs, and the right-hand side
(RHS) contains the value of the output(s). The RHS of a
row is the output value of the function if-and-only-if the
LHS predicate is evaluated to TRUE. A table describes the
functionality of a design component; the description of the
whole design is done by constructing a directed acyclic ta-
ble graph, representing the interconnection of tables (nodes

of the graph) as the output of one is used as an input to an-
other (edges of the graph). Our crucial assumption is that
the table graph is exactly the extra publicly-known infor-
mation made available by the developer (in addition to the
single publicly-known table describing the specifications);
the contents of the tables-nodes, as well as the actual in-
termediate table input/output values should remain secret.
Our goal is to facilitate the testing and compliance verifi-
cation of designs that are comprised of many components,
which may be off-the-shelf or implemented by third parties;
if these components are trusted to comply with their spec-
ifications by the developer (by, e.g., passing a similar ver-
ification process), then all the developer needs to know, in
order to proceed with the verification of the whole design,
is their input/output functionality, and not the particulars of
their implementation. The formal definition of table graphs
can be found in Section 2.1.

We present protocols that allow the verifier to run test
case-generating algorithms that may take advantage of this
extra available information (e.g., MC/DC [2]), and satisfy
the correctness and security properties (formally defined in
Section 2.2) with high probability (whp). We break the task
of verification in a set of algorithms for the encryption of
table contents and intermediate inputs/outputs (run by the
developer), and an algorithm for checking the validity of the
verification (cf. Definition 3); the former ensure the security
property, while the latter will force the verifier to be hon-
est, and allow any third party to verify the correctness of the
verification process at any future time. Initially we present a
protocol for the case of a trusted developer (Section 4), fol-
lowed by a protocol for the case of a dishonest one (Section
5). Our main cryptographic tool is Fully Homomorphic En-
cryption (FHE), a powerful encryption concept that allows
computation over encrypted data first implemented in [3].
We also employ bit-commitment protocols [4] in Section 5.

1.1 Previous work

The goal of obfuscation, i.e., hiding the code of a program,
while maintaining its original functionality, is very natural,
and has been the focus of research for a long time. An obfus-
cated program reveals no information about the original pro-
gram, other than what can be figured out by having black-
box access to the original program. There are many heuris-
tic obfuscation methods, e.g., [5], [6]. However, as shown in
[7], an obfuscation algorithm that strictly satisfies the defini-
tion of obfuscation does not exist. Hence, all obfuscation al-
gorithms can only achieve obfuscation to the extent of mak-
ing obfuscated programs hard to reverse-engineer, while non
black-box information about the original program cannot be
guaranteed to be completely secret.

A crucial aspect of our work is the exclusion of any
third-parties that act as authenticators, or guarantors, or a

Secure and Trusted Partial Grey-Box Verification 3

dedicated server controlled by both parties like the one in
[8], called an ‘amanat’. In other words, we require that there
is no shared resource between the two interacting parties,
except the communication channel and the public specifica-
tions. This reduces the opportunities for attacks (e.g., a ma-
licious agent taking over a server, or a malicious guarantor),
since they are reduced to attacking the channel, a very-well
and studied problem.

Though ideal obfuscation is impossible to achieve, there
are still some other cryptographic primitives that can be used
to protect the content of a program. One is point function
obfuscation [9], which allows for the obfuscation of a point
function (i.e., a function that outputs 1 for one specific in-
put, and 0 otherwise), but not arbitrary functions. Another
relevant cryptographic primitive is Yao’s garbled circuits
[10], which allow the computation of a circuit’s output on
a given input, without revealing any information about the
circuit or the input. Yao’s garbled circuits nearly achieve
what obfuscation requires in terms of one-time usage, and
are the foundation of work like one-time programs [11]. Its
problem is that the circuit encryption (i.e., the garbled cir-
cuit) can be run only once without compromising security.
Recently, [12] proposed a new version of garbled circuits
called reusable garbled circuits, which allows for a many-
time usage on the same garbled circuit, and still satisfies the
security of Yao’s garbled circuits. [12] then uses reusable
garbled circuits to implement token-based obfuscation, i.e.,
obfuscation that allows a program user to run the obfuscated
program on any input, without having to ask the developer
who obfuscated the program to encode the input before it is
used. Token-based obfuscation guarantees that only black-
box information about the original program can be figured
out from the obfuscated program. Unfortunately, when a
program is token-based obfuscated, it becomes a black box
to the user (due to the inherent nature of obfuscation), and
thus precludes its use for any kind of grey-box verification.
Building on [12], our work proposes a method to alleviate
this weakness.

Plenty of work has been done in the field of verifiable
computing, which is also relevant to our work. Verifiable
computing allows one party (the prover) to generate the ver-
ifiable computation of a function, whose correctness, a sec-
ond party (a verifier - not related to the verifier in our set-
ting) can then verify. For example, a naive way to do this, is
to ask the verifier to repeat the computation of the function;
however, in many cases this solution is both inefficient and
incorrect. Recently, works like [13], [14], [15], [16], [17],
[18], [19] which are based on the PCP theorem [20], pre-
sented systems that allow the verifier to verify the compu-
tation result without re-executing the function. The differ-
ence between verifiable computing and our work is that the
developer wishes to hide the implementation of a design,
while for verifiable computing, the design implementation

cannot be hidden. However, verifiable computing still has
the potential to be applied to the implementation of secure
and trusted verification.

2 Formal framework for grey-box verification

In this section we develop a formal framework for grey-box
verification. We start by describing tabular expressions (ta-
bles) in Section 2.1, a classical format used for describing
component requirements (specs), followed by the definition
of a table graph, i.e., a graph describing the interconnec-
tions between the tabular expressions of different compo-
nents. Then, in Section 2.2, we first define the evaluation
of an input on a given table graph as checking whether the
output corresponding to the input according to the specs is
consistent with the implementation path(s) in the graph and
its intermediate results. The evaluation of test inputs pro-
duced by a testing algorithm is the basic task performed by
a trusted verifier (Definition 2), following a protocol (verifi-
cation scheme), formally defined in Definition 3, that allows
the encryption of the data provided by the developer, and
their correct evaluation by the verifier. That ensures that the
verification scheme is secure and trusted (Definition 6), i.e.,
it is both correct in its evaluation of an input (Definition 4),
and secure by not leaking implementation information dur-
ing the evaluation process (Definition 5).

2.1 Tabular Expressions (Tables)

Tabular expressions (or simply tables, as we are going to call
them in this work) are used for the documentation of soft-
ware programs (or, more generally, engineering designs).
The concept was first introduced by David Parnas in the
1970s (cf. [1] and the references therein), and since then
there has been a proliferation of different semantics and syn-
tax variations developed. In this work we use a simple vari-
ation [21], already used in the development of critical soft-
ware. Figure 1(a) describes the structure of such a table. The
Conditions column contains predicates pi(x), and the Func-
tions column contains functions fi(x) (constant values are
regarded as zero-arity functions). The table works as fol-
lows: If pi(x) = True for an input x, then fi(x) will be the
output T (x) of table T . To work properly, the predicates in
T must satisfy the disjointness and completeness properties:

– Completeness: p1(x)∨ p2(x)∨ ...∨ pn(x) = True
– Disjointness: pi(x)∧ p j(x) = False,∀i, j ∈ [n],

i.e., for any input x exactly one of the table predicates is
True. Note that a table with a single row (p1(x), f1(x)) sat-
isfies these properties only when p1(x) = True, ∀x. This is
important, because we are going to work with an equivalent
representation that has only single-row tables.

4 Yixian Cai et al.

x →

Condition Function
p1(x) f1(x)
p2(x) f2(x)
.

pn(x) fn(x)

→ T (x)

(a) A table T with input x and output T (x)

(b) A table graph

(c) The transformed table graph G of the graph in (b)

(d) The structure graph Gstruc of table graph G in (c)

Fig. 1: Tables, table graphs, and their transformation.

A table can be used to represent a module of a program
(or a design). Then, the whole program can be documented
as a directed table graph, with its different tables being the
nodes of the graph, a source node Input representing the in-
puts to the program, and a sink node Output representing the
outputs of the program. Every table is connected to the ta-
bles or Input where it gets its input from, and connecting to
the tables or Output, depending on where its output is for-
warded for further use. An example of such a table graph can
be seen in Figure 1(b). We will make the following common
assumption (achieved, for example, by loop urolling) for ta-
ble graphs:

Assumption 1 The table graph of a program is acyclic.

Note: This assumption should not be confused with a gen-
eral assumption about loops within a design unit. The func-
tionality achieved by a design unit is described by tabular ex-
pressions, which represent the behaviour of the function by
the equivalent of pre- and post-conditions. The code imple-
mentation of such a tabular expression may contain loops.

In what follows, by external input we mean an input that
comes directly from Input, and by external output we mean
an output that goes directly to Output. An intermediate input
will be an input to a table that is the output of another table,
and an intermediate output will be an output of a table that
is used as an input to another table.

Since Assumption 1 holds, we can inductively order the
tables of a table graph G in levels as follows:

– An external input from node Input can be regarded as the
output of a virtual level 0 table.

– A table is at level k (k > 0) if it has at least one incoming
edge from a level k− 1 table, and no incoming edges
from tables of level larger than k−1.

As a consequence, we can traverse a table graph (or sub-
graph) in an order of increasing levels; we call such a traver-
sal consistent, because it allows for the correct evaluation of
the graph tables (when evaluation is possible), starting from
level 0. The graph structure of a table graph G can be ab-
stracted by a corresponding structure graph Gstruc, which
replaces each table in G with a simple node. For example,
Figure 1(d) shows the structure graph for the table graph in
Figure 1(c).

If T S = {T1,T2, . . . ,Tn} is the set of tables in the repre-
sentation of a program, we will use the shorthand

G = [T S,Gstruc]

to denote that its transformed table graph G contains both
the table information of T S and the graph structure Gstruc.

2.2 Evaluation and verification

In formally defining an evaluation and verification scheme
for grey-box verification, and its properties, the following
standard definition of negligible functions will be used:

Definition 1 A function f (x) is called negligible (and de-
noted as negl(x)) iff for all c > 0, there exists x0 such that
f (x)< x−c, ∀x > x0.

Evaluation: Tabular expressions (tables) can be used to rep-
resent a program at different levels of abstraction. In this
work, we concentrate on two levels: the specifications level,
and the implementation level. Our goal is to design proto-
cols that will allow a third party (usually called the verifier

Secure and Trusted Partial Grey-Box Verification 5

in our work) to securely and truthfully verify the compli-
ance of a design at the implementation level (represented by
a table graph G) with the publicly known specifications (rep-
resented by a table graph Gspec), without publicly disclosing
more than the structure graph Gstruc of G.

We are going to abuse notation, and use Gspec and G also
as functions Gspec : Dspec → Rspec, and G : D→ R, where
Dspec,D are the external input domains, and Rspec,R are
the external output ranges of table graphs Gspec and G, re-
spectively. Without loss of generality, we assume that these
two functions are over the same domain and have the same
range, i.e., Dspec = D and Rspec = R.1

The evaluation of Gspec,G (or any table graph), can
be broken down into the evaluation of the individual ta-
bles level-by-level. The evaluation of a table Ti at input
xi = (xi

1,x
i
2, . . . ,x

i
k) produces an output yi = Ti(xi). Note that

some inputs xi
j may be null, if they come from non-evaluated

tables, and if Ti is not evaluated at all, then Ti(xi) = null.
Given an external input X to the table graph G, the eval-

uation of G(X), is done as follows: Let T SO = (Ts1 , ...,Tsn)

be an ordering of the tables in G in increasing level num-
bers (note that this is also a topological ordering, and that
the first table is the virtual table of level 0). Let Ti1 , ...,Tis
be the tables that have external outputs. Then the evaluation
of G is the evaluation of its tables in the T SO order, and
G(X) is the set of the external outputs of Ti1 , ...,Tis . We call
this process of evaluating G(X) consistent, because we will
never try to evaluate a table with some input from a table
that has not been already evaluated. All graph evaluations
will be assumed to be consistent (otherwise they cannot be
deterministically defined and then verified).
Verification: The verification processes we deal with here
work in two phases:

– During the first phase, the table graph G is analyzed, and
a set of (external or internal) inputs is generated, using
a publicly known verification test-case generation algo-
rithm V GA.

– In the second phase, G and Gspec are evaluated on the set
of inputs generated during the first phase. If the evalua-
tions coincide, we say that G passes the verification.

In our setting, V GA is any algorithm that takes the pub-
licly known Gstruc,Gspec as input, and outputs information
that guides the verification (such as a set of external inputs
to the table graph G or certain paths of G). We emphasize
that the output of V GA is not necessarily external inputs.
Our protocols can also work with any V GA which generates
enough information for the verifier to produce a correspond-
ing set of external inputs, possibly by interacting with the

1 In general, the two pairs (D,R) and (Dspec,Rspec) may not be
the same. Nevertheless, in this case there must be a predetermined
mapping provided by the implementation designer, which converts
(Dspec,Rspec) to (D,R) and vice versa, since, otherwise, the specifica-
tions verification is meaningless as a process.

designer of implementation G. We also allow for verification
on a (possibly empty) predetermined and publicly known set
CP of (input,out put) pairs, i.e., for every (X ,Y) ∈CP with
X being a subset of the external inputs and Y a subset of
external outputs, G passes the verification iff G(X) can be
evaluated and G(X) = Y . The pairs in CP are called critical
points.

Our protocols will use a security parameter K, repre-
sented in unary as K 1’s, i.e., as 1K . Now, we are ready to
define a trusted verifier (or trusted verification algorithm)
(we use the two terms interchangeably):

Definition 2 (Trusted verifier) A trusted verifier V is a
p.p.t. algorithm that uses r random bits, and such that

Prr[V (1K ,G,Gspec,CP,V GA)(r) =

=

0, if ∃X ∈ EI: G(X) 6= Gspec(X)

0, if (CP 6= /0)∧ (∃(X ,Y) ∈CP: G(X) 6= Y)
1, if the previous two conditions aren’t true

≥ 1−negl(K)

where EI ⊆ D is a (possibly empty) set of external inputs
generated by V itself.

A verifier that satisfies Definition 2 is called trusted, be-
cause it behaves in the way a verifier is supposed to behave
whp: Essentially, a trusted verifier uses the publicly known
K,Gspec,CP,V GA and a publicly known G, to produce a set
of external inputs EI; it accepts iff the verification does not
fail at a point of EI or CP. During its running, the verifier can
interact with the designer of G. While G is publicly known,
the operations of the verifier are straight-forward, even with-
out any interaction with the designer. The problem in our
case is that the verifier has only an encryption of G, and
yet, it needs to evaluate G(X) in order to perform its test.
This paper shows how to succeed in doing that, interacting
with the designer of G, and without leaking more informa-
tion about G than the publicly known Gstruc.

In what follows, a verifier will be a part of a verification
scheme, generally defined as follows:

Definition 3 (Verification scheme) A verifica-
tion scheme V S is a tuple of p.p.t. algorithms
(V S.Encrypt,V S.Encode,V S.Eval) such that

– V S.Encrypt(1K ,G) is a p.p.t. algorithm that takes a se-
curity parameter 1K and a table graph G as input, and
outputs an encrypted table graph G′.

– V S.Encode is a p.p.t. algorithm that takes an input x and
returns an encoding Encx.

– V S.Eval is a p.p.t. algorithm that takes a security pa-
rameter K and a public Certi f icate as input, has an hon-
est verifier V satisfying Definition 2 hardcoded in it, and
outputs 1 if the verification has been done correctly (and
0 otherwise).

6 Yixian Cai et al.

From now on, it will be assumed (by the verifier and
the general public) that the encryption by the designer is
done (or looks like it has been done) by using a publicly
known algorithm V S.Encrypt (with a secret key, of course).
If the designer’s encryptions do not comply with the format
of V S.Encrypt’s output, the verification fails automatically.

In general, it may be the case that an algorithm claiming
to be a trusted verifier within a verification scheme, does not
satisfy Definition 2 (either maliciously or unintentionally).
Such a malicious verifier may claim that a design passes or
does not pass the verification process, when the opposite is
true. In order to guard against such a behaviour, we will re-
quire that there is a piece of public information, that will act
as a certificate, and will allow the exact replication of the
verification process by any other verifier and at any (possibly
later) time; if this other verifier is a known trusted verifier,
it will detect an incorrect verification with high probability
(whp). We emphasize that the interaction (i.e., the messages
exchange) shown in Figure 2 is done publicly. In fact, we
will use the transaction record as a certificate (cf. Definition
3), that can be used to replicate and check the verification,
as described above.

Fig. 2: The initial steps of the generic V S protocol in Defi-
nition 3.

Hence, we will require that our verification schemes are:

– secure, i.e., they do not leak the designer’s private infor-
mation, and

– correct, i.e., they produce the correct verification result
whp.

More formally, we define:

Definition 4 (Correctness) A verification scheme is correct
iff the following holds: V S.Eval(1K ,Certi f icate) = 1 if and
only if both of the following hold:

Prr[V (1K ,G,Gspec,V GAr,CP)(r) =

V (1K ,G′,Gspec,V GAr,CP)(r)]≥ 1−negl(K)
(1)

Prr[V (1K ,G′,Gspec,V GAr,CP)(r) =

V ′(1K ,G′,Gspec,V GAr,CP)(r)]≥ 1−negl(K)
(2)

where V is the honest verifier hardwired in V S.Eval, and G′

is the table graph produced by V S.Encrypt.

Condition (2) forces V to be trusted, and condition (1) en-
sures that its verification is correct whp, even when applied
to G′ instead of G; together ensure the correctness of the
verification whp.

Just as it is done in [12], we give a standard definition of
security:

Definition 5 (Security) For any two pairs of p.p.t. algo-
rithms A = (A1,A2) and S = (S1,S2), consider the two ex-
periments in Figure 3.

Expreal(1K)
1. (G,CP,stateA)← A1(1K)
2. G′←V S.Encrypt(1K ,G)
3. a← AV S.Encode

2 (1K ,G′,G,CP,stateA)
4. Output a

(a) Experiment Expreal

Expideal(1K)
1. (G,CP,stateA)← A1(1K)
2. G̃← S1(1K)

3. a← ASO
2

2 (1K , G̃,G,CP,stateA)
4. Output a

(b) Experiment Expideal

Fig. 3: Experiments Expreal and Expideal

A verification scheme V S is secure iff there exist a pair
of p.p.t. algorithms (simulators) S = (S1,S2), and an oracle
O such that for all pairs of p.p.t. adversaries A = (A1,A2),
the following is true for any p.p.t. algorithm D:

|Pr[D(Expideal(1K),1K) = 1]−Pr[D(Expreal(1K),1K) = 1]|
≤ negl(K),

i.e., the two experiments are computationally indistinguish-
able.

Definition 6 (Secure and trusted verification scheme) A
verification scheme of Definition 3 is secure and trusted iff
it satisfies Definitions 4 and 5.

Remark 1 V S.Encode and SO
2 in Step 3 of the two experi-

ments in Figure 3 are not oracles used by A2. In these ex-
periments, A2 plays the role of a (potentially malicious) ver-
ifier and interacts with the developer as shown in Figure 2.
More specifically, in Expreal , A2 picks an input x, asks the
developer to run V S.Encode(x) (instead of querying an ora-
cle), and receives the answer. In Expideal , A2 again asks the
developer, but, unlike Expreal , the latter runs SO

2 instead of
V S.Encode and provides A2 with the answer. Hence, when-
ever we say that A2 queries V S.Encode or SO

2 , we mean that
A2 asks the developer to run V S.Encode or SO

2 respectively,

Secure and Trusted Partial Grey-Box Verification 7

and provide the answer. Note that O is an oracle queried by
S2.

In what follows, first we deal (in Section 4) with an hon-
est designer/developer, i.e., a developer that answers hon-
estly the verifier’s queries:

Definition 7 An honest developer is a developer that calls
V S.Encode(x) to generate Encx in Figure 2, when queried
by the verifier.

In the case of using the verifier to test a design, the devel-
oper obviously has no reason to not being honest. But in the
case of verifying the correctness of the design, the developer
may not follow Definition 7, in order to pass the verification
process (cf. Section 5).

3 Preliminaries

In Section 3.1 we give a simple transformation of tables (and
their table graphs) to single-row tables, and in Section 3.2
a standard encoding of table functions by boolean circuits,
that will be then used by our implementation of a verifica-
tion scheme. Then Section 3.3 enumerates some well-known
cryptographic definitions and primitives, that will also be
used by our implementation.

3.1 Transformation to single-row tables

Our algorithms will work with single row tables. Therefore,
we show how to transform the general tables and graph in
Figure 1(b) into an equivalent representation with one-row
tables. The transformation is done in steps:

– As a first step, a table with n rows is broken down into n
single-row tables. Note that, in general, the row of each
multi-row table may receive different inputs and pro-
duce different outputs (with different destinations) that
the other table rows; we keep the inputs and outputs of
this row unchanged, when it becomes a separate table.

– We enhance each x j of the external input (x1,x2, ...,xs)

(introduced to the program at node Inputs, and transmit-
ted through outgoing edges to the rest of the original ta-
ble graph) with a special symbol >, to produce a new
input (x′1, ...,x

′
s), with x′j = (>,x j), j = 1, . . . ,s.

– Let (P(w),F(w)) be the (predicate, function) pair
for the new (single-row) table, corresponding to an
old row (p(x), f (x)) of an original table. As noticed
above, P(w) = True, no matter what the input w =

(w1,w2, . . . ,wk) is. Let x = (x1,x2, ...,xk), where w j =

(>,x j) (i.e., the x j’s are the w j’s without the initial spe-
cial symbol extension). The new function F(w) is de-
fined as follows:

F(w) =
{
(>, f (x)), if p(x) = 1
(⊥,⊥), if p(x) = 0.

Note that > and ⊥ are special symbols, not related to
the boolean values True and False. In particular, from
now on, we will assume that in case the first part of a
table output is ⊥, then this output will be recognized as
a bogus argument, and will not be used as an input by
a subsequent table. The reason for adding >,⊥ to F ’s
output will become apparent in Section 4. If some xi

j is
(⊥,⊥) or null, then we set Ti(xi) = null.

After this transformation, we will get a transformed
graph (Figure 1(c) shows the transformed graph of the exam-
ple in Figure 1(b)). From now on, by table graph we mean
the transformed graph.

3.2 Conversion of functions to circuits

Our construction (and, more specifically, FHE below) uses
the encoding of the rhs functions of tables as boolean cir-
cuits. Such an encoding has already been done in [22], [23].
[22] introduces a system called FAIRPLAY, which includes
a high level language SFDL that is similar to C and Pascal.
FAIRPLAY allows the developer to describe the function in
SFDL, and automatically compiles it into a description of a
boolean circuit. A similar system is described in [23], and
is claimed to be faster and more practical than FAIRPLAY.
This system allows the developer to design a function di-
rectly in Java, and automatically compiles it into a descrip-
tion of a boolean circuit.

3.3 Cryptographic notation and definitions

We introduce some basic cryptographic notation and defi-
nitions that we are going to use, following the notation in
[12].

We use the notation p.p.t. as an abbreviation of proba-
bilistic polynomial-time when referring to algorithms. Two
ensembles {XK}K∈N and {YK}K∈N, where XK ,YK are proba-
bility distributions over {0,1}l(K) for a polynomial l(·), are
computationally indistinguishable iff for every p.p.t. algo-
rithm D,

|Pr[D(XK ,1K) = 1]−Pr[D(YK ,1K) = 1]| ≤ negl(K).

We are going to use deterministic private key encryption
(symmetric key encryption) schemes, defined as follows
(see, e.g., [24]):

Definition 8 (Private key encryption scheme) A private
key encryption scheme SE is a tuple of three polynomial-
time algorithms (SE.KeyGen,SE.Enc,SE.Dec) with the
following properties:

(1) The key generation algorithm SE.KeyGen is a proba-
bilistic algorithm that takes the security parameter K as
input, and outputs a key sk ∈ {0,1}K .

8 Yixian Cai et al.

(2) The encryption algorithm SE.Enc is a deterministic
algorithm that takes a key sk and a plaintext M ∈
{0,1}m(K), m(K) > K as input, and outputs a cipher-
text C = SE.Enc(sk,M).

(3) The decryption algorithm SE.Dec is a deterministic al-
gorithm that takes as input a key sk and a cipher-
text C, and outputs the corresponding plaintext M =

SE.Dec(sk,C).

In order for an encryption to be considered secure, we
require message indistinguishability, i.e., we require that an
adversary must not be able to distinguish between two ci-
phertexts, even if it chooses the corresponding plaintexts it-
self. More formally:

Definition 9 (Single message indistinguishability)
A private key encryption scheme SE =

(SE.KeyGen,SE.Enc,SE.Dec) is single message in-
distinguishable iff for any security parameter K, for any two
messages M,M′ ∈ {0,1}m(K), m(K)> K, and for any p.p.t.
adversary A,

|Pr[A(1K ,SE.Enc(k,M)) = 1]−Pr[A(1K ,SE.Enc(k,M′)) = 1]|
≤ negl(K),

where the probabilities are taken over the (random) key pro-
duced by SE.KeyGen(1K), and the coin tosses of A.

An example of a private key encryption scheme satisfying
Definitions 8 and 9 is the block cipher Data Encryption Stan-
dard (DES) in [25].

3.3.1 Fully Homomorphic Encryption (FHE)

We present the well-known definition of a powerful crypto-
graphic primitive that we will use heavily in our protocols,
namely the Fully Homomorphic Encryption (FHE) scheme
(see [26] and [12] for the history of these schemes and refer-
ences). This definition is built as the end-result of a sequence
of definitions, which we give next:

Definition 10 (Homomorphic Encryption) A ho-
momorphic (public-key) encryption scheme HE
is a tuple of four polynomial time algorithms
(HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) with the
following properties:

(1) HE.KeyGen(1K) is a probabilistic algorithm that takes
as input a security parameter K (in unary), and outputs
a public key hpk and a secret key hsk.

(2) HE.Enc(hpk,x) is a probabilistic algorithm that takes
as input a public key hpk and an input bit x ∈ {0,1},
and outputs a ciphertext φ.

(3) HE.Dec(hsk,φ) is a deterministic algorithm that takes
as input a secret key hsk and a ciphertext φ, and outputs
a message bit.

(4) HE.Eval(hpk,C,φ1, ...,φn) is a deterministic algorithm
that takes as input the public key hpk, a circuit C with n-
bit input and a single-bit output, as well as n ciphertexts
φ1, ...,φn. It outputs a ciphertext φC.

We will require that HE.Eval satisfies the compactness
property: For all security parameters K, there exists a poly-
nomial p(·) such that for all input sizes n, for all φ1, ...,φn,
and for all C, the output length of HE.Eval is at most p(n)
bits long.

Definition 11 (C-homomorphic scheme) Let C =

{Cn}n∈N be a class of boolean circuits, where Cn is a
set of boolean circuits taking n bits as input. A scheme HE
is C-homomorphic iff for every polynomial n(·), sufficiently
large K, circuit C ∈ Cn, and input bit sequence x1, ...,xn,
where n = n(K), we have

Pr[HE.Dec(hsk,φ) 6=C(x1, ...,xn), s.t.

(hpk,hsk)← HE.KeyGen(1K)

φi← HE.Enc(hpk,xi), i = 1, . . . ,n
φ← HE.Eval(hpk,C,φ1, . . . ,φn)

≤ negl(K),
(3)

where the probability is over the random bits of HE.KeyGen
and HE.Enc.

Definition 12 A scheme HE is fully homomorphic iff it is
homomorphic for the class of all arithmetic circuits over
GF(2).

Definition 13 (IND-CPA security) A scheme HE is IND-
CPA secure iff for any p.p.t. adversary A,

|Pr[(hpk,hsk)← HE.KeyGen(1K) :

A(hpk,HE.Enc(hpk,0)) = 1]−
Pr[(hpk,hsk)← HE.HeyGen(1K) :

A(hpk,HE.Enc(hpk,1)) = 1]| ≤ negl(K).

Fully homomorphic encryption has been a concept
known for a long time, but it was not until recently that
Gentry [3] gave a feasible implementation of FHE. Our
work is independent of particular FHE implementations;
we only require their existence. For simplicity, sometimes
we write FHE.Enc(x) when the public key hpk is not
needed explicitly. For an m-bit string x = x1...xm, we write
FHE.Enc(x) instead of the concatenation FHE.Enc(x1)�
. . .�FHE.Enc(xm), and we do the same for FHE.Dec as
well. Similarly, for FHE.Eval with a circuit C as its in-
put such that C outputs m bits C1,C2, . . . ,Cm, sometimes
we write FHE.Eval(hpk,C,FHE.Enc(hpk,x)) to denote
the concatenation FHE.Eval(hpk,C1,FHE.Enc(hpk,x))�
. . .�FHE.Eval(hpk,Cm,FHE.Enc(hpk,x)).

We usually use λ = λ(K) to denote the ciphertext length
of a one-bit FHE encryption.

Secure and Trusted Partial Grey-Box Verification 9

Next, we present the multi-hop homomorphism defini-
tion of [27]. Multi-hop homomorphism is an important prop-
erty for our algorithms, because it allows using the output of
one homomorphic evaluation as an input to another homo-
morphic evaluation.

An ordered sequence of functions f = { f1, . . . , ft} is
compatible if the output length of f j is the same as the input
length of f j+1, for all j. The composition of these functions
is denoted by (ft ◦ ... ◦ f1)(x) = ft(. . . f2(f1(·))...). Given
a procedure Eval(·), we can define an extended procedure
Eval∗ as follows: Eval∗ takes as input the public key pk,
a compatible sequence f = { f1, . . . , ft}, and a ciphertext c0.
For i = 1,2, . . . , t, it sets ci ← Eval(pk, fi,ci−1), outputting
the last ciphertext ct .

Definition 14 (Multi-hop homomorphic encryption scheme)
Let i = i(K) be a function of the security parameter K. A
scheme HE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval)
is an i-hop homomorphic encryption scheme iff for every
compatible sequence f = { f1, . . . , ft} with t ≤ i functions,
every input x to f1, every (public,secret) key pair (hpk,hsk)
in the support of HE.KeyGen, and every c in the support of
HE.Enc(hpk,x),

HE.Dec(hsk,Eval∗(hpk, f,c)) = (ft ◦ . . .◦ f1)(x).

HE is a multi-hop homomorphic encryption scheme iff it is
i-hop for any polynomial i(·).

Not all homomorphic encryption schemes satisfy this
property, but [27], [26] show that it holds for fully homo-
morphic encryption schemes. In our algorithms we will use
FHE schemes, that also satisfy the IND-CPA security prop-
erty of Definition 13.

3.3.2 Bit commitment protocols

Following Naor [4], a Commitment to Many Bits (CMB)
protocol is defined as follows:

Definition 15 (Commitment to Many Bits (CMB) Protocol)
A CMB protocol consists of two stages:

– The commit stage: Alice has a sequence of bits D =

b1b2...bm to which she wishes to commit to Bob. She and
Bob enter a message exchange, and at the end of the
stage Bob has some information EncD about D.

– The revealing stage: Bob knows D at the end of this
stage.

The protocol must satisfy the following property for any
p.p.t. Bob, for all polynomials p(·), and for a large enough
security parameter K:

– For any two sequences D = b1,b2, ...,bm and D′ =
b′1,b

′
2, ...,b

′
m selected by Bob, following the commit stage

Bob cannot guess whether Alice committed to D or D′

with probability greater than 1/2+1/p(K).

– Alice can reveal only one possible sequence of bits. If
she tries to reveal a different sequence of bits, then she
is caught with probability at least 1−1/p(K).

We are going to use the construction of a CMB protocol by
Naor [4].

4 Secure and trusted verification for honest developers

4.1 Construction outline

In this section, we construct a secure verification scheme
satisfying Definition 6. In a nutshell, we are looking for a
scheme that, given an encrypted table graph and its struc-
ture graph, will verify the correctness of evaluation on a set
of test external inputs, in a secure way; to ensure the lat-
ter, we will require that the intermediate table inputs/outputs
produced during the verification process are also encrypted.
VS.Encrypt: In order to encrypt the rhs functions of the
tables as well as the intermediate inputs/outputs, we use
universal circuits [28]. If we represent each function Fi in
(transformed) table Ti = (True,Fi) as a boolean circuit Ci
(see Appendix 3.2 for methods to do this), then we construct
a universal circuit U and a string SCi for each Ci, so that for
any input x, U(SC,x) =C(x). Following [29] (a method also
used in [12]), SCi and x can be encrypted, while the com-
putation can still be performed and output an encryption of
C(x).

Therefore, V S.Encrypt fully homomorphically encrypts
SCi with FHE’s public key hpk to get ECi , and replaces
each table Ti with its encrypted version T ′i = (True,ECi).
Then, if a verifier wants to evaluate T ′i at x, it gets the
FHE encryption x′ of x, and runs FHE.Eval(hpk,U,ECi ,x

′)
to get T ′i (x

′) = FHE.Eval(hpk,U,ECi ,x
′). Because

FHE.Eval(hpk,U,ECi ,x
′) = FHE.Enc(hpk,C(x)) holds,

we have that T ′i (x
′) = FHE.Enc(hpk,C(x)). Note that the

encrypted graph G′ that V S.Encrypt outputs maintains
the same structure graph Gstruc as the original table graph
G, and that V S.Encrypt outputs hpk,U in addition to G′.
Algorithm 1 implements V S.Encrypt.
VS.Encode: V S.Encode is going to address two cases:
Case 1: Suppose the verifier is evaluating an encrypted table
T ′i whose output is an external output. From the construction
of T ′i , we know that its output is an FHE-encrypted cipher-
text. But the verifier needs the plaintext of this ciphertext
in order for verification to work. We certainly cannot allow
the verifier itself to decrypt this ciphertext, because then the
verifier (knowing the secret key of the encryption) would be
able to decrypt the encrypted circuit inside T ′i as well. What
we can do is to allow the verifier to ask the developer for
the plaintext; then the latter calls V S.Encode to decrypt this
ciphertext for the verifier.

10 Yixian Cai et al.

Algorithm 1 V S.Encrypt(1K ,G)

1: (hpk,hsk)← FHE.KeyGen(1K)
2: Construct a universal circuit U such that, for any circuit C of size s

and depth d, a corresponding string SC can be efficiently (in terms
of s and d) computed from C, so that U(SC,x) =C(x) for any input
x.

3: Suppose C outputs m bits. Construct m circuit U1, ...,Um such that
for input x and any i ∈ [m], U(x,SC) outputs the ith bit of U(x,SC).

4: for all Ti ∈ T S, i ∈ {1, ...,n} do
5: Let Ci be the circuit that Ci(x) = Fi(x)
6: Construct the string SCi from Ci
7: ECi ← FHE.Enc(hpk,SCi)
8: T ′i ← (True,ECi)

9: T S′←{T ′1 , ...,T ′n}
10: G′struc← Gstruc
11: return G′ = [T S′,G′struc],hpk,U = (U1, ...,Um)

Case 2: Suppose the verifier is evaluating an encrypted ta-
ble T ′i whose output is an internal output used as an input
to another table. In this case, we cannot allow the verifier
to simply ask the developer to decrypt this output as be-
fore; that would give away the intermediate outputs, which
are supposed to be kept secret. At the same time, the ver-
ifier must be able to figure out whether the actual (unen-
crypted) value of this intermediate output is (⊥,⊥) or not,
i.e., “meaningful” or not. More specifically, V should be able
to tell whether intermediate output FHE.Enc(>,b) contains
> or ⊥. (Recall from Section 3 that an original table Ti in G
outputs a symbol ⊥ if the predicate in the initial table graph
is not satisfied, i.e., Ti’s output is not “meaningful”.)

In Case 2, particular care must be taken when the verifier
chooses an external input x=(>,a) for table T ′i . The verifier
is required to use the FHE encryption x′ of x in order to
evaluate T ′i . An obvious way to do this is to let the verifier
compute FHE.Enc(hpk,(>,a)), and evaluate

T ′i (FHE.Enc(hpk,(>,a)))←
FHE.Eval(hpk,U,ECi ,FHE.Enc(hpk,(>,a))).

However, this simple solution can be attacked by a mali-
cious verifier as follows: The verifier chooses one of the
intermediate outputs, and claims that this intermediate out-
put is the encryption of the external input. Then Case 1 ap-
plies, and the verifier asks the developer for the output of
V S.Encode. Then it is obvious that through this interaction
with the developer, the verifier can extract some partial in-
formation about the intermediate output. We use V S.Encode
to prevent this malicious behaviour: For any external input
chosen by the verifier, the latter cannot fully homomorphi-
cally encrypt the input by itself; instead, it must send the
input to the developer, who, in turn, generates the FHE en-
cryption by calling V S.Encode.

In order to allow V S.Encode to distinguish between the
two cases, we introduce an extra input parameter that takes

a value from the set of special ’symbols’ {q1,q2} meaning
the following:

q1: V S.Encode is called with (i,xi,null,q1). Index i indi-
cates the ith table T ′i ∈ G′ and xi is an external input to
T ′i (Case 1).

q2: V S.Encode is called with (i,xi,T ′i (x
i),q2). Index i indi-

cates the ith table T ′i ∈G′ and xi is an intermediate input
to T ′i (Case 2).

Also, we allow V S.Encode to store data in a memory M,
which is wiped clean only at the beginning of the protocol.
Algorithm 2 implements V S.Encode.

Algorithm 2 V S.Encode(i,u,v,q)
1: if q = q1 then . Case 1
2: if |u| 6= m or first component of u is not > then . m defined in

line 3 of Algorithm 1
3: return null
4: else
5: w← FHE.Enc(hpk,u)
6: store (i,w,null) in M
7: return w
8: if q = q2 then . Case 2
9: for all xi

j ∈ u do . u = (xi
1,x

i
2, . . .)

10: if xi
j is an output of some T ′k , according to G′ then

11: if @(k,xk,T ′k (x
k)) ∈ M such that xi

j = T ′k (x
k) then re-

turn null
12: else if ∃(k,xk,T ′k (x

k)) ∈ M such that xi
j = T ′k (x

k) and
T ′k (x

k) is an FHE encryption of (⊥,⊥) then return null
13: else if xi

j is an external input, according to G′ then
14: if @(i,w,null) ∈M such that xi

j = w then return null

15: for all k ∈ {1, ...,m} do
16: sk = FHE.Eval(hpk,Uk,u,ECi) . recall that

U = (U1,U2, . . . ,Um)

17: if [s1s2...sm] 6= v then return null
18: else
19: store (i,u,v) in M
20: for all i ∈ {1, ...,m} do
21: bi← FHE.Dec(hsk,si)

22: if v is not an external output and b1b2...bm/2 6=⊥ then re-
turn >

23: else return bm/2+1b2...bm

VS.Eval: V S.Eval is an algorithm that allows anyone to
check whether the verification was done correctly. In order
to achieve this, the interaction between the verifier and the
developer is recorded in a public file QAE . By reading QAE ,
V S.Eval can infer which inputs and tables the verifier evalu-
ates, and what outputs it gets. This allows V S.Eval to evalu-
ate the tables on the same inputs, using its own verifier, and
at any time, and check whether the outputs are the recorded
ones. Obviously, by using only an honest verifier and QAE ,
V S.Eval essentially checks whether the verifier that inter-
acted with the developer originally was also honest.

More specifically, V S.Eval takes input (1K ,QAE),
and outputs 1 or 0 (i.e., accept or reject the ver-

Secure and Trusted Partial Grey-Box Verification 11

ification, respectively). The record file QAE =

{(Q1,A1), ...,(Qn,An),V GA,s,CP,G′,hpk,U} records
a sequence of (verifier query, developer reply) pairs (Qi,Ai),
where Qi is the verifier query, and Ai is the reply generated
by the developer when it runs V S.Encode(Qi) (the last
pair obviously records the verifier’s output). It also records
test-generator V GA, the set of critical points CP used, and
the random seed s used by V GA to produce the test points.
Finally, it records the encrypted table graph G′, the public
FHE key hpk, and the universal circuit U . As mentioned
above, the pairs (Qi,Ai) are public knowledge. Algorithm 3
implements V S.Eval. V ′ is the hardwired honest verifier.

Algorithm 3 V S.Eval(1K ,QAE)
1: for all (Qi,Ai) ∈ QAE do
2: Let Qi = (r,u,v,q2)
3: T ′r (u)← FHE.Eval(hpk,U,ECr ,u) . recall that

T ′r = (True,ECr) is in G′

4: if T ′r (u) 6= v then
5: return 0
6: Run honest verifier V ′(1K ,G′,Gspec,V GA(s),CP)
7: for all T ′i (x

i) that V ′ chooses to evaluate do
8: if @(Q j,A j) ∈ QAE with Q j = (i,xi,T ′i (x

i),q2) then
9: return 0

10: if V ′’s output 6= V ’s output then
11: return 0
12: return 1

VS.Path: The purpose of grey-box verification is to allow
testing algorithms like MC/DC, which use the structure of
publicly-known table graph Gstruc, to run without restricting
the set of evaluation paths they can test. Therefore, we pro-
vide the verifier with the ability to choose and evaluate any
path in Gstruc. The verifier picks a path in the table graph,
passes it to the developer, and the latter runs V S.Path in or-
der to generate an external input that, when used, will lead
to the evaluation of the tables on the path chosen by the ver-
ifier. Algorithm 3 implements V S.Path.

Algorithm 4 V S.Path(T1, ...,Tp)

1: if T1, . . . ,Tp form a path P = T1→ T2→ . . .→ Tp in Gstruc then
2: Generate external input X to the table graph G, so that the eval-

uation of G(X) includes the evaluation of tables T1, . . . ,Tp.
3: return X
4: else return null

4.1.1 Encrypted table graph evaluation

The evaluation of an encrypted table graph G′ is more com-
plex than the evaluation of an unencrypted table graph G.
The evaluation of G′ at an external input X (i.e., G′(X)) is
done by Algorithm 5.

Algorithm 5 G′(X)

1: V uses X to set up external inputs for the tables
2: for all table T ′i chosen in a consistent order do
3: for all xi

j ∈ xi do . xi = (xi
1,x

i
2, . . .)

4: if xi
j is an external input then

5: if xi
j 6= null then

6: V asks the developer to call
V S.Encode(i,xi

j,null,q1)

7: xi
j ←V S.Encode(i,xi

j,null,q1) . xi is being
replaced with its encoding

8: else
9: T ′i (x

i) = null
10: break
11: else
12: T ′p = the table whose output is xi

j
13: if T ′p’s output is null then
14: T ′i (x

i) = null
15: break
16: else if V S.Encode(p,xp,T ′p(x

p)) =⊥ then
17: T ′i (x

i) = null
18: break
19: else xi

j ← T ′p(x
p) . T ′p(x

p) is already encoded

20: if T ′i (x
i) = null then continue

21: else
22: T ′i (x

i)← FHE.Eval(hpk,U,ECi ,x
i) . V evaluates T ′i (x

i)
23: V asks the developer to call V S.Encode(i,xi,T ′i (x

i),q2)
24: V receives V S.Encode(i,xi,T ′i (x

i),q2)

25: Y = {yi1 , ...,yis} are the external output values
26: return Y

A typical set of rounds between the honest developer and
the verifier can be seen in Figure 4. Notice how the generic
protocol of Figure 2 is actually implemented by our con-
struction.

4.2 Correctness and security

We have described an implementation of V S.Encrypt,
V S.Encode, V S.Eval of Definition 3. Note that QAE plays
the role of Certi f icate for V S.Eval. In this section we
prove the compliance of our scheme with Definitions 4 and
5. Recall that FHE is the fully homomorphic encryption
scheme introduced in Section 3.3.1.

4.2.1 Correctness

Theorem 1 The verification scheme VS introduced in Sec-
tion 4.1 satisfies Definition 4.

Proof We will need the following lemma:

Lemma 1 When V S.Eval outputs 1, for any table T ′ ∈ T S′

and x, the output y claimed by V as T ′(x) must be equal to
T ′(x), i.e., V evaluates every table correctly.

Proof Given that the verifier V ′ used by V S.Eval is an hon-
est one, the lemma is obviously true.

12 Yixian Cai et al.

Fig. 4: The V S protocol in Section 4.

For the (query,answer) pairs in QAE that do not belong
to a consistent traversal of G′, Algorithm 2 (lines 11, 12, 14,
17) will return null as the corresponding input encodings,
and Algorithm 5 (lines 9, 14) will compute null for tables
with such inputs. Therefore, security and correctness are not
an issue in this case. From now on, we will concentrate on
the consistent table traversals and their inputs/outputs.

Lemma 2 Given the external input set X, common to both
G′ and G, for any table Ti ∈ T S with input xi and output
Ti(xi), there is a corresponding table T ′i ∈ T S′ and input wi,
such that

wi = FHE.Enc(hpk,xi)

T ′i (w
i) = FHE.Enc(hpk,Ti(xi)),

(4)

where hpk is the public key generated by
V S.Encrypt(1K ,G).

Proof We prove this lemma by induction on the level k of a
table.
Base case: Level 1 tables have only external in-
puts, and, therefore, Algorithm 2 (line 5) returns wi =

FHE.Enc(hpk,xi). Also, from line 22 of Algorithm 5 we
have

T ′i (w
i) = FHE.Eval(hpk,U,ECi ,w

i)

= FHE.Eval(hpk,U,ECi ,FHE.Enc(hpk,xi))

= FHE.Enc(hpk,FHE.Dec(hsk,

FHE.Eval(hpk,U,ECi ,FHE.Enc(hpk,xi))))

= FHE.Enc(hpk,U(SCi ,x
i)) = FHE.Enc(hpk,Ti)

Inductive step: Suppose that for any table Ti ∈ T S whose
level is smaller than k+1 and its input xi, table T ′i ∈ T S′ and
its input wi satisfy (4). Then we show that for any level k+1
table Tj ∈ T S with input x j = {x j

1,x
j
2, ...,x

j
s}, the level k+1

table T ′j ∈ T S′ and its encoded input w j satisfy (4).

For any x j
p ∈ x j, either x j

p = Tip(x
ip) for some ip, or x j

p is
an external input. In case x j

p is external, then w j
p satisfies (4)

like in the base case. Otherwise, Tip is a table of level smaller
than k+1. Then, because of the inductive hypothesis,

w j = {w j
1, ...,w

j
s}

= {FHE.Enc(hpk,x j
1), ...,FHE.Enc(hpk,x j

s)}
= FHE.Enc(hpk,x j).

(The last equation is valid because FHE.Enc encrypts a
string bit by bit.)

Now, the second part of (4) is proven similarly to the
base case.

Lemma 3 The input-output functionality of G′ is the same
as the input-output functionality of G.

Proof Given the common external input set X to both G′

and G, suppose Ti1 , ...,Tis ∈ T S are the output level ta-
bles that are actually evaluated, and y1, . . . ,ys their corre-
sponding outputs. Then Lemma 2 implies that T ′i1(w

i1) =

FHE.Enc(hpk,y1), . . . ,T ′is(w
is) = FHE.Enc(hpk,ys). Ac-

cordingly, for every j ∈ [s], by asking the developer to call
V S.Encode(i j,wi j ,T ′i j

(wi j),q2), verifier V gets y1, ...,ys as
the output of Algorithm 2 (line 21).

Lemma 2 (and hence Lemma 3) are based on the veri-
fier evaluating every table correctly and its subgraph traver-
sal being consistent. Assuming that the traversal is indeed
consistent (something easy to check on Gstruc), by run-
ning V S.Eval, we can know whether V satisfies Lemma 1
(V S.Eval outputs 1). If this is the case, we know that V ’s
evaluation of G′ has the same result as the evaluation of G
with the same inputs, i.e., (1) in Definition 4 holds. More-
over, if V S.Eval(1K ,QAE) outputs 1, (2) in Definition 4 also
holds (see lines 6 - 12 in Algorithm 3).

4.2.2 Security

Following the approach of [12], we prove the following

Theorem 2 The verification scheme VS introduced in Sec-
tion 4.1 satisfies Definition 5.

Secure and Trusted Partial Grey-Box Verification 13

Proof In Definition 5 the two simulators S1 and S2 simu-
late V S.Encrypt and V S.Encode respectively. In our imple-
mentation we have added V S.Path, so we add S3 to simu-
late V S.Path, together with its own oracle O2. We can think
of (S2,S3) as a combination that plays the role of S, and
(O1,O2) as a combination that plays the role of O in Expideal

of Figure 3: depending on the kind of query posed by A2,
SO1

2 replies if it is an ”Encode” query, and SO2
3 replies if it

is a ”Path” query. The tuple of simulators (S1,S2,S3) which
satisfies Definition 6 is constructed as follows:

– S1(1K ,s,d,Gstruc) runs in two steps:
Step 1: S1 generates its own table graph

G̃ = (T̃ S,Gstruc) with its own tables T̃i ∈ T̃ S.
Step 2: S1 runs V S.Encrypt(1K , G̃) (Algorithm 1) and

obtains G′′,hpk,U .
– S2 receives queries from the A2 of Definition 5, and can

query its oracle O1 (described in Algorithm 6). SO1
2 actu-

ally simulates V S.Encode, passing the queries from A2
to its V S.Encode-like oracle O1. O1 has a state (or mem-
ory) [M] which is initially empty, and contains the map-
ping of the encrypted table output to the real table output
for a given query. S2 returns the outputs of O1 as the an-
swers to the queries of A2.

– SO2
3 simulates V S.Path. It receives queries from A2, and

queries its oracle O2 (described in Algorithm 7) in turn.
Then S2 returns the output of O2 to A2.

First, we construct an experiment Exp (see Figure 5),
which is slightly different to Expreal in Definition 5. In Exp,
the queries of A2 are not answered by calls to V S.Encode
and V S.Path, but, instead, they are answered by calls to SO1

2
and SO2

3 (recall that SO1
2 and SO2

3 together are the simulator
SO

2). We use the shorthands O′1 and O′2 for SO1
2 and SO2

3 in
Exp respectively.

Exp(1K):
1. (G,CP,stateA)← A1(1K)
2. (G′,hpk,U)←V S.Encrypt(1K ,G)

3. a← AO′1 ,O
′
2

2 (1K ,G′,G,CP,hpk,U,stateA)
4. Output a

Fig. 5: Experiment Exp.

Lemma 4 Experiments Expreal and Exp are computation-
ally indistinguishable.

Proof First, note that V S.Path and O′2 have the same func-
tionality (see Algorithms 4 and 7). We prove that V S.Encode
and O′1 have the same input-output functionality. By the con-
struction of V S.Encode (see lines 1 - 7 in Algorithm 2) and
O′1 (see lines 1 - 7 in Algorithm 6), when a query is of the
form (i,u,v,q1), both algorithms will output the FHE en-
cryption of u, so they have the same input-output function-

Algorithm 6 O1[M](i,u,v,q)

1: if q = q1 then . Case q1
2: if |u| 6= m or first component of u is not > then . m defined in

line 3 of Algorithm 1
3: return null
4: else
5: p← FHE.Enc(hpk,u)
6: store (i,(p,null),(u,null)) in M
7: return p
8: if q = q2 then . Case q2
9: for all xi

j ∈ u do . u = (xi
1,x

i
2, . . .)

10: if xi
j is an output of some T ′′k , according to G′′ then

11: if ∃(k,(yk,T ′′k (y
k)),(zk,T (zk))) ∈ M such that xi

j =

T ′′k (y
k) then

12: ei
j ← Tk(zk)

13: if Tk(zk) = (⊥,⊥) then return null
14: else return null
15: else if xi

j is an external input, according to G′′ then
16: if ∃(i,(yi

j,null),(zi
j,null)) ∈M then

17: ei
j ← zi

j
18: else return null
19: for all i ∈ {1, ...,m} do
20: si = FHE.Eval(hpk,Ui,u,EC′i) . recall that

U = (U1,U2, . . . ,Um)

21: if [s1s2...sm] 6= v then return null
22: else
23: ei← ei

1ei
2...e

i
m

24: store (i,(u,v),(ei,Ti(ei))) in M
25: if Ti(ei) 6= (⊥,⊥) and is not an external output then return >
26: else return the second component of Ti(ei)

Algorithm 7 O2(T ′1 , . . . ,T
′
p)

if T ′1 , . . . ,T
′
p form a path P = T ′1 → T ′2 → . . .→ T ′p then

Generate an external input X to the table graph G such that the
evaluation of G(X) includes the evaluation of tables T1, . . . ,Tp. . X
is generated as in Algorithm 4.

return X
else return null

ality. The case of a query (i,u,v,q2) is more complex; there
are two cases:
Case 1: Algorithm 2 outputs null. This happens in the fol-
lowing cases:

1. An intermediate input xi
j ∈ u which should be the output

of T ′k , is not T ′k ’s output (see line 11).
2. An intermediate input xi

j ∈ u is the output of a T ′k , but
T ′k ’s output is (⊥,⊥) (see line 12).

3. The FHE encryption of an external input xi
j ∈ u cannot

be found in V S.Encode’s memory M, where it should
have been if it had already been processed (as it should)
by V S.Encode (see line 14).

4. T ′i (u) 6= v (see line 17).

These four cases will also cause Algorithm 6 to output null
in lines 10-14 (for the first and second), lines 15 - 18 (for the
third), and line 21 (for the fourth).

14 Yixian Cai et al.

Case 2: Algorithm 2 doesn’t output null. Suppose X is
the external input to G′ and xi is the input to T ′i . There are
three cases for V S.Encode(i,xi,T ′i (x

i),q2) (see lines 19 - 23
in Algorithm 2):

1. If T ′i ’s output is an intermediate output and the FHE en-
cryption of (⊥,⊥), then V S.Encode decrypts T ′i (x

i), and
outputs ⊥.

2. If T ′i ’s output is an intermediate output and not the FHE
encryption of (⊥,⊥), then V S.Encode decrypts T ′i (x

i),
and outputs >.

3. If T ′i ’s output is an external output, then V S.Encode
decrypts T ′i (x

i), and outputs the second component of
FHE.Dec(T ′i (x

i)) (i.e., the actual output).

On the other hand, when O′1(i,x
i,T ′i (x

i),q2) calculates Ti(ui)

at ui (the unencrypted xi) in lines 8 - 24 of Algorithm 6, there
are three cases (see lines 25 - 26 in Algorithm 6):

1. If T ′i ’s output is an intermediate output and Ti(ui) is
(⊥,⊥), the output is ⊥.

2. If T ′i ’s output is an intermediate output and Ti(ui) is not
(⊥,⊥), the output is >.

3. If T ′i ’s output is an external output, the output is the sec-
ond component of Ti(ui).

The first two cases are the same for
V S.Encode(i,xi,T ′i (x

i),q2) and O′1(i,x
i,T ′i (x

i),q2). In
the third case, Algorithm 2 outputs the second half of
FHE.Dec(T ′i (x

i)), while Algorithm 6 outputs the second
component of Ti(ui), which are the same because of (4).
Therefore, V S.Encode and O′1 have the same input-output
functionality.

In order to prove Theorem 2, we first prove the security
of a single table:

Lemma 5 For every p.p.t. adversary A = (A1,A2), and any
table T ∈ G, consider the following two experiments:

The outputs of the two experiments are computationally
indistinguishable.

Proof If A2’s inputs in SingleT real and SingleT ideal are
computationally indistinguishable, then A2’s outputs are
also computationally indistinguishable. The former is true,
because EC and EC̃ are two FHE ciphertexts, and, therefore,
they are computationally indistinguishable under the IND-
CPA security of FHE.

We generate a sequence of n+ 1 different table graphs,
each differing with its predecessor and successor only at one
table:

T Si = (T ′1 , . . . ,T
′

i−1,T
′

i , T̃i+1, . . . , T̃n) for i = 0,1, . . . ,n.

All these new table graphs have the same structure graph
Gstruc. To each T Si, i ∈ {0, . . . ,n} corresponds the experi-
ment Expi in Figure 7.

SingleT real(1K)
1. (G,CP,stateA)← A1(1K).
2. (hpk,hsk)← FHE.KeyGen(1K)
3. Let C be a circuit that computes T ’s function.
4. Generate universal circuit U = (U1, . . . ,Um) and string SC, such

that U(SC,x) =C(x).
5. EC ← FHE.Enc(hpk,SC)
6. a← A2(1K ,(True,EC),G,CP,hpk,U,stateA)
7. Output a

(a) Experiment SingleT real

SingleT ideal(1K)
1. (G,CP,stateA)← A1(1K).
2. (hpk,hsk)← FHE.KeyGen(1K)
3. Let G̃ be produced by Step 1 of S1(1K)
4. Construct circuit C̃ that computes the function of T̃ ∈ T̃ S.
5. Generate universal circuit U = (U1, ...,Um) and string SC̃, such

that U(SC̃,x) = C̃(x)
6. EC̃ ← FHE.Enc(hpk,SC̃)
7. a← A2(1K ,(True,EC̃),G,CP,hpk,U,stateA)
8. Output a

(b) Experiment SingleT ideal

Fig. 6: Experiments SingleT real and SingleT ideal .

Expi(1K)
1. (G,CP,stateA)← A1(1K)
2. (hpk,hsk)← FHE.KeyGen(1K)
3. Generate universal circuit U = (U1, . . . ,Um)
4. For j = 1, . . . , i
• Construct C j with an m-bit output and computes the function
of Tj ∈ G.
• Generate string SC j such that U(SC j ,x) =C j(x).
• EC j ← FHE.Enc(hpk,SC j)

5. Let G̃ be produced by Step 1 of S1(1K)
6. For j = i+1, ...,n
• Construct circuit C̃ j computing the function of T̃j ∈ G̃.
• Generate string SC̃ j

such that U(SC̃ j
,x) = C̃ j(x).

• EC̃ j
← FHE.Enc(hpk,SC̃ j

)

7. Gi← [{(True,EC1), . . . ,(True,ECi),
(True,EC̃i+1

), . . . ,(True,EC̃n
)},Gstruc]

8. a← AO′1 ,O
′
2

2 (1K ,Gi,G,CP,hpk,U,stateA)
9. Output a

Fig. 7: Experiment Expi.

Note that Exp0 is the same experiment as Expideal , since
Step 5 is the first step of S1 and Steps 2,3,6,7 are doing ex-
actly what the second step of S1 does (i.e., V S.Encrypt).
Also note that Expn is the same as Exp in Figure 5, since
the G̃ part of Expn is ignored, and Gn is the results of
V S.Encrypt(1K ,G), i.e., Gn = G′.

Now we are ready to prove that Expreal is computation-
ally indistinguishable from Expideal by contradiction. As-
sume that Expreal and Expideal are computationally distin-
guishable, and, therefore, Exp0 and Expn are computation-
ally distinguishable, i.e., there is a pair of p.p.t. adversaries

Secure and Trusted Partial Grey-Box Verification 15

A = (A1,A2) and a p.p.t. algorithm D such that∣∣Pr[D(Exp0(1K)) = 1]−Pr[D(Expn(1K)) = 1]
∣∣> negl(K).

(5)

Since∣∣Pr[D(Exp0(1K)) = 1]−Pr[D(Expn(1K)) = 1]
∣∣≤

n−1

∑
i=0

∣∣Pr[D(Expi(1K)) = 1]−Pr[D(Expi+1,(1K)) = 1]
∣∣

inequality (5) implies that there exists 0≤ i≤ n−1 such that

|Pr[D(Expi(1K)) = 1]−Pr[D(Expi+1(1K)) = 1]|
> negl(K)/n = negl(K).

We use A = (A1,A2) to construct a pair of p.p.t. algorithms
A′ = (A′1,A

′
2) which together with p.p.t. algorithm D contra-

dict Lemma 5, by distinguishing SingleT real to SingleT ideal

. Specifically, they determine whether Step 6 of SingleT real

or Step 7 of SingleT ideal has been executed. A′2 can distin-
guish the two experiments, if it can distinguish between its
two potential inputs (1K ,(True,ECi+1),U,hpk,stateA′) and
(1K ,(True,EC̃i+1

),U,hpk,stateA′). The idea is to extend the
table (True,ECi+1) or (True,EC̃i+1

) (whichever the case) into
a full table graph Gi or Gi+1 (whichever the case), appropri-
ate for experiments Expi or Expi+1 (whichever the case),
and invoke A2 which can distinguish between the two. A′ is
described in Figure 8, where the table graph H is either Gi

or Gi+1. Hence, by the construction of A′, we know that D
can be used to distinguish between experiments SingleT real

and SingleT ideal for Ti+1.

Theorems 1 and 2 imply

Theorem 3 Our verification scheme satisfies Definition 6.

5 Secure and trusted verification for general developers

In general, the developer may not comply with Definition
7, i.e., the developer can actually replace V S.Encode with
some other malicious algorithm V S.Encode′ in its interac-
tion with the verifier. If we do not provide a method to pre-
vent this scenario from happening, then a buggy implemen-
tation could pass the verifier’s verification when it actually
should not.

Bearing this in mind, we replace our old definition of a
verification scheme V S with a new one in Definition 16 be-
low, by adding an algorithm V S.Checker, which the verifier
can ask the developer to run in order to determine whether
the latter indeed runs V S.Encode. V S.Checker itself is also
run by the developer, which immediately poses the danger
of being replaced by some other algorithm V S.Checker′.
Therefore, V S.Checker must be designed so that even if it

A′1(1
K)

1. (G,CP,stateA)← A1(1K)
2. Construct a circuit Ci+1, and a string SCi+1 such that

U(SCi+1 ,x) =Ci+1(x)
3. ECi+1 ← FHE.Enc(hpk,SCi+1)
4. Ti+1← (True,ECi+1)
5. Output (G,CP,stateA′)

(a) Algorithm A′1

A′2(1
K)

1. For j = 1, . . . , i
• Construct circuit C j that computes the function of Tj ∈G. (G
comes from A′1)
• Generate string SC j such that U(SC j ,x) =C j(x).
• EC j ← FHE.Enc(hpk,SC j)
• Construct table (True,EC j)

2. Construct G̃ = [T̃ S,Gstruc] just as S1 does.
3. For j = i+2, . . . ,n
• Construct circuit C̃ j that computes the function of T̃j ∈ G̃
• Generate string SC̃ j

such that U(SC̃ j
,x) = C̃ j(x).

• EC̃ j
← FHE.Enc(hpk,SC̃ j

)

• Construct table (True,EC̃ j
)

4. H = [∪i
l=1(True,ECl)∪{(True,ECi+1)or(True,EC̃i+1

)}
∪n

l=i+2(True,EC̃l
),Gstruc]

5. a← AO′1 ,O
′
2

2 (1K ,H,G,CP,hpk,U,stateA′)

(b) Algorithm A′2

Fig. 8: Algorithms A′1,A
′
2.

is replaced by some other algorithm, the verifier can still
figure out that the developer does not run V S.Checker′ or
V S.Encode′ from its replies.

In the new extended definition, V S.Encrypt,
V S.Encode, and V S.Eval remain the same. By run-
ning V S.Eval with a publicly known Certi f icate, any third
party can check whether the developer is malicious and
whether the verification was done correctly.

Definition 16 (Extension of Definition 3) A verifi-
cation scheme V S is a tuple of p.p.t. algorithms
(V S.Encrypt,V S.Encode,V S.Checker,V S.Eval) such
that

– V S.Encrypt(1K ,G) is a p.p.t. algorithm that takes a se-
curity parameter 1K and a table graph G as input, and
outputs an encrypted table graph G′.

– V S.Encode is a p.p.t. algorithm that takes an input x and
returns an encoding Encx.

– V S.Eval is a p.p.t. algorithm that takes a security pa-
rameter K and a public Certi f icate as input, has an hon-
est verifier V satisfying Definition 2 hardcoded in it, and
outputs 1 if the verification has been done correctly (and
0 otherwise).

– V S.Checker is a p.p.t. algorithm with a memory stateC
that receives a question Q from the verifier and replies
with an answer A, so that the verifier can detect whether
the developer indeed runs V S.Encode and V S.Checker.

16 Yixian Cai et al.

Figure 9 shows what should be a round of the protocol
between the developer and the verifier.

Fig. 9: The generic V S protocol in Definition 16.

Definition 17 (Correctness) A verification scheme is cor-
rect iff the following holds: V S.Eval(1K ,Certi f icate) = 1 if
and only if all of the following hold:

Prr[V (1K ,G′,Gspec,V GAr,CP)(r) =

V ′(1K ,G′,Gspec,V GAr,CP))(r)]≥ 1−negl(K),
(6)

∀x1,x2 : Pr[V S.Encode(x1) =V S.Encode′(x1),

V S.Checker(x2) =V S.Checker′(x2)]≥ 1−negl(K),

(7)

Prr[V (1K ,G,Gspec,V GAr,CP)(r) =

V (1K ,G′,Gspec,V GAr,CP)(r)]≥ 1−negl(K),
(8)

where V is the verifier hardwired in V S.Eval, and G′ is the
table graph produced by V S.Encrypt.

Definition 18 (Security) For A = (A1,A2) and
S = (S1,S2,S3) which are tuples of p.p.t algorithms,
consider the two experiments in Figure 10.

A verification scheme V S is secure if there exist a tuple
of p.p.t. simulators S = (S1,S2,S3) and oracles O1,O2 such
that for all pairs of p.p.t. adversaries A = (A1,A2), the fol-
lowing is true for any p.p.t. algorithm D:

|Pr[D(Expideal(1K),1K) = 1]−Pr[D(Expreal(1K),1K) = 1]|
≤ negl(K),

i.e., the two experiments are computationally indistinguish-
able.

Correspondingly, we update Definition 6:

Expreal(1K)
1. (G,CP,stateA)← A1(1K)
2. G′←V S.Encrypt(1K ,G)

3. a← AV S.Encode,V S.Checker
2 (1K ,G′,G,CP,stateA)

4. Output a

(a) Experiment Expreal

Expideal(1K)
1. (G,CP,stateA)← A1(1K)
2. G̃← S1(1K)

3. a← ASO1
2 ,SO2

3
2 (1K , G̃,G,CP,stateA)

4. Output a

(b) Experiment Expideal

Fig. 10: The updated experiments.

Definition 19 (Secure and trusted verification scheme)
A verification scheme of Definition 16 is secure and trusted
iff it satisfies Definitions 17 and 18.

The updated Definition 7 becomes

Definition 20 A developer is honest iff it always runs
V S.Encode and V S.Checker. Otherwise it is called mali-
cious.

Remark 2 V S.Encode, V S.Checker, SO1
2 and SO2

3 in Step 3
of the two experiments in Figure 10 are not oracles used
by A2. In these experiments, A2 plays the role of a (poten-
tially malicious) verifier and interacts with the developer as
shown in Figure 9. More specifically, in Expreal , A2 asks
the developer to run V S.Encode or V S.Checker on inputs of
its choice (instead of querying an oracle), and receives the
answer. In Expideal , A2 again asks the developer, but, un-
like Expreal , the latter runs SO1

2 instead of V S.Encode and
SO2

3 instead of V S.Checker, and provides A2 with the an-
swer. Hence, whenever we say that A2 queries V S.Encode,
V S.Checker, SO1

2 or SO2
3 we mean that A2 asks the developer

to run V S.Encode, V S.Checker, SO1
2 or SO2

3 respectively, and
provide the answer. Note that O1,O2 are oracles for S2,S3
respectively.

We repeat that in Section 4 we required that the developer
satisfied Definition 5, but that developer may not comply
with Definition 20 in this section.

5.1 Construction outline

V S.Encrypt, V S.Encode and V S.Path are exactly the same
as in Section 4.
VS.Checker: In order to illustrate how V S.Checker is going
to be used, we use Figure 11 as an example of the evaluation
of a table graph G (on the left) and its encrypted version G′

(on the right). There are three potential points where a devel-
oper can tinker with V S.Encode, namely, when the verifier

Secure and Trusted Partial Grey-Box Verification 17

Fig. 11: Example of evaluation of table graph G (left) and
its encryption G′ (right)

V is querying for an external output (bottom application of
V S.Encode in Figure 11), for an intermediate output (middle
application of V S.Encode in Figure 11), and for an external
input (top application of V S.Encode in Figure 11).

Case 1: External output. We start with this case, since
it is somewhat more straight-forward; so, for now, we will
assume that the developer has indeed run V S.Encode in
the previous tables of the path. Suppose V asks the de-
veloper to run V S.Encode to decrypt the external output
FHE.Enc(>,c) of table T ′2 in Figure 11. The correct output
of V S.Encode should be the external output c, but a mali-
cious developer can replace V S.Encode with a V S.Encode′

which outputs c′ 6= c. V can use the following method to
detect this behaviour:

Step 1 Ahead of running the protocol, V announces the use
of a deterministic private key encryption scheme SE (see
Definition 8), and chooses a secret key sk. (SE’s encryp-
tion algorithm is SE.Enc, represented in a circuit format
compatible with FHE.Eval.)

Step 2 V first extracts the second component of
FHE.Enc(>,c), which is FHE.Enc(c), and then runs
FHE.Eval(hpk,SE.Enc,FHE.Enc(sk),FHE.Enc(c))
to get a result y.

Step 3 V sends y to the developer and asks it to run
V S.Checker in order to fully homomorphically de-
crypt y; the developer returns V S.Checker’s output
FHE.Dec(y), which we denote as d.

Step 4 V uses SE’s decryption algorithm SE.Dec to decrypt
d and get SE.Dec(sk,d).

Step 5 V compares SE.Dec(sk,d) with the (known) exter-
nal output c. If they are the same, V knows that the de-
veloper indeed run V S.Encode, otherwise V knows that
the developer is malicious.

Obviously, if the developer decides to run V S.Checker(y),
i.e., V S.Checker(FHE.Enc(SE.Enc(sk,c))), it gets d =

FHE.Dec(y) = SE.Enc(sk,c) which it returns to V . Then
V obtains c by evaluating SE.Dec(sk,d), and compares
it with the answer from the developer who is expected
to run V S.Encode. If they are not the same, V rejects.
Now suppose that the developer runs some V S.Checker′ in-
stead of V S.Checker, sending V a value d′ 6= d, and some
V S.Encode′, sending V a value c′ 6= c. Then V uses its se-
cret key sk to decrypt d′ and gets SE.Dec(sk,d′), which is
not c′ whp, leading to V rejecting whp.

Case 2: Intermediate output. Again, assuming (for
now) that the developer has indeed run V S.Encode in
the previous tables of the path in Figure 11, this is the
case of V getting the intermediate output FHE.Enc(>,b).
What V is allowed to know from the developer is whether
this intermediate output is meaningful or not, namely,
whether FHE.Enc(>,b) contains > or ⊥ (cf. Section
4.1). A malicious developer can run V S.Encode′ instead
of V S.Encode and return ⊥ instead of >. The method for
V S.Checker described in Case 1 can also be used here by
changing Step 2, so that V first extracts the first half of
FHE.Enc(>,c) (which is FHE.Enc(>)), and then runs
FHE.Eval(hpk,SE.Enc,FHE.Enc(sk),FHE.Enc(>)) to
get y.

Case 3: External input. This is the case of an external
input (>,a) (see top of Figure 11). The verifier can treat this
case exactly like Case 1, to confirm that FHE.Enc(>,a) is
actually a fully homomorphic encryption of (>,a).

By doing a consistent traversal of Gstruc, and applying
the relevant Case 1-3 each time (i.e., starting with exter-
nal inputs (Case 3) and working its way through finally
the external outputs (Case 1)), V can enforce the developer
to run V S.Encode (and V S.Checker) in all steps. Unfortu-
nately, allowing V to ask the developer to run V S.Checker
actually makes V far more powerful, and there is a risk
that V may abuse this power, by sending queries with
malicious content to V S.Checker. Therefore we need to
force V into asking the ‘right’ queries. For example, in
Step 3 of Case 1, V S.Checker must check whether y =

FHE.Enc(SE.Enc(sk,c)) before it decrypts y. Our solution
to this problem is to use a bit commitment protocol during
the interaction between the verifier V and the developer. Al-
gorithm 8 implements V S.Checker. The definition of QAE is
exactly the same as in Section 4.1.
VS.Eval: V S.Eval is an extension of V S.Eval in Section 4.
It not only needs to check whether the verifier V evaluates
the table graph correctly, but it also needs to check whether
the developer replies honestly. In order to check whether

18 Yixian Cai et al.

Algorithm 8 V S.Checker(i, p,y)

1: if |y| 6= l ·m or |p| 6= l ·m then
2: return null
3: else if @(Qk,Ak) ∈ QAE such that Qk = (i,xi,T ′i (x

i),q2) and p =
T ′i (x

i) then
4: return null
5: else if @(Qek,Aek) ∈ QAE such that (Qek,Aek) =

((i,ui
j,null,q1),wi

j) and p = wi
j then

6: return null
7: else
8: for all j ∈ {0, ...,m−1} do
9: b j+1← FHE.Dec(hsk,y[j · l +1 : (j+1) · l])

10: The developer starts the bit commitment protocol described
in Section 3.3.2. The developer wants to commit the verifier to
d = b1, ...,bm.

11: if (bit commitment protocol failed) then return null
12: if ∃(Qek,Aek)∈QAE such that Qek = (i,xi,T ′i (x

i),q2) and p =
T ′i (x

i) and T ′i ’s output is an intermediate output then
13: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p[1 : (m/2 ·

l)]) 6= y then
14: return null
15: else if ∃(Qek,Aek) ∈ QAE such that Qek = (i,ui

j,null,q1) and
p = Aek and T ′i ’s input is an external input then

16: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p) 6= y then
17: return null
18: else
19: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p[(l ·m/2+1) :

(l ·m)]) 6= y then
20: return null
21: return d

the verifier V evaluates the table graph correctly, V S.Eval
runs Algorithm 3. In addition, by reading the log file which
records the interaction between the verifier and the devel-
oper, V S.Eval can check whether the verifier actually asks
the developer to run V S.Checker for every answer it gets (al-
legedly) from V S.Encode. Actually, V S.Eval can recreate
the whole interaction between the verifier and the developer
from this log file.

The log file is QAE (as before) but extended with an ex-
tra set QAC which contains tuples (Qi,Ai,Si); each such tu-
ple contains a query Qi = (i, p,y) by V to V S.Checker, the
information Si generated by both the developer and the ver-
ifier during the bit commitment protocol, and the answer Ai
returned by the developer after running V S.Checker. Hence,
for each V S.Encode record (Qei,Aei) ∈ QAE generated, a
V S.Checker record (Qci,Aci,Sci) ∈QAC will also be gener-
ated.

Algorithm 9 implements V S.Eval, taking logs
QAE ,QAC as its input.

A typical set of rounds between the developer and the
verifier can be seen in Figure 12. Notice how the generic
protocol of Figure 9 is actually implemented by our con-
struction.

Algorithm 9 V S.Eval(1K ,QAE ,QAC)

1: if Algorithm 3 returns 0 then . Algorithm 3 is the old V S.Eval
(Section 4)

2: return 0
3: for all (Qei,Aei) ∈ QAE do
4: if @(Qci,Aci,Sci) ∈ QAC corresponding to (Qei,Aei) then re-

turn 0
5: else find the corresponding ((i, p,y),d,Sci) ∈ QAC

6: Use hardwired honest verifier V and information Sci to replay
the bit commitment protocol, and check whether d produced by
V S.Checker is the value d′ the original verifier committed to.

7: if d′ 6= d then return 0
8: if Qei’s format is (i,vi

j,null,q1) then
9: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p) 6= y then re-

turn 0
10: else if SE.Dec(sk,d) 6= vi

j then return 0
11: else return 1
12: else if Qei’s format is (i,xi,T ′i (x

i),q2) and T ′i (x
i) is an external

output then
13: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p[(l ·m/2+1) :

(l ·m)]) 6= y then return 0
14: else if SE.Dec(sk,d) 6= Aei then return 0
15: else return 1
16: else if Qei’s format is (i,xi,T ′i (x

i),q2) and T ′i (x
i) is an inter-

mediate output then
17: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p[1 :

(l ·m/2)]) 6= y then return 0
18: else if SE.Dec(sk,d) 6= Aei then return 0
19: else return 1

5.2 Correctness and security

In our implementation, the Ceri f icate used by V S.Eval in
Definition 16 is (QAE ,QAC,G′,hpk,U). In Definition 18,
simulators S1, S2 and S3 simulate V S.Encrypt, V S.Encode
and V S.Checker respectively. Similarly to Section 4.2, we
add one more simulator S4 to simulate V S.Path, and its cor-
responding oracle (Algorithm 7). Algorithm 10 describes
the oracle O3 used by S4 to simulate V S.Checker.

5.2.1 Correctness

We show the following

Theorem 4 The verification scheme V S introduced in this
section satisfies Definition 17.

Proof We prove that if V S.Eval(1k,QAE ,QAC) = 1, then
inequalities (6)-(8) hold.

Lemma 6 If V S.Eval(1k,QAE ,QAC) = 1, then (7) holds.

Proof Suppose that Qci = (k, p,y) and Aci = d. For
brevity reasons, we will only consider the case of Qei =

(k,xk,T ′k (x
k),q2), and T ′k (x

k) is an external output. The other
cases (Qei = (k,xk

j,null,q1) or T ′k (x
k) is not an external out-

put), are similar. Also, since the bit commitment protocol
succeeds whp, V can be assumed to be honest.

Secure and Trusted Partial Grey-Box Verification 19

Fig. 12: The protocol of Section 5.

First we consider the case of V S.Encode and
V S.Encode′ having the same input-output functionality.
Let (Qci,Aci,Sci) ∈ QAC be the tuple that corresponds
to the current V S.Encode query (Qei,Aei). Suppose that
V S.Checker′ outputs a value d, while V S.Checker would
output d∗. If V S.Eval(1k,QAE ,QAC) = 1, then we know
(see line 18 in Algorithm 9)

SE.Dec(sk,d) = Aei (9)

Therefore, to prove that d = d∗, it is enough to prove that

SE.Dec(sk,d∗) = Aei. (10)

According to V S.Checker’s construction (see lines 8-9 in Al-
gorithm 8),

d∗ = FHE.Dec(hsk,y), (11)

where Qci = (i, p,y). Since V S.Encode and V S.Encode′

have the same input-output functionality, given
Qei = (k,xk,T ′k (x

k),q2) as input to both V S.Encode
and V S.Encode′, their outputs are the same, i.e., Ae∗i = Aei,
where Ae∗i is the output of V S.Encode and Aei is the

Algorithm 10 O3(i, p,y)

1: if |y| 6= l ·m or |p| 6= l ·m then
2: return null
3: else if @(Qek,Aek)∈QAE such that Qek = (i,xi,T ′i (x

i),q2) and p=
T ′i (x

i) then
4: return null
5: else if @(Qek,Aek) ∈ QAE such that (Qek,Aek) =

((i,ui
j,null,q1),wi

j) and p = wi
j then

6: return null
7: else
8: Find (Qek,Aek) ∈ QAE that matches the input (i, p,y).
9: if Qek is (i,ui

j,null,q1) then
10: a← ui

j .
11: else a← Aek.
12: b1b2...bm← SE.Enc(sk,a) . Oracle O3 knows secret key sk

and SE.Enc used by A
13: The developer starts the bit commitment protocol described

in Section 3.3.2. The developer wants to commit the verifier to
d = b1, ...,bm.

14: if (bit commitment protocol failed) then return null
15: if ∃(Qek,Aek) ∈QAE such that Qet = (i,xi,T ′i (x

i),q2) and p =
T ′i (x

i) and T ′i ’s output is an intermediate output then
16: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p[1 : (m/2 ·

l)]) 6= y then
17: return null
18: else if ∃(Qek,Aek) ∈ QAE such that Qek = (i,ui

j,null,q1) and
Aek = p and T ′i ’s input is an external input then

19: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p) 6= y then
20: return null
21: else
22: if FHE.Eval(hpk,SE.Enc,FHE.Enc(sk), p[(l ·m/2+1) :

(l ·m)]) 6= y then
23: return null
24: return d

output of V S.Encode′. According to the construction of
V S.Encode (see lines 19-23 in Algorithm 2) ,

Ae∗i = FHE.Dec(hsk,T ′k (x
k)[lm/2+1 : lm]) (12)

Therefore,

Aei = FHE.Dec(hsk,T ′k (x
k)[lm/2+1 : lm]). (13)

On the other hand, whp Definition 11 implies that

y = FHE.Eval(hpk,SE.Enc,FHE.Enc(sk),T ′k (x
k)[

lm
2

+1 : lm])

= FHE.Enc(hpk,SE.Enc(sk,FHE.Dec(hsk,T ′k (x
k)[

lm
2

+1 : lm]))

(14)

Hence, by combining (11) and (14) we get

d∗ = SE.Enc(sk,FHE.Dec(hsk,T ′k (x
k)[lm/2+1 : lm]))),

which implies that

SE.Dec(sk,d∗) =

SE.Dec(sk,SE.Enc(sk,FHE.Dec(hsk,T ′k (x
k)[lm/2+1 : lm]))) =

FHE.Dec(hsk,T ′k (x
k)[lm/2+1 : lm])

20 Yixian Cai et al.

(15)

Then, by combining (13) and (15), (10) holds whp.
Next we consider the case of V S.Checker and

V S.Checker′ having the same input-output functional-
ity. For (Qei,Aei) ∈ QAE , and the corresponding pair
(Qci,Aci) ∈ QAC, Qei = (k,xk,T ′k (x

k),q2) is the input of
V S.Encode′ and Aei its output, while Qci = (i, p,y) is
the input of V S.Checker′ and Aci = d its output. Since
V S.Eval(1k,QAE ,QAC) = 1, we know that (9) holds (see
line 18 in Algorithm 9). Also (12) is obviously true, as is
(11) (see lines 8-9 in Algorithm 8). The latter, together with
the identical functionality of V S.Checker,V S.Checker′, im-
plies that

d = FHE.Dec(hsk,y) (16)

Hence, by combining (9),(16),(14) we have

Aei = SE.Dec(sk,d)

=SE.Dec(sk,FHE.Dec(hsk,y))

=SE.Dec(sk,SE.Enc(sk,FHE.Dec(hsk,T ′k (x
k)[

lm
2

+1 : lm]))

=FHE.Dec(hsk,T ′k (x
k)[lm/2+1 : lm])

Hence, (13) holds, and combined with (13) and (12), we
get Aei = Ae∗i , i.e., given Qei as input to V S.Encode and
V S.Encode′, their outputs are the same whp.

Finally suppose that there exists (Qei,Aei) ∈ QAE
and corresponding (Qci,Aci,Sci) ∈ QAC such
that V S.Checker(Qci) 6= V S.Checker′(Qci) and
V S.Encode(Qei) 6= V S.Encode′(Qei). We know (see
lines 19-23 in Algorithm 2) that (12) holds, and, by
combining (11), (12) and (14), we get

SE.Dec(sk,d∗) = SE.Dec(sk,FHE.Dec(hsk,y))

= SE.Dec(sk,SE.Enc(sk,FHE.Dec(hsk,T ′k (x
k)[

lm
2

+1 : lm])))

= FHE.Dec(hsk,T ′k (x
k)[lm/2+1 : lm]) = Ae∗i

Since d∗ 6= d and Ae∗i 6= Aei, d and Aei do not satisfy (9)
whp. But according to V S.Eval’s construction (see line 18 in
Algorithm 9), when V S.Eval(1k,QAE ,QAC) = 1, (9) holds
whp, a contradiction.

Lemma 7 If V S.Eval(1k,QAE ,QAC) = 1, then (6) and (8)
hold.

Proof Since according to V S.Eval’s construction (see line
1 in Algorithm 9), Algorithm 9 outputting 1 implies Algo-
rithm 3 outputting 1, (1) and (2) must hold, and they con-
tinue to hold while Algorithm 9 invokes V S.Checker. To-
gether with (7) (which we have already proven), (6) and (8)
easily follow.

5.2.2 Security

Following the methodology of [12], we will show the fol-
lowing

Theorem 5 The verification scheme VS introduced in this
section satisfies Definition 18.

Proof We construct a tuple of simulators (S1,S2,S3,S4) so
that S1,SO1

2 and SO2
3 are the same as in the proof of Theorem

2. S4 receives queries from A2, queries oracle O3 (Algorithm
10), and returns the output of O3 to A2.

In our proof, we will need to define a new experiment
Expextra(1K) (cf. Figure 13). Expextra(1K) and Expreal(1K)

Expextra(1K)
1. (G,CP,stateA)← A1(1K)
2. (G′,hpk,U)←V S.Encrypt(1K ,G)

3. a← AV S.Encode,V S.Path, SO3
4

2 (V S.Eval,G′,G,V GA,CP,hpk,
stateA)

4. Output a

Fig. 13: Experiment Expextra.

(cf. Figure 10) differ only in Step 3, where A2 queries
V S.Checker in Expreal(1K) and SO3

4 in Expextra(1K). If we
can show that V S.Checker and SO3

4 have the same input-
output functionality, then Expreal(1K) and Expextra(1K) are
computationally indistinguishable.

To prove this we distinguish two cases for an input
(i, p,y) to V S.Checker and O3.

First, when V S.Checker(i, p,y) outputs null, it is easy to
see that O3(i, p,y) will also output null; this happens when
the size of p or y is not correct (line 1 in Algorithm 8 and 5
in Algorithm 10), when p is not generated by the evaluation
of a table or V S.Encode (line 5 in Algorithm 8 and line 14 in
Algorithm 10), and when the bit commitment protocol fails
(lines 11-20 in Algorithm 8 and lines 14-23 in Algorithm
10).

Second, when V S.Checker(i, p,y) does not output null,
it will output a value d; in this case O3(i, p,y) first gener-
ates the same d (see lines 8-12 of Algorithm 10), and after
passing the bit commitment protocol, it also outputs d.

Therefore V S.Checker and SO3
4 have the same input-

output functionality. Hence Expreal(1K) and Expextra(1K)

are computationally indistinguishable:

|Pr[D(Expreal(1K),1K) = 1]−Pr[D(Expextra(1K),1K) = 1]|
≤ negl(K).

(17)

Exprtest(1K) and Expitest(1K) in Figure 14 are the ex-
periments Expreal(1K) and Expideal(1K) in Definition 5,

Secure and Trusted Partial Grey-Box Verification 21

Exprtest(1K)
1. (G,CP,stateA)← A1(1K)
2. (G′,hpk,U)←V S.Encrypt(1K ,G)

3. a← AV S.Encode,V S.Path
2 (G′,G,CP,hpk,U,stateA)

4. Output a

(a) Experiment Exprtest(1K)

Expitest(1K)
1. (G,CP,stateA)← A1(1K)
2. (G′′,hpk,U)← S1(1K ,s,d,Gstruc)

3. a← ASO1
2 ,SO2

3
2 (G′′,G,CP,hpk,U,stateA)

4. Output a

(b) Experiment Expitest(1K)

Fig. 14: Experiments Exprtest and Expitest .

with V S.Path added to Expreal(1K) and SO2
3 added to

Expideal(1K)) (see Figure 3).
In the same way as in Theorem 2, we can show that

Exprtest(1K) and Expitest(1K) are computationally indistin-
guishable, i.e., for all pairs of p.p.t. adversaries A = (A1,A2)

and any p.p.t. algorithm D,

|Pr[D(Exprtest(1K),1K) = 1]−Pr[D(Expitest(1K),1K) = 1]|
≤ negl(K).

(18)

Assume that Expreal(1K) and Expideal(1K) are computa-
tionally distinguishable. Then (17) implies that Expextra(1K)

and Expideal(1K) are computationally distinguishable, i.e.,
there are a p.p.t. algorithm D̃ and a p.p.t. adversary Ã =

(Ã1, Ã2) such that

|Pr[D̃(Expideal(1K),1K) = 1]−Pr[D̃(Expextra(1K),1K) = 1]|
> negl(K).

(19)

A p.p.t. adversary A = (A1,A2) that wants to distinguish
between Exprtest(1K) and Expitest(1K) can use Ã and D̃ as
follows:

– A1 runs Ã1 and outputs (G,CP,stateÃ)← Ã1(1K).
– A2 gets one of the two:

– (G′,hpk,U) ← V S.Encrypt(1K ,G) and has oracle
access to V S.Encode, or

– (G′′,hpk,U)← S1(1K ,s,d,Gstruc) and has oracle ac-
cess to SO1

2 ,SO2
3

depending on which one of the two experiments
(Exprtest(1K) and Expitest(1K)) is executed. Then A2
constructs SO3

4 and V S.Eval (which are also used in
Expideal(1K) and Expextra(1K)), and runs Ã2 provid-
ing it with access to SO3

4 . Its output a will be either

Ã
V S.Encode,V S.Path,S

O3
4

2 (V S.Eval,G′,G,CP,hpk,U,stateÃ)

or Ã
S

O1
2 ,S

O2
3 ,S

O3
4

2 (V S.Eval,G′′,G,CP,hpk,U,stateÃ), de-
pending again on which of Exprtest(1K) and Expitest(1K)

is being executed.

If Exprtest(1K) is being executed, then it can easily be seen
that

Pr[D̃(Exprtes(1K),1K) = 1] = Pr[D̃(Expextra(1K),1K) = 1.

If Expitest(1K) is being executed, then it can easily be seen
that

Pr[D̃(Expitest(1K),1K) = 1] = Pr[D̃(Expideal(1K),1K) = 1.

But then, (19) implies that

|Pr[D̃(Exprtest(1K),1K) = 1]−Pr[D̃(Expitest(1K),1K) = 1]|
> negl(K).

which contradicts (18). Therefore, Expreal(1K) and
Expideal(1K) are computationally indistinguishable.

6 Open problems

We have presented protocols that implement secure and
trusted verification of a design, taking advantage of any ex-
tra information about the structure of the design component
interconnections that may be available. Although we show
the feasibility of such verification schemes, ours is but a first
step, that leaves many questions open for future research.

– Improving efficiency Our implementation uses FHE,
which, up to the present, has been rather far from being
implemented in a computationally efficient way (cf. [30]
for a survey of homomorphic encryption implementa-
tions, and the references therein). On the other hand, gar-
bled circuits are usually considered to be more efficient
than FHE schemes; for example, [23] shows that garbled
circuits were much more efficient than a homomorphic
encryption scheme in certain Hamming distance com-
putations. Therefore, pursuing protocols based on Yao’s
garbled circuits is a worthy goal, even if a more efficient
garbled circuits construction is less secure.

– Verifiable computing Although verifiable computing is
not yet applicable to our case (as mentioned in the Intro-
duction), coming up with a method to hide the computa-
tion would provide a more efficient solution to the prob-
lem of secure and trusted verification, since the amount
of re-computation of results needed would be signifi-
cantly reduced.

– Hiding the graph structure Our work has been based
on the assumption that the table graph Gstruc of a design
is known. But even this may be a piece of information
that the designer is unwilling to provide, since it could

22 Yixian Cai et al.

still leak some information about the design. For exam-
ple, suppose that the design uses an off-the-shelf subde-
sign whose component structure is publicly known; then,
by looking for this subgraph inside Gstruc, someone can
figure out whether this subdesign has been used or not.
In this case, methods of hiding the graph structure, by,
e.g., node anonymization such as in [31], [32], may be
possible to be combined with our or other methods, to
provide more security.

– Public information vs. testing The extra information
we require in order to allow some grey-box test case
generation by the verifier, namely the table graph struc-
ture, is tailored on specific testing algorithms (such as
MC/DC [2]), which produce computation paths in that
graph. But since there are other possibilities for test case
generation, the obvious problem is to identify the partial
information needed for applying these test generation al-
gorithms, and the development of protocols for secure
and trusted verification in these cases.

– Acyclic table graph As mentioned earlier, we assume
that the table graph of the program is acyclic. Lifting of
this assumption is currently an open problem.

References

1. T.A. Alspaugh, S.R. Faulk, K.H. Britton, R.A. Parker, D.L. Parnas,
Software requirements for the A-7E aircraft. Tech. rep., DTIC
Document (1992)

2. K.J. Hayhurst, D.S. Veerhusen, J.J. Chilenski, L.K. Rierson, A
practical tutorial on modified condition/decision coverage. Tech.
Rep. TM-2001-210876, NASA (2001)

3. C. Gentry, A fully homomorphic encryption scheme. Ph.D. thesis,
Stanford University (2009)

4. M. Naor, Journal of Cryptology 4(2), 151 (1991)
5. C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscat-

ing transformations. Tech. rep., Department of Computer Science,
The University of Auckland, New Zealand (1997)

6. C. Wang, J. Hill, J. Knight, J. Davidson, Software tamper resis-
tance: Obstructing static analysis of programs. Tech. Rep. CS-
2000-12, University of Virginia (2000)

7. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. Vadhan, K. Yang, in CRYPTO 2001 (Springer, 2001), pp. 1–18

8. S. Chaki, C. Schallhart, H. Veith, ACM Trans. on Software Eng.
and Methodology (TOSEM) 22 (2013)

9. B. Lynn, M. Prabhakaran, A. Sahai, in EUROCRYPT 2004
(Springer, 2004), pp. 20–39

10. A.C. Yao, in Proceedings of the 54th IEEE Annual Symposium
on Foundations of Computer Science (FOCS) (IEEE, 1982), pp.
160–164

11. S. Goldwasser, Y.T. Kalai, G.N. Rothblum, in CRYPTO 2008
(Springer, 2008), pp. 39–56

12. S. Goldwasser, Y. Kalai, R.A. Popa, V. Vaikuntanathan, N. Zel-
dovich, in Proceedings of the 45th ACM Symposium on Theory Of
Computing (STOC) (ACM, 2013), pp. 555–564

13. G. Cormode, M. Mitzenmacher, J. Thaler, in Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference
(ACM, 2012), pp. 90–112

14. J. Thaler, M. Roberts, M. Mitzenmacher, H. Pfister, in Proceedings
of the 4th USENIX conference on Hot Topics in Cloud Computing,
HotCloud’12 (2012)

15. V. Vu, S. Setty, A.J. Blumberg, M. Walfish, in Proceeding of the
2013 IEEE Symposium on Security and Privacy, SP’13 (IEEE,
2013), pp. 223–237

16. S. Setty, R. McPherson, A.J. Blumberg, M. Walfish, in Proceed-
ings of the 19th Annual Network & Distributed System Security
Symposium (2012)

17. S. Setty, V. Vu, N. Panpalia, B. Braun, A.J. Blumberg, M. Wal-
fish, in Proceedings of the 21st USENIX conference on Security
symposium, Security’12 (2012), pp. 253–268

18. B. Parno, J. Howell, C. Gentry, M. Raykova, in Proceedings of
the 2013 IEEE Symposium on Security and Privacy (SP) (IEEE,
2013), pp. 238–252

19. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, M. Virza, in
Proceedings of CRYPTO 2013 (Springer, 2013), pp. 90–108

20. S. Arora, S. Safra, Journal of the ACM (JACM) 45(1), 70 (1998)
21. A. Wassyng, R. Janicki, Fundamenta Informaticae 67, 343 (2005)
22. D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, in Proceedings of

the 13th conference on USENIX Security Symposium SSYM’04,
vol. 13 (2004), vol. 13, pp. 20–20

23. Y. Huang, D. Evans, J. Katz, L. Malka, in Proceedings of the 20th
USENIX conference on Security SEC’11 (2011), pp. 35–35

24. J. Katz, Y. Lindell, Introduction to modern cryptography (CRC
Press, 2014)

25. FIPS, NBS 46 (1977)
26. V. Vaikuntanathan, in Proceedings of the 52nd IEEE Annual

Symposium on Foundations of Computer Science (FOCS) (IEEE,
2011), pp. 5–16

27. C. Gentry, S. Halevi, V. Vaikuntanathan, in Proceedings of
CRYPTO 2010 (Springer, 2010), pp. 155–172

28. L.G. Valiant, in Proceedings of the 8th annual ACM Symposium
on Theory Of Computing (STOC) (ACM, 1976), pp. 196–203

29. T. Sander, A. Young, M. Yung, in Proceedings of the 40th Annual
Symposium on Foundations of Computer Science (FOCS) (IEEE,
1999), pp. 554–566

30. A. Acar, H. Aksu, A.S. Uluagac, C. M., arXiv.org (2017). URL
https://arxiv.org/abs/1704.03578

31. B. Zhou, J. Pei, in Proceedings of the 24th IEEE International
Conference on Data Engineering, ICDE’08 (IEEE, 2008), pp.
506–515

32. J. Cheng, A.W. Fu, J. Liu, in Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of data (ACM,
2010), pp. 459–470

A An example for Section 4

In this subsection we use the example in Figure 15 to show how to
apply our verification scheme to actually verify a specific table graph.
In Figure 15 there is an initial table graph that is to be verified by the
verifier V .

Fig. 15: An initial table graph G of an implementation

Secure and Trusted Partial Grey-Box Verification 23

First the developer transforms this initial table graph into a table
graph G introduced in Section 2.2 (see Figure 1c). Then

F1(a) =
{
(>,a−20) , if a > 45
(⊥,⊥) ,otherwise

F2(a) =
{
(>,a−5) , if 35 <= a <= 45
(⊥,⊥) ,otherwise

F3(a) =
{
(>,a) , if 25 <= a < 35
(⊥,⊥) ,otherwise

F4(a) =
{
(>,20) , if a < 25
(⊥,⊥) ,otherwise

F5(z) =
{
(>,True) , if z > 30
(⊥,⊥) ,otherwise

F6(z) =
{
(>,False) , if z <= 30
(⊥,⊥) ,otherwise

F7(b) =
{
(>,2) , if b = True
(⊥,⊥) ,otherwise

F8(b) =
{
(>,3) , if b = False
(⊥,⊥) ,otherwise

The developer applies our content-secure verifica-
tion scheme V S to G. It runs V S.Encrypt as follows.
(G′,hpk,U) ← V S.Encrypt(1K ,G). Figure 16 is the encrypted
table graph G′.

Fig. 16: An encrypted table graph G′ after applying V S to G

According to our protocol, the verifier V receives G′ and does the
verification on G′. We show how V can do MC/DC verification [2]
on G′. MC/DC performs structural coverage analysis. First it gets test
cases generated from analysing a given program’s requirements. Then
it checks whether these test cases actually covers the given program’s
structure and finds out the part of the program’s structure which is not
covered. First we assume the V GA that V uses will do MC/DC verifi-
cation after it generates the test cases. Suppose V runs V GA to generate
the test cases, based on requirements-based tests (by analysing Gspec),
and these test cases are stored in EI. Then V picks an external input X
to G′ from EI and starts evaluating G′ with X .

For X = (a = 46,b = True), V sends the following queries to
the developer DL (The queries are in the format of the input of
V S.Encode): Q1 = (1,(>,46),null,q1), Q2 = (2,(>,46),null,q1),
Q3 = (3,(>,46),null,q1), Q4 = (4,(>,46),null,q1),
Q5 = (7,(>,True),null,q1), Q6 = (8,(>,True),null,q1), be-
cause it needs to evaluate PT ′1 , PT ′2 , PT ′3 , PT ′4 , PT ′7 , PT ′8 as well
as an encoding for the external inputs of each table. We take
the evaluation of the path (Input → PT ′1 → PT ′6 → Output) as
an example. For query Q1, DL evaluates V S.Encode(Q1) and
returns FHE.Enc(hpk,46)(FHE.Enc(hpk,46) is the output of
V S.Encode(Q1)), which is the input x1 to PT ′1 . Then V runs

FHE.Eval(hpk,U,x1,EC1) and outputs PT ′1(x
1). After this V sends

(1,x1,PT ′1(x
1),q2) to DL. Because we know that for PT1 ∈ G, if 46 is

the input to PT1, then the output will be (>,26). Thus for the query
(1,x1,PT ′1(x

1),q2), DL evaluates V S.Encode(1,x1,PT ′1(x
1),q2) and

returns >. Hence V knows that for a=46 as an external input, the lhs
predicate (a decision and condition) of PT1 ∈ G is satisfied, and the
rhs function of PT1 ∈ G is covered.

After finishing evaluating PT ′1 , V starts evaluating PT ′5 and PT ′6
with PT ′1(x

1) as their input. x6 = PT ′1(x
1) is PT ′6 ’s input. After fin-

ishing evaluating PT ′6 , V gets PT ′6(x
6) as the output. Then V sends

(6,x6,PT ′6(x
6,q2) to DL. DL evaluates V S.Encode(6,x6,PT ′6(x

6,q2)
and V S.Encode’s output is True (Because (26 < 30), PT5’s output is
(>,False). We also know that the output of PT ′6 is an external output.
Accordingly, V S.Encode outputs False). Therefore, DL returns False
to V . Then V knows that y1 = False as well as the fact that the lhs
predicate (a decision and condition) of PT6 ∈ G is satisfied and the rhs
function of PT6 ∈ G is covered.

After evaluating G′ with X = (a = 46,b = True) by simi-
lar steps as described above and getting the external output Y =
(⊥,False,⊥,2,⊥), V knows that for X , the lhs predicates of PT1, PT6
and PT7 are satisfied while the rest tables’ lhs predicates are not satis-
fied. Hence, V knows that the predicates of PT1, PT6 and PT7 are True
while the predicates in the rest tables of G are False and the statements
(the rhs functions of the tables in G) of PT1, PT6 and PT7 are covered.
Moreover, V compares Y with Gspec(X) to see if G behaves as expected
with X as an external input.

V will keep evaluating G′ with the rest external inputs in EI, and by
interacting with DL in the way as described above, it does the structural
coverage analysis of the requirements-based test cases. He will be able
to know whether the external inputs in EI covers every predicates in G.
Additionally, it will be able to know whether G behaves as expected in
the requirements specification described by Gspec.

