Capacity Augmentation in Energy Efficient
Vehicular Roadside Infrastructure

Naby Nikookaran and Terence D. Todd

Department of Electrical and Computer Engineering

McMaster University
Hamilton, Ontario, CANADA
Email: {nikookn, todd}@mcmaster.ca

Abstract—This paper considers the problem of capacity aug-
mentation in energy efficient road-side unit (RSU) deployments.
RSU placements for a road network, and a set of vehicular
traffic flow design traces are used as inputs. The objective
is to find an RSU radio capacity assignment that minimizes
the long-term operating expenditure costs subject to meeting
packet deadline constraints with a given packet loss rate target.
A procedure, referred to as the capacity augmentation (CA)
algorithm, is proposed that iterates over the RSUs, selecting
candidates for capacity augmentation based on their packet
loss rate sensitivities. A variety of results are presented that
characterize and compare the performance of the CA Algorithm
using a greedy online packet scheduler. In particular, we show
how to counterbalance the lack of causality in designing the
RSU network when it is used for the online scheduling of
incoming transmission requests. The comparisons include those
using energy-optimal offline scheduling obtained by solving an
integer linear program (ILP) formulation. It is shown that the
CA Algorithm is an efficient way to assign RSU radio capacity
that achieves the desired performance objectives.

I. INTRODUCTION

Many future in-vehicle applications will be enabled using
vehicular ad hoc communications and networking. Roadside
infrastructure is a key component of these systems and will
eventually provide a platform for new local vehicular services.
In these types of systems, road-side unit (RSU) costs include
that of both RSU installation, i.e., CAPEX (capital expendi-
ture) costs, and long-term operating, i.e., OPEX (operating
expenditure) costs. The latter costs include those associated
with wired energy usage over long time periods [1], [2]. An
RSU deployment that minimizes the sum of these cost com-
ponents must jointly consider both the initial RSU placement
and their associated long-term service costs [3].

A characteristic of many network design methods is that
they do not take into account the causality present in the
traffic design traces that are used for the offline design, i.e.,
they consider the set of design trace requests as known at
the beginning of the design process, and then proceed into
designing a network that can accommodate them. This is
typically done by solving an Integer Program. As a result,
and because of the causal nature of the stream of incoming
requests, the causal online scheduling during the operational
life of the network may be quite suboptimal. In this paper, we
consider RSU capacity augmentation as a method of adjusting

George Karakostas
Department of Computing and Software
McMaster University
Hamilton, Ontario, CANADA
Email: karakos@mcmaster.ca

the initial network design, and to counterbalance its failure
of taking causality into account. By capacity augmentation
we mean the upgrade of radio capacities of RSUs that have
already been placed. Capacity augmentation in general, is
not a novel idea. Once RSUs have been deployed for exam-
ple, capacity augmentation is needed to update the system,
thus accommodating evolving traffic conditions. Similarly,
the output of an RSU design placement algorithm may not
meet the packet loss targets specified in the original design
specifications, which is the case considered in this paper. RSU
capacity augmentation can be used in this case to provision
the RSUs, thus meeting their original performance objectives.
The paper introduces a procedure referred to as the capacity
augmentation (CA) algorithm that can be used to perform this
function.

We are given, as input, the RSU locations and their initial
radio capacities, as well as any set of historical vehicular traffic
flow traces used by the design algorithm (design traces). These
traces are representative of the expected traffic flow to be
accommodated by the augmented design. The objective of the
design is to obtain a minimum total cost RSU radio capacity
assignment that meets a given packet loss rate target, and sub-
ject to packet deadline constraints. The CA Algorithm iterates
over the RSUs, selecting candidates for capacity augmentation,
based on a combination of the RSU loss rate sensitivities and
their capacity augmentation costs. The selection of the RSU
whose capacity is to be augmented is done in every iteration
by running the request scheduling algorithm on the design
traces, treating them as an online (causal) input, i.e., under
actual operational conditions. The CA Algorithm terminates
when the request drop ratio improvement is below a preset
threshold.

The intuition behind the CA algorithm is to trade off
CAPEX (paying for the extra capacity) for decreasing the
drop ratio during operation. A variety of results are presented
that characterize and compare the performance of the CA
Algorithm using a simple greedy online packet scheduler.
The comparisons also use energy-optimal offline scheduling
obtained by solving an integer linear program formulation. It
is shown that the CA Algorithm achieves a very significant
decrease of the drop ratio with only a very moderate (if any)
increase of the network total cost.

II. RELATED WORK

Capacity augmentation has been previously studied for a
variety of different networking scenarios. Reference [4] for
example, discusses capacity augmentation in wireless mesh
networks in order to maximize the aggregate throughput for all
network flows, and in reference [5], augmentation is proposed
using free-space optical (FSO) links to enhance the capacity
of RF wireless mesh networks.

Two combinatorial optimizations are used in [6] for link
set capacity augmentation in networks supporting switched
multi-megabit data service (SMDS). The goal is to determine
the amount of additional capacity required and its location.
The objective of the first formulation is to minimize the total
routing cost subject to a budget constraint, while in the second,
the total capacity augmentation cost is minimized subject to a
set of shortest-path-routing constraints.

In reference [7] an RSU deployment and configuration
problem is formulated as an integer linear program with
different antenna types and power levels. The total deployment
cost is minimized subject to covering a minimum desired
percentage of streets with limited multi-hop packet forwarding.

To the best of our knowledge, our paper is the first that
proposes a method for road-side unit capacity augmentation
in vehicular networks. Our approach is unique in that the
objective is to minimize the sum of capital expenditure and
long-term operating costs, such that a packet loss target is
achieved subject to delay deadline constraints. This is done by
incorporating energy aware scheduling into the design process.

III. SYSTEM MODEL

Let S be the set of candidate RSU locations, and N, =
{1,..., N5} be the set of RSU configurations. Different site
locations are allowed to have a different set of configurations,
e.g., different capacities, but at most one of these configura-
tions can eventually be installed at each site location, and let
N = UgesNs. Let V be the set of vehicles serviced by the
installed RSUs, each with a set of requests R, for a total of
R = UyepR, requests. Request r has a release date of a,. and
a deadline (due date) of d,.. In this work, we assume that any
job request of size ¢, time slots is splittable into ¢, unit-size
(in time slots) requests with the same deadline, that can be
serviced by different RSUs.

The problem that is addressed in this paper is capacity
augmentation of an existing RSU network. Once an RSU
configuration (placement and capacity provisioning) is given,
the scheduling of requests are done so that at most one request
of each vehicle is being serviced by any RSU, each RSU serves
at most one request during each time slot, and requests are
serviced before their deadline in order not to be dropped.

The energy cost for servicing a request is defined by
a distance-dependent exponential path-loss model with log-
normal shadowing [8]. The transmission power between a
transmitter and a receiver, P ,., can be expressed by P, =

der \© . . .
Py oFPsp (df—o) , where d; o is the reference distance, P, g is
the reference power at the reference distance, Ps;, is a random

variable that models the shadowing effect of the channel, «
is the path loss exponent, and d;, is the distance between
the transmitter and the receiver. The shadowing effect of the
radio channel is modeled as a random variable with log-normal
distribution which has a zero mean (in dB) and a standard
deviation of o4g = 4.

After getting an initial placement and provisioning of an
RSU network (by solving the ILP formulation in [3], for
example), our capacity augmentation algorithm CA (described
in the following section) is run.

IV. CAPACITY AUGMENTATION ALGORITHM

The starting point of our proposed algorithm is a placement
of RSU’s and their provisioning with capacities calculated by
a placement and provisioning algorithm. Although any starting
placement and provisioning can be used, in this work we will
use the initial placement No of RSU’s, and capacities U =
Un, VN € No calculated by the algorithm in [3]. The algorithm
used for the on-line scheduling of vehicle demands in a traffic
will be referred to as the Scheduling Algorithm, while we will
refer to our algorithm as the Capacity Augmentation algorithm.
Throughout its running, the set of RSU locations Np will
never change. In each iteration, our algorithm will increase the
capacity of one RSU, and will test the new capacities U, by
running the Scheduling Algorithm: if there is no ‘substantial’
improvement in the loss rate for the traffic case we are using,
then the algorithm terminates.

More specifically, before every iteration (lines 6-24 in
Algorithm 1), the Scheduling algorithm is run with the current
capacities, and its loss rate is calculated (lines 3-5 and 21-23).
In case this loss rate is smaller than the target loss rate, defined
by the input parameter ¢ (line 6), or the loss rate improvement
in the previous iteration is not more than input parameter ¢
(line 8), the algorithm terminates. The loss rate improvement
is defined as the decrease of the Scheduling Algorithm loss
rate within a ‘window’ of M iterations (where M is another
input parameter).

For every RSU n, we calculate the distributed loss rate zy,
as follows (line 14):

— g unlTarl 1
" ;(' zk%unm)’ o
where 7, is the set of time slots during which request r can
be served by RSU n. Z, is defined to be 1 if request r is
lost and zero otherwise. The idea behind this calculation is to
distribute the loss of request r over all RSU’s that could serve
r. Each RSU n receives a fraction of r equal to the fraction
of total potential (capacity unit, time slot) pairs which can be
used to service r which belongs to n. Therefore, the bigger
the ability (more capacity and/or more time a dropped request
spends within range) of an RSU to service r, the bigger its
responsibility for dropping r will be. Nevertheless, the total
responsibility of RSU n for dropped requests must take into
account the capital cost of increasing its capacity (to the next
bigger available capacity). This cost J,, is calculated in line
15 (in case the capacity of n cannot increase further, we set

Algorithm 1 Capacity Augmentation (CA) Algorithm
Input:
o Placement of opened RSUs
{tun,¥n € No}
o Traffic trace with requests R, time slots 7, and communi-
cation cost matrix C' = [Cntr|Np x TxR
o Parameters &, (, M
Output: Adjusted capacities U = {u,,Vn € No}
1: Tnr := {time slots during which request 7 can be served by RSU
n} for all n,r
2: 4:=0
3: Run Scheduling Algorithm (No,U, R, T, C)
4: Z, :=1 if request r is dropped, O otherwise, Vr € R
5: loss[0] := Zrer Zr > loss rate of Scheduling Alg.
6
7
8

No, capacites U =

> Iteration Counter

IR|
: while loss[i] > ¢ do
if i > M — 1 then
if » loss[i—M+1]—loss][i] < C then

loss[i—M+1]
9: break
10: end if
11: end if
122 4:=14+1
13: for all n € No do -
Un| I nr
14: Zn 1= ZTGR(Z,. . Srens uk\Tkr\)
15: 0n := (capital cost after increasing RSU n capacity) -

(capital cost with current RSU n capacity)

16: ratio, := zn/5n > loss rate per unit of cost increase
17: end for
18: ={n € No : u, < up®*

19: ng := arg maxpen{ration}

20: Increase un, to the next available capacity for RSU ng
21: Run Scheduling Algorithm (No,U, R, T, C)

22: Z,:=1if request r is dropped, O otherwise, Vr € R
23: loss[?’} = %

24: end while

0, := 00). The more expensive it is to increase the capacity of
n, the less responsible it should be for the loss rate. Therefore,
we assign to each RSU n a score ratio,, = z,/J, (line 16).
The RSU with the highest score is picked (line 19), and its
capacity is increased to the next available capacity level (line
20).

V. PERFORMANCE RESULTS

In this section, we evaluate the performance of the proposed
capacity augmentation algorithm. The set of opened RSUs and
their capacities M, U are the ones resulting from solving the
(offline) ILP formulation of the problem, using a given design
traffic trace as described in [3].! Given the RSU placement
and provisioning, a greedy non-preemptive online scheduler
is used. The scheduler tries to minimize the total service cost
of scheduled job requests, by assigning each job request to
the energy-wise cheapest time-slot amongst all RSU’s with
available capacity, as long as the deadline job constraints are
met. In addition to the greedy online scheduler, in our results
we will also use the optimal offline scheduling algorithm,
which produces the minimum cost schedule that satisfies the
deadline constraints when the job requests are known ahead

ISee http://owl.mcmaster.ca/todd/ntk.pdf for a full descrip-
tion of the ILP in [3].

of time. The optimal offline schedule is not implementable in
our setting, since the requests are not known ahead of time,
but its performance is a lower bound for any online scheduling
algorithm (not just the greedy online scheduler used here). We
will see that the simple greedy scheduler we use is not far from
the optimal offline scheduler in its performance, and, therefore,
we will be able to assign any performance improvements to
the RSU capacity adjustments performed by algorithm CA
(Algorithm 1) rather, than to the use of a particular scheduler.

The performance evaluation is done using 10 vehicular
traffic traces as input. The vehicular arrivals in each trace are
generated by a Poisson process with a predetermined mean
arrival rate (here 1.25 vehicles per second, i.e., 2.5 vehicles
per time slot). Vehicles also generate job requests according to
a Poisson process, with mean arrival rates uniformly selected
between 0.01 to 0.02 per time slot. The sizes of vehicular
requests are generated from an exponential distribution, with
mean value selected uniformly between 4 and 8 time slots.
Note that each request of size bigger than one time slot is
divided into multiple requests of size one with the same release
and due dates, since we have assumed that job requests are
splittable. In order to define the deadline for each request,
the number of time slots from its release date to its due
date (i.e., the request time-to-live) is picked uniformly at
random between 80 to 160 time slots. The traces used in our
simulations are 30 minutes in duration. The number of vehicle
arrivals ranges between 1705 and 2286 (with an average of
2174), and the number of total requests ranges between 28335
and 35693 (with an average of 33939). The first trace is
used by both the initial placement algorithm of [3], and by
algorithm CA in order to do its capacity augmentations. The
reason for this choice is the fact that both algorithms are offline
algorithms, run on known past traces before an RSU placement
is implemented. Then, the other nine traces are used to evaluate
the effects of algorithm CA on both the cost and the drop rate.

The vehicle routes were generated by using SUMO [9]. The
source and destination of vehicle trips are selected uniformly
from the set of intersections, and each vehicle follows the
shortest path from its source to its destination. The average
travel time of each street is calculated according to its length,
speed limit, and expected traffic density. Vehicles travel on a
Manhattan grid with three horizontal and five vertical streets,
which are all bidirectional. All intersections are controlled by
traffic lights. The smallest block has a 1 km square area, which
gives a total deployment region of 11.25 km?. All RSUs are
placed either at intersections or at the middle point between
two intersections. There are three available RSU types, with
capacity of 2, 4, or 6 respectively. All three types have a
coverage range of 250 m on each side. Following [10], [11],
the model we use for the CAPEX f; of an RSU s is an affine
function of capacity fs = fos + fis X us for all s € N,
where fo, is the fixed cost for opening an RSU, and f15 X ug
is the part of CAPEX which depends on RSU capacity us.
In our simulations, we use the same CAPEX coefficients for
all RSUs; these coefficients are fos = fo = 4000, f1s =
f1 = 2000, in accordance with [12], [13]. This means that

the CAPEX for any RSU s is f; = 4000 + 2000 X us.

In assessing the total cost (CAPEX plus OPEX) in our
simulations, we would like to study different weightings of
CAPEX in relation to OPEX. In order to do that, we will
multiply the CAPEX of an RSU with a factor we call the
single RSU capital cost factor. We will use four different
multiplicative single RSU capital cost factors (1,2,3, and
4) in our simulations; obviously, the effect of CAPEX on
the total cost increases as the single RSU capital cost factor
increases. The goal of these experiments will be to assess the
effectiveness of algorithm CA when the influence of CAPEX
to the total cost ranges from lighter to heavier.

To summarize, these are the generic steps we follow in each
experiment:

1) Using the first traffic trace generated as explained above,
solve the ILP [3] to calculate the RSUs placement and
initial capacities.

2) Run the CA algorithm to calculate the adjusted capaci-
ties of the RSUs.

3) Run the optimal offline and the greedy online schedulers
using the initial RSU configuration on the design traffic
trace used in step 1.

4) Run the greedy online scheduler using the initial RSU
configuration on the remaining 9 traffic traces (and
average the results).

5) Run the greedy online scheduler using the CA placement
on the traffic traces used in step 4 (and average the
results).

Each experiment was run for each of the 4 possible single
RSU capital cost factors. The rationale behind step 3 (i.e.,
running both schedulers on the trace used to calculate the
initial RSU configuration), is the following: Using the initial
placement with the optimal offline scheduler and with the
design trace gives a lower bound on the performance of
the initial configuration. Using the initial placement with the
greedy online scheduler and with the design trace gives us
an idea of how detrimental to the initial configuration is the
online nature of job scheduling (although we use the design
trace itself).

Figure 1 shows the performance of using algorithm CA to
adjust the initial capacities. The total cost CAPEX+OPEX is
shown in Figure la, and the drop ratio achieved is shown in
Figure 1b. Both the total cost and the drop rate are shown for
each of the 4 single RSU capital cost factors (1,2, 3, and 4
on the x-axis). The number of opened RSUs for each one of
these factors are 25, 24, 24, and 24, respectively.

Running the initial RSU configuration with the optimal
offline scheduler and the design trace (i.e., the lower bound
shown as “Initial + Offline Sch.”) is shown with a solid black
line and diamond markers. Obviously, it achieves the minimum
possible total cost, and the minimum drop rate. Note that
the minimum drop rate is not always 0%; this is due to the
fact that the requests and their deadlines generated by our
random processes cannot always be serviced (i.e., there may
be requests that cannot be accommodated in any schedule).
The results of using the online scheduler and the design trace

on the initial configuration output are denoted by “Initial +
Online Sch.”. Switching to the online scheduler that has to
schedule the design trace requests as they come, increases
significantly the OPEX (and, hence, the total cost) and the
drop ratio, as can be seen in the figure.

We compare these results with the performance of applying
algorithm CA on the initial configuration, using the greedy
online scheduler on the design trace, i.e., “CA + Online Sch.”.
Observe that, while the total cost is similar to the cost incurred
by the initial configuration, the drop ratio achieved is very
close to the lower bound. This means that by investing more
in CAPEX by buying more RSU capacity, algorithm CA
compensates for this cost increase by reducing OPEX by a
similar amount, while almost completely achieving its main
goal, i.e., the reduction of drop ratio as much as possible.

While the previous results are encouraging for the prac-
ticality of the CA algorithm, the more important test is
clearly running CA on the 9 traces that were not used in
the design phase. These 9 traces were generated with the
same statistics as the design trace. The averaged results of
running the online scheduler with the initial configuration,
and with the CA configuration are shown in Figure 1 denoted
by “Initial + Online Sch. (New Traces)” and “CA + Online
Sch. (New Traces)”, respectively. For comparison purposes,
we have added results when we maximize the capacities of
all opened RSUs, i.e., the “Max. Cap. + Online Sch. (New
Traces)” in Figure 1). These results correspond to the case of
using as much capacity as possible in order to achieve the best
possible drop ratio, while being oblivious to any cost increases.

As expected, running the three different configurations
(Initial, CA, and Max. Cap.) on the 9 new traces incurs larger
total costs than running Initial and CA on the design trace
(Figure la). Obviously, the increase for the Initial and CA
configurations is due to increased OPEX costs, while the high
total cost of max capacity reflects its high CAPEX cost. Note
though, that the discrepancy between the latter and the costs
of the Initial and CA configurations decreases as the CAPEX
cost becomes more dominant in the total cost (i.e., the single
RSU capital cost factor increases). This is due to the fact that
as the CAPEX contribution to the total cost increases, the
initial configuration opens fewer RSUs and equips them with
more (up to max) capacity. Nevertheless, the cost incurred
by maximizing all capacities is always significantly greater
than using the Initial or CA configurations. On the other
hand, its drop ratio is very close to the lower bound (Figure
1b). Therefore, if one is oblivious to costs, maximizing all
capacities will give the best drop ratio. If the total cost is a
consideration, then Figure 1b shows that the CA configuration
has a much smaller drop ratio than the Initial configuration,
while incurring almost the same (actually smaller) cost as the
Initial configuration, as seen in Figure la.

To better understand the performance of the CA algorithm,
we show the performance of the configuration resulting after
each one of its iterations in Figure 2, for the case of the single
RSU capital cost factor of one (the leftmost points in Figure
1). The total cost and its components, i.e., OPEX and CAPEX,

x 106

1.8% X X

Tl
-—

1.4

Total Cost

Online Sch.
—&-TInitial + Online Sch. (New Traces)
-y~ CA + Online Sch. (New Traces)

¥ Max. Cap. + Online Sch. (New Traces)

8&- =~ Initial + Offline Sch. 7
7| |—@—Initial + Online Sch. |
—@—CA + Online Sch.
—Ac-Initial + Online Sch. (New Traces) 4

-~ CA + Online Sch. (New Traces) - ©
5k | =% Max. Cap. + Onlinm h

Request Drop Ratio (%)

Single RSU Capital Cost Factor
(@)

1 2 3 4

.

Single RSU Capital Cost Factor
(®

Fig. 1. The Effect of Capacity Augmentation Algorithm on RSU Placement Scheme.

are shown in Figures 2a and 2b, respectively. Figure 2c shows
the request drop ratio for each iteration. The results for the
other single RSU capital cost factors is similar, and, therefore,
we concentrate on the case of single RSU capital cost factor
of one.

As can be seen in Figure 2, there are two phases in the
graphs. The first phase (up to iteration 9) corresponds to
a sharp decrease in the drop ratio. During this phase, by
adding capacity to those RSUs with the highest impact on the
drop ratio, algorithm CA creates opportunities to serve more
vehicles at their favourable positions relative to RSUs (from
an energy point of view), while, at the same time, it decreases
the contention between requests for service. This causes both
the OPEX and the drop ratio to decrease. On the other hand,
increasing RSU capacities increases CAPEX. Hence, after a
certain point (iteration 9), increasing capacities doesn’t affect
OPEX by much, while CAPEX continues to increase, and as
a result, the total cost is increasing. During this second phase,
the improvement of the drop ratio is slow, especially when
compared to its rapid drop during the first phase. This is to
be expected, since after a certain point the capacities of the
RSUs are no longer an issue, and increasing them does not
improve significantly the OPEX or the drop ratio.

In all previous experiments, the RSUs were chosen from
three types, with a maximum capacity of 6. Given that vehic-
ular networks are built with an operational horizon measured
in decades, in the future it may be possible to increase RSU
capacities much beyond the upper bound of 6. In order to
assess the performance of algorithm CA in this case, we run it
with the same CAPEX model as before, but without an upper
bound on the available capacities. The results are shown in
Figure 3. The curve “CA (Unlimited Cap.) + Online Sch. (New
Traces)” shows the results of running algorithm CA without
RSU capacity upper bounds. The other curves are the result

of the Initial and CA configurations from Figure 1, where
RSUs have a maximum capacity of 6. In these experiments,
the highest capacities reached by algorithm CA are 8, 9, 9,
and 9 for single RSU capital cost factors 1,2, 3, 4 respectively.
Note that these maximum capacities are not much higher from
the upper bound of 6 used before.

We note that algorithm CA has a higher drop ratio when
run with unlimited capacities than with limited capacities
(although the total costs have the reverse relationship). This
can be explained as follows: First, reaching the capacity
upper bound on an RSU forces the algorithm to distribute
its capacity increases to other RSUs in order to decrease the
overall drop ratio, and as a result, this distribution of extra
capacity eventually helps to service more requests within their
deadlines. Second, there is the pathological situation of a
vehicle generating more requests than can be serviced before
the vehicle leaves the servicing RSU coverage area; therefore,
an RSU can have the highest impact on the request drop ratio
and, at the same time, increasing its capacity does not reduce
the number of dropped requests. This causes algorithm CA
to focus on the wrong RSU and to continuously increase its
capacity, until it detects that the drop ratio has not improved
(the length of window M in Algorithm 1) and terminates.

VI. CONCLUSION

This paper has addressed the issue of capacity augmentation
in energy efficient road-side unit (RSU) deployments. The
objective is to find RSU radio capacity augmentation assign-
ments that minimize the total capital expenditure and long-
term operating expenditure costs. This is subject to meeting
packet deadline constraints with a given packet loss rate target.
An algorithm, referred to as the capacity augmentation (CA)
algorithm, was proposed that iterates over the RSUs, selecting
candidates for capacity augmentation based on their packet

Total Cost

x10°

1

()

1
Ky
7 ’ '\
?
45 \
oo = %
2 o \
8 \
; 6 j 3.5 i & 2
551 o A4 .
&
2.5 1+
5 Ay
’ 9200000000000 03
4.5 15 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Number Iteration Number Iteration Number
(@) (W) ©
Fig. 2. The Capacity Augmentation Algorithm Progress in each of Iteration.
6
9 X 10 . .
—@—Initial + Online Sch. (New Traces)
—@—CA + Ounline Sch. (New Traces)
~P-CA (Unlim. Cap.) + Online Sch. (New Traces) /.
S
2 7r T
=
M gl i
&
A 5F —@—Initial + Online Sch. (New Traces) R
7z —@—CA + Online Sch. (New Traces)
= ir ~p-CA (Unlim. Cap.) + Online Sch. (New Traces) b
g .l]
21 i
1r —> L T
0'5 1 1 0 1 1
1 2 3 4 1 2 3 4
Single RSU Capital Cost Factor Single RSU Capital Cost Factor

(b)

Fig. 3. The Effect of Unlimited Capacity on the Capacity Augmentation Algorithm Performance.

loss rate sensitivities. Results were presented that characterize
and compare the performance of the CA Algorithm using a
greedy online packet scheduler. It was shown that the CA
Algorithm is an efficient way to assign RSU radio capacity that
can achieve the desired packet loss rate target while reducing

the

[1]

[2]

[3]

[4]
[51

sum of operating and capital expenditure costs.

REFERENCES

A. Farbod and T. Todd, “Resource Allocation and Outage Control
for Solar-Powered WLAN Mesh Networks,” IEEE Trans. on Mobile
Computing, vol. 6, no. 8, pp. 960-970, Aug 2007.

G. Badawy, A. Sayegh, and T. Todd, “Energy Provisioning in Solar-
Powered Wireless Mesh Networks,” IEEE Trans. on Vehicular Technol-
ogy, vol. 59, no. 8, pp. 3859-3871, Oct 2010.

N. Nikookaran, T. D. Todd, and G. Karakostas, “Combining capital
and operating expenditure costs in vehicular roadside unit placement,”
Submitted, 2016.

U. Ashraf, “Capacity Augmentation in Wireless Mesh Networks,” IEEE
Trans. on Mobile Computing, vol. 14, no. 7, pp. 1344—1354, July 2015.
F. Ahdi and S. Subramaniam, “Capacity Enhancement of RF Wireless
Mesh Networks Through FSO Links,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 8, no. 7, pp. 495-506, July 2016.

[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]

F. Y. S. Lin, “Link Set Capacity Augmentation Algorithms for Networks
Supporting SMDS,” in IEEE ICC ’94, May 1994, pp. 624-629 vol.1.
Y. Liang, H. Liu, and D. Rajan, “Optimal Placement and Configuration
of Roadside Units in Vehicular Networks,” in JEEE VTC, 2012, pp. 1-6.
T. S. Rappaport, Wireless Communications: Principles and Practice,
2nd ed. Prentice Hall, 2001.

J. Song, Y. Wu, Z. Xu, and X. Lin, “Research on Car-Following Model
Based on SUMO,” in IEEE 7th International Conference on Advanced
Infocomm Technology (ICAIT), Nov 2014, pp. 47-55.

M. Mahdian, Y. Ye, and J. Zhang, “Approximation algorithms for metric
facility location problems,” SIAM Journal on Computing, vol. 36, no. 2,
pp- 411-432, 2006.

K. Holmberg, “Solving the Staircase Cost Facility Location Problem
with Decomposition and Piecewise Linearization,” European Journal of
Operational Research, vol. 75, no. 1, pp. 41 — 61, 1994.

J. A. Volpe, “Vehicle-Infrastructure Integration (VII) Initiative Benefit-
Cost Analysis, Version 2.3,” United States Department of Transportation,
Washington, DC, Tech. Rep., May 2008.

T. Kumrai, K. Ota, M. Dong, and P. Champrasert, “RSU Placement
Optimization in Vehicular Participatory Sensing Networks,” in [EEE
INFOCOM Workshop, April 2014, pp. 207-208.

