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Abstract—Multi-decision mobile computation offloading occurs
when a task to be remotely executed is uploaded in separate
parts. Since the upload is partitioned, separate decisions are
needed to determine the best time to initiate each upload. The
multi-decision problem is considered for the case where execution
completion times are subject to hard deadline constraints and
where task offloads occur over a Markovian wireless channel.
An online energy-optimal computation offloading algorithm,
MultiOpt (Multi-decision online Optimum), is introduced, whose
optimality is proven using Markovian stopping theory. The paper
presents results using the Gilbert-Elliott channel model, where
task completion time probabilities can be efficiently computed
using Dynamic Programming. Although the proposed algorithm
is proven to be energy optimal, its performance is also compared
to four others, namely, Immediate Offloading, Channel Thresh-
old, Local Execution, as well as optimal single-part offloading.
Results show that the proposed algorithm can significantly
improve mobile device energy consumption compared to the other
approaches while guaranteeing hard task execution deadlines.

Index Terms—Green wireless communications, cloud comput-
ing, mobile computation offloading, energy efficiency, hard task
deadline constraints.

I. INTRODUCTION

Mobile computation offloading can be used to reduce mo-
bile device energy by offloading task execution to remote
cloud servers [1]. A lot of recent work has considered mobile
computation offloading when the mobile device must interact
with the cloud over stochastic transmission channels and/or
network conditions. In [2], for example, an energy model
considers both mobile computation and communication energy
components using statistical inputs, assuming a static wireless
channel. In this work, prediction was used to address random
network conditions. Reference [3] considered optimal energy
mobile cloud computing assuming random wireless channels
but without hard execution deadlines. Reference [4] flagged
execution time constraints as an important issue for many
interactive applications and the problem of achieving this
under stochastic channel conditions was highlighted. In [5],
CPU frequency scheduling and transmit power control was
used to ensure that task deadlines are met. A parameter was
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defined, however, that permits deadlines to be violated. As
in our case, this reference presented results using the well-
known Gilbert-Elliot channel model. Reference [6] proposed
an on-line mobile computation offloading algorithm, OnOPT,
that was shown to be energy optimal and satisfies hard
deadline constraints. This algorithm is used for performance
comparisons in our paper since it represents the best energy
performance that can be obtained with single-part offloading.

Our paper considers multi-decision mobile computation
offloading. This occurs when a task to be remotely executed
is uploaded in separate parts rather than as a single con-
tiguous multi-packet upload. Multi-decision offloading can
be used to reduce mobile energy use when wireless chan-
nel conditions change during the computation offload. Since
the upload is partitioned into parts, separate decisions are
needed to determine the best time to initiate each upload.
The multi-decision problem is considered when task execution
completion times are subject to hard deadline constraints,
i.e., the upload decisions must ensure that task completion
deadlines are always satisfied. Hard deadlines are guaranteed
by permitting simultaneous remote and local task execution,
as needed [6]. The paper considers the case for Markovian
wireless channel models. An online energy-optimal compu-
tation offloading algorithm, MultiOpt (Multi-decision online
Optimum), is introduced, whose optimality is proven using
optimal Markovian stopping theory. The exposition in the
paper considers the two part offloading case, but the method-
ology is easily extended to an arbitrary number of offloading
parts. To assess the performance of the algorithm under harsh
burst noise conditions, results are presented for the Gilbert-
Elliott channel model, where task completion time probabili-
ties can be efficiently computed using Dynamic Programming.
The proposed algorithm performance is compared to four
others, namely, Immediate Offloading, Channel Threshold,
Local Execution, as well as the optimal single-part offload-
ing (i.e., OnOpt). Results show that the proposed algorithm
can significantly improve mobile device energy consumption
compared to the other approaches, while guaranteeing hard
task execution deadlines.



II. SYSTEM MODEL

We consider the execution of computational tasks (jobs)
generated by a mobile device, either locally (by the device
itself), or by offloading them on a remote cloud server through
a wireless transmission channel. Our discussion will focus on
single job offloads, but each job could be a sub-task associated
with multiple local/remote job execution components [7] [8].
We assume that each job can be split into multiple parts
for offloading, each with a (known) number of bits to be
transmitted through the uplink channel. Splitting the upload in
this way can be advantageous when channel conditions change
during the offload. For example, it may be better, energy-wise,
to delay further uploading when channel conditions worsen,
hoping that it will improve in time to complete the computa-
tion offload. To simplify the presentation, we will describe
the two part case, but the procedure is easily extended to
multiple parts. Accordingly, the number of bits to be uploaded
are given by Sup1

, Sup2
for each part, respectively, for a

total of Sup = Sup1
+ Sup2

bits. Sdown bits are transmitted
through the downlink channel when downloading job results
from the cloud. Figure 1 defines the timing parameters used
in this work; time is discretized, i.e., quantized into equal
length time slots. Note that the time slot duration is defined
to accommodate the channel propagation model discussed in
Section III, and may contain multiple packet transmission
times on the channel. Each job is released at time slot tr;
for convenience, we assume that tr = 1. The job execution
must have been completed by a hard deadline tD, i.e., the job
execution results must be available at the mobile device by
time slot tD + 1.

A. Local Execution

Using the model described in [2], i.e., the local execution
energy consumption for a job is determined by its CPU work-
load, we assume that the local execution energy consumption
EL, and the local execution time TL, are known at the time
of task generation.

We must ensure that the job deadline constraint is always
satisfied. Therefore, local execution must start TL time slots
prior to the job deadline, if remote execution results have not
arrived by then (cf. Figure 1). That is, the local execution time
is given by tL = tD − TL + 1.

Fig. 1. Job offloading timing parameters

B. Remote Execution

In the case of offloading a job, the uploading data are split
into two parts which are transmitted to the server sequentially.
Uploading the first and second part takes Tup1

and Tup2
time

slots respectively; TW is the elapsed time between the two

uploads. Upon its release, the job is assigned a server execution
time Texec and a resulting downloading time Tdown (both
deterministic) by the cloud server; both are communicated to
the mobile device (or are prescribed by, say, the contractual
agreement between the user of the device and the cloud server
operator), and their total time is

Trest = Texec + Tdown.

Hence, the total offloading time is Toff = Tup1
+TW +Tup2

+
Texec + Tdown, as shown in Figure 1 (note that to1 , tf1 and
to2 , tf2 are the starting and finishing times of the uploading of
the two job parts, respectively). It is assumed that the mobile
device transmits a fixed power and uses bit rate adaptation
to accommodate random variations in the uplink channel
conditions. As a result, Tup1

and Tup2
are random variables,

dependent on the evolution of the uplink channel state as a
given upload occurs. In what follows, it is assumed that the
channel state can be modelled as a homogeneous discrete-time
Markov process. As in most of previous work, we assume that
the current state of the channel can be determined prior to
making the decision to start an offload. This information can
be learned in a variety of ways, such as via a short handshake
with the base station at the start of the time slot.

III. MARKOVIAN CHANNEL MODEL

We assume that there is a known channel state Markov chain
(CSMC), i.e., the channel conditions evolve from one time slot
to the next according to a homogeneous finite state Markov
chain. Each state in the CSMC has an associated bit rate that
gives the number of bits per time slot that can be uploaded in
that state. The CSMC transition matrix is defined as P = [Pi,j ],
where Pij is the probability of transitioning to channel state
j in the next time slot, given that the channel is currently in
state i. As defined, CSMC is memoryless, but in what follows
we will need to incorporate time in it. Therefore, we will
consider the tree-like Markov chain produced by following
the evolution of the channel, starting from an initial state at
time t = 1, and branching out from each state according to
the transition probabilities of the CSMC. This new Markov
chain is referred to as a time-dilated absorbing Markov chain
(TDAMC). We will denote by Xt a state in this Markov chain,
reached after running the channel for t time slots. We will
consider subtrees of this TDAMC (such at TDAMC1 and
TDAMC2 below), endowed with energy costs and absorbing
states.

The part of the TDAMC which models the offloading
progress if the uploading of Sup1

is initiated at a time slot
ts, will be denoted as TDAMC1. An example of TDAMC1

is shown in Figure 2. To simplify the exposition, the dia-
gram shows the two-state Gilbert-Elliot channel case, but the
procedure is valid for any Markovian channel. In the Gilber-
Elliot case, the channel is modelled by a CSMC with two
states {G,B} (i.e., a “Good” one with the higher bit rate, and
a “Bad” one, respectively), and with transition probabilities
PGG, PGB , PBG, PBB . In each time slot, TDAMC1 transi-
tions to a new state in accordance with these transition proba-



Fig. 2. TDAMC1 when offloading Sup1 starts at time ts.

bilities. For clarity, each state sat in the figure is subscripted by
its time slot t, and superscripted by a unique identifier a that
distinguishes it from the other channel states reachable after
t time slots. Hence, the TDAMC1 of Figure 2 models the
offloading process initiated at time slot ts, when the channel
state that has been reached at that time is s19ts . The bit rate at
each state is also indicated.

In general, TDAMC1 is a rooted subtree of the TDAMC,
constructed as follows: The root state is the (known) channel
state Xts at current time slot ts. At each subsequent time
slot, the Markov chain tree branches forward, according to
the transitions possible from the current state (Xts , initially)
to other TDAMC states. At each state, the number of job
bits transmitted is determined by the bit rate associated with
that state. The branching continues to create all possible paths
of states needed to upload Sup1 bits, up to some state Xtf1
corresponding to upload finishing time tf1 for each path from
the root. (such as s37ts+1, s

75
ts+2, represented by squares in

Figure 2). At time tf1 + 1, the second part Sup2
is released.

Continuing the branching of the TDAMC, and after a possible
waiting period, the uploading of Sup2 commences, followed
by the job execution in the cloud in time Texec, and the
downloading of the results in time Tdown, ending in an
absorbing state (this part of the offloading is depicted in Figure
2 as subtrees hanging from states s73ts+2, s

74
ts+2, s

149
ts+3, s

150
ts+3).

The optimal waiting time for each path, i.e., the waiting times
which optimize the total (over all paths) expected energy cost
for uploading Sup2 , is solved in Section IV. Then the energy
cost of each subtree is the optimal expected (over all paths)
cost of completing offloading, when uploading Sup1 finishes
in time slot tf1 and state Xtf1

. In fact, TDAMC1 does not
need to extend all the way into these subtrees, but treats states
Xtf1+1 as absorbing states, each with cost equal to the energy
cost of its subtree.

Similarly to [6], the probability of uploading Sup1
in Tup1

time slots, starting at time slot to1 , and a state Xto1
, can be

calculated by building TDAMC1, with a set of absorbing
states A, and a set of transient states T . Then, the transition

matrix can be written [9] as

P =

[
Q R

0 IA

]
, (1)

where the |T |×|T | sub-matrix Q contains the probabilities of
transitioning between transient states, the |T |×|A| sub-matrix
R contains the probabilities of transitioning from a transient
state to an absorbing state, and IA is an |A| × |A| identity
matrix.

The theory of absorbing Markov chains implies that various
statistics can be computed by forming the fundamental matrix
N = (I −Q)−1, where N [i, j] gives the expected number of
times that TDAMC1 is in transient state j if the system is
started in transient state i. Given the structure of TDAMC1,
N can be easily decomposed and calculated as in [6], since the
particular structure of matrices Q,N,N−1 is the same simple
one as in [6]. The absorption probabilities matrix W1 for all
absorbing states is given by

W1 = NR, (2)

where W1 is a |T | × |A| matrix, and W1[i, j] gives the
probability that absorbing state j will be reached when starting
in transient state i. Therefore, the probability of uploading the
first part with size Sup1 in Tup1 time slots, starting at time to1
and state Xto1

, is

Pto1
(Sup1 , Tup1 , Xto1

) =
∑

j∈S1 W1[Xto1
, j], (3)

where S1 is the set of absorbing states in TDAMC1 reached
by a path of length Tup1

+ 1 from the root Xto1
.

Similarly to TDAMC1, and in order to calculate the
expected cost once the uploading of Sup2

commences at time
slot to2 , we construct TDAMC2, which tracks the offloading
process from to2 and state Xto2

until offloading is completed.
Just like above, the probability of uploading Sup2

in Tup2
time

slots, starting at time to2 and state Xto2
, is

Pto2
(Sup2 , Tup2 , Xto2

) =
∑

j∈S2 W2[Xto2
, j] (4)

where S2 is the set of absorbing states in TDAMC2 reached
by a path of length Tup2 + 1 from the root Xto2

.

If the uploading of Sup1 starts at time slot to1 , and after
noting that Pto1

(Sup1 , Tup1 , x) = 0 when Tup1 <
Sup1

Bmax

or Tup1
>

Sup1

Bmin
, the expected offloading energy cost when

offloading starts at time slot to1 in state Xto1
, is given by

equation (5), and the expected local execution cost is given
by (6), where Etr is the transmission energy of the mobile
device during one time slot. (Equations (5) to (8) appear at
the top of the next page.)

The expected energy cost of uploading Sup2 in exactly
Tup2

time slots, and downloading the results in exactly Tdown

time slots, starting at time to2 with the channel TDAMC in
state Xto2

, is given by equation (7), where Erc is the energy
consumption of the mobile device during one time slot when
receiving from the server. Then the expected offloading energy



Eoff1(Sup1
, Xto1

) =



Etr

∑ Sup1
Bmin

Tup1
=

Sup1
Bmax

Pto1
(Sup1

, Tup1
, Xto1

)Tup1
, 1 ≤ to1 < tD −

Sup1

Bmin
+ 1

Etr

(∑tD−to1
Tup1=

Sup1
Bmax

Pto1
(Sup1

, Tup1
, Xto1

)Tup1
+∑ Sup1

Bmin

Tup1
=tD−to1+1 Pto1

(Sup1 , Tup1 , Xto1
)(tD − to1 + 1)

)
,

tD −
Sup1

Bmin
+ 1 ≤ to1 ≤ tD

(5)

EL1(Sup1 , Xto1
) =


∑ Sup1

Bmin

Tup1
=tL−to1+1 Pto1

(Sup1
, Tup1

, Xto1
)
(

min{tD+1,to1+Tup1
}−tL

TL
EL

)
, 1 ≤ to1 < tL∑ Sup1

Bmin

Tup1
=

Sup1
Bmax

Pto1
(Sup1

, Tup1
, Xto1

)
(

min{tD+1,to1+Tup1
}−tL

TL
EL

)
, tL ≤ to1 ≤ tD

(6)

Êoff2(Sup2 , Tup2 , to2) =



EtrTup2
+ ErcTdown, tf1 < to2 ≤ tD − Tup2

− Trest

EtrTup2
+ Erc{tD − (to2 + Tup2

+ Texec) + 1}, tD − Trest < to2 + Tup2
≤ tD − Texec

EtrTup2
, tD − Texec < to2 + Tup2

≤ tD

Etr(tD − to2 + 1), tD < to2 + Tup2
≤ tD + Tup2

(7)

ÊL2
(Tup2

, tf1 , to2) =



0, tf1 < to2 < tL − Tup2 − Trest

to2+Tup2+Trest−tL
TL

EL, tf1 < tL ∧ tL − Tup2 − Trest ≤ to2 ≤ tD − Tup2 − Trest

EL, tf1 < tL ∧ tD − Tup2 − Trest < to2 ≤ tD
to2+Tup2+Trest−tf1

TL
EL, tf1 ≥ tL ∧ tf1 < to2 ≤ tD − Tup2 − Trest

tD−tf1
TL

EL, tf1 ≥ tL ∧ tD − Tup2 − Trest < to2 ≤ tD

(8)

cost is

Eoff2(Sup2 , Xto2
) =

Sup2
Bmin∑

Tup2
=

Sup2
Bmax

Pto2
(Sup2

, Tup2
, Xto2

)Êoff2(Sup2
, Tup2

, to2). (9)

Given the finishing time tf1 of uploading Sup1
, the local

execution energy cost corresponding to the offloading portion,
starting with the uploading of Sup2

at time to2 and state
Xto2

, taking exactly Tup2 time slots, and finishing with the
downloading of the results, is given in (8). Then the expected
local execution energy cost is

EL2
(Sup2

, tf1 , Xto2
) =

S
Bmin∑

Tup2=
S

Bmax

Pto2
(Sup2

, Tup2
, Xto2

)ÊL2
(Tup2

, tf1 , to2) (10)

Note that Eoff1 = 0, EL1
= EL for to1 ≥ tD+1, and Eoff2 =

0, EL2
= EL for to2 ≥ tD + 1, i.e., when the first or second

part isn’t uploaded, respectively.

IV. OPTIMAL STOPPING AND THE MULTIOPT
(MULTI-DECISION ONLINE OPTIMAL) ALGORITHM

In this section we use the TDAMC construction of Section
III and the theory of optimal stopping for Markov decision
processes [10] to define the MultiOpt algorithm, and show that
it achieves the optimal expected energy for the mobile device.
A high-level description of the algorithm is as follows: Starting
from time slot t = 1 (the release time of the job), at each time
slot t the algorithm considers TDAMC1 in order to determine
the expected cost of the whole offloading process if uploading
Sup1

commences at the current time t. If that cost is less than
the expected offloading cost when the algorithm waits one
more time slot, then t∗o1 = t (offloading Sup1 commences),
otherwise the algorithm postpones its decision to time slot
t + 1. Once the uploading of Sup1

finishes, the algorithm
repeats the same decision process at every time slot (using
TDAMC2 to compute expected costs), to determine the time
t∗o2 of starting uploading Sup2

.
MultiOpt will be optimal only if its first decision t∗o1 ≥ t,

i.e., its starting time of uploading Sup1
, coincides with the

solution of the following minimization problem (where the
choice to1 = tD + 1 corresponds to no uploading):

v1(Xt) = min
t≤to1≤tD+1

{ ∑
Xto1

∈S1

Pr[Xto1
|Xt]



(
Eoff1(Sup1

, Xto1
) + EL1

(Sup1
, Xto1

)+∑
Xtf1

+1∈S2

W1[Xto1
, Xtf1+1]v2(tf1 , Xtf1+1)

)}
(11)

where S1 is the set of states reachable after running the
channel for to1 time slots, S2 is the set of absorbing states
of TDAMC1 rooted at Xto1

, and v2(tf1 , Xtf1+1) is the
optimal expected energy cost for the rest of the offloading,
when Sup1 finished uploading at time tf1 , i.e., the cost of the
absorbing state Xtf1+1 of TDAMC1 (or, equivalently, the
corresponding subtree of Figure 2). This optimal cost is the
solution of the following optimization problem for t > tf1 ,
when we set Xt := Xf1+1:

v2(tf1 , Xt) = min
t≤to2≤tD+1

E[g2(Sup2
, tf1 , Xto2

)|Xt]

= min
t≤to2≤tD+1

∑
Xto2

∈T1

Pr[Xto2
|Xt]g2(Sup2 , tf1 , Xto2

),

(12)

where T1 is the set of states reachable after running the channel
for to1 time slots, and g2(Sup2

, tf1 , Xto2
) is the expected

energy cost of uploading Sup2
and downloading the results, if

uploading of Sup1
finishes at tf1 and uploading Sup2

starts at
time slot to2 and state Xto2

, i.e.,

g2(Sup2 , tf1 , Xto2
) =

Eoff2(Sup2
, Xto2

) + EL2
(Sup2

, tf1 , Xto2
). (13)

For t > tD, v2(tf1 , Xt) = 0 (no uploading of the second part).
Given the first decision t∗o1 of MultiOpt, we show that

its second decision t∗o2 solves the optimization problem (12).
For every time slot to2 > tf1 and state Xto2

, we define the
expected cost V2(tf1 , Xto2

) recursively as follows:

V2(tf1 , Xto2
) =

0, if to2 > tf1 ≥ tD

EL −
max{tf1 ,tL}−tL

TL
EL, if to2 ≥ tD > tf1

min{g2(Sup2
, tf1 , Xto2

), E[V2(tf1 , Xto2+1)|Xto2
]},

if tD > to2 .

(14)

V2(tf1 , Xto2
) can be computed using Dynamic Programming

(DP), and it is the minimum between the expected total cost of
starting uploading Sup2

at time slot to2 and state Xto2
, and the

expected cost of postponing that decision to time slot to2 + 1

E[V2(tf1 , Xto2+1)|Xto2
] =∑

Xto2+1∈T2

Pr[Xto2+1|Xto2
]V2(tf1 , Xto2+1),

where T2 is the set of states reachable after running the channel
for to2 + 1 time slots. Note that (14) implies a policy, that
dictates whether at any time to2 and state Xt02

the algorithm
should start uploading (if the min is attained by g2), or should

otherwise wait. It is well known (e.g., Theorem 1.7 in [10])
that policy V2 is optimal, i.e., solves the original problem (12),
since

v2(tf1 , Xt) = V2(tf1 , Xt), ∀t > tf1 , Xt. (15)

Hence the following holds:

Lemma 1. [10] The optimal time for starting upload-
ing Sup2

is t∗o2 = argmintf1<to2≤tD{V2(tf1 , Xto2
) =

g2(Sup2
, tf1 , Xto2

)}.

It remains to prove that the first decision t∗o1 of MultiOpt is
also optimal. For any possible choice to1 for the first decision
of MultiOpt, (15) can be applied, and the optimization problem
(11) becomes

v1(Xt) = min
t≤to1≤tD+1

{ ∑
Xto1

∈S1

Pr[Xto1
|Xt](

Eoff1(Sup1
, Xto1

) + EL1(Sup1 , Xto1
)+∑

Xtf1
+1∈S1

W1[Xto1
, Xtf1+1]V2(tf1 , Xtf1+1)

)}
(16)

The expected energy cost of offloading when starting up-
loading Sup1 at time to1 and state Xto1

is

g1(Sup1 , Xto1
) = Eoff1(Sup1 , Xto1

) + EL1(Sup1 , Xto1
)+∑

Xtf1
+1∈S1

W1[Xto1
, Xtf1+1]V2(tf1 , Xtf1+1). (17)

For every time slot to1 and state Xto1
, we define the expected

cost V1(Xto1
) recursively as follows:

V1(Xto1
) =


EL, to1 ≥ tD

min
{
g1(Sup1 , Xto1

),

E[V1(Xto1+1)|Xto1
]
}
,

to1 = 1, . . . , tD − 1

(18)

V1(Xto1
) can be computed using Dynamic Programming (DP),

and it is the minimum between the expected total cost of
starting uploading Sup1 at time slot to1 and state Xt01

, and the
expected cost of postponing that decision to time slot to1 + 1

E[V1(Xto1+1)|Xto1
] =

∑
Xto1

+1∈S3

Pr[Xto1+1|Xto1
]V1(Xto1+1),

where S3 is the set of states reachable after running the channel
for to1 + 1 time slots.

In exactly the same way as Lemma 1, one can show that
policy V1 is also optimal, i.e., solves the original problem (11),
since v1(Xt) = V1(Xt), ∀t,Xt. Hence the following holds:

Lemma 2. [10] The optimal time for starting uploading Sup1

is t∗o1 = argmin1≤to1≤tD{V1(Xto1
) = g1(Sup1

, Xto1
)}.

Lemmata 1 and 2 imply that the on-line algorithm MultiOpt,
given in Algorithm 1, is optimal. Note that this result is true
for any Markovian channel.



Algorithm 1 MultiOpt (Multi-decision online Optimal)
Input: Local execution starting time tL, local execution en-

ergy EL, job deadline tD, and job sizes Sup1 , Sup2 .

1: for all t = 1, . . . , tD do
2: Case 1: If uploading part 2 is finished then Break
3: Case 2: If still uploading at t then Continue
4: Case 3: If uploading part 1 not started then perform

check (18); If min is g1 then start uploading part 1.
5: Case 4: If part 1 has been uploaded but part 2 has not

started uploading then perform check (14); If min is
g2 then start uploading part 2.

6: end for

V. SIMULATION RESULTS

In this section, computer simulation is used to study the per-
formance of the proposed MultiOpt Algorithm. The Gilbert-
Elliot Markovian channel model is used for our examples. This
model is commonly used to model harsh channel conditions
where burst noise causes the channel to abruptly transition
between good and poor channel conditions. This type of
channel posses severe problems for computational offloading
due to the random fluctuations between these two extremes
during the channel offload. The Gilber-Elliot model has two
states, which we refer to as Good (G) and Bad (B), with bit
rates Bg and Bb, respectively. We set PBB := 1 − PGG, in
order to use PGG as a measure of the average channel quality,
i.e., larger PGG indicates better channel conditions on average.

We compare the energy consumption of MultiOpt to an
offline bound, the Local Execution of the job, and three
other algorithms, namely OnOpt, Immediate Offloading, and
Channel Threshold. The offline bound finds the optimal up-
loading times by assuming complete knowledge of all future
channel states. The Local Execution of the entire job is done
locally at the mobile device, without doing any offloading.
The OnOpt Algorithm, proposed in [6], is an online algorithm
that finds the optimum offloading start time to minimize
the expected energy consumption when the job is uploaded
in one part without interruption. The Immediate Offloading
algorithm offloads the job immediately at its release time,
unless Sup/Bg + Trest > TD, i.e., unless offloading cannot
be completed before the job deadline even under the best
channel conditions, in which case the job is executed locally
without offloading. The Channel Threshold algorithm starts the
uploading of the first part at the first time slot when the channel
condition becomes Good, unless the remaining time before tD
is less than Sup/Bg + Trest; when uploading the first part is
completed (if the decision is to offload), uploading the second
part starts as soon as the channel state becomes Good, unless
the remaining time before tD is less than Sup2/Bg + Trest.
For both the Immediate Offloading and the Channel Threshold
algorithms, local execution starts at time slot tL if offloading
is not completed at time slot tL − 1.

We will assume that the total amount of data to be offloaded
is split into two equal parts, i.e., Sup1 = Sup2 = Sup/2.
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Fig. 3. Average energy consumption versus Sup: PGG = 0.2

The parameter settings used in the simulations are as follows:
Each time slot lasts for 1 ms. The data transmission rates are
Bb = 1Mbps and Bg = 10Mbps, or Bb = 1kb per time slot
and Bg = 10kb per time slot. The transmission and reception
power of the mobile device is 1 W and 0.5 W, respectively,
which means that the transmission and reception energy per
time slot is Etr = 1mJ and Erc = 0.5mJ, respectively. The
download time Tdown is 1 time slot. In the results below, the
average energy consumption is obtained after repeating the
simulation for 10,000 runs.

We first consider a job that needs D = 10M CPU cycles
and TD = 60 time slots. The local execution energy per CPU
cycle is vl = 2 × 10−6mJ and the local computation power
is fl = 1M CPU cycles per time slot [11], [12]. Therefore,
the local execution time is TL = D/fl = 10 time slots, and
the local energy consumption EL = vlD = 20mJ. The remote
execution time is Texec = 1 time slot. Figure 3 shows the
average energy consumption of the mobile device as the data
size Sup increases. The energy used by Local Execution is
constant for all Sup. When Sup is smaller, it is more likely
for offloading to meet the delay constraint due to shorter
channel uploading time. Therefore, the energy consumption
of all offloading algorithms is smaller than that of Local Exe-
cution. As Sup increases, the average energy consumption of
the Immediate Offloading and Channel Threshold algorithms
keeps increasing, and can be much larger than that of Local
Execution, while the average energy consumption of the offline
bound, MultiOpt, and OnOpt algorithms increases first and
then keeps the same as that of Local Execution as Sup becomes
large. The Immediate Offloading algorithm has the highest
energy consumption among all the algorithms because it
always offloads. By delaying the offloading until the first Good
channel state, the Channel Threshold algorithm consumes
slightly lower average energy than Immediate Offloading, but
its average energy consumption still keeps increasing with
Sup. This is due to the fact that the offloading decision of
the Channel Threshold algorithm is most beneficial in case of
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Fig. 4. Average energy consumption versus PGG

a continuous Good channel bit rate, which is not true during
the actual uploading process, since it encounters more Bad
channel states as Sup increases. Note that the average energy
consumption of the offline bound is always the lowest, due to
the future channel state information available to it. Compared
to OnOpt, the energy consumption of MultiOpt is lower, as
expected. By splitting the total amount of data into two parts,
the MultiOpt algorithm has more flexibility that helps the
mobile device to avoid uploading over long periods of bad
channel states and save energy. This extra degree of freedom
is not available to OnOpt, which has to continue uploading
even over a bad channel once it has committed to offloading.

Next, we use the application parameters for x264 (H.264)
encoding from [13], and consider a job with Sup = 80Kb,
needing D = 18M CPU cycles, and TD = 80 time slots. The
local execution energy per CPU cycle is vl = 1.5 × 10−6mJ
and the local computation power is fl = 600 M CPU cycles
per second or fl = 0.6 M CPU cycles per time slot. Therefore,
the local execution time is TL = D/fl = 30 time slots, and
the local energy consumption EL = vlD = 27mJ. The remote
execution time Texec is 3 time slots. The results are shown in
Figures 4 and 5.

Figure 4 shows the average energy consumption of different
algorithms as PGG varies. When PGG is small, channel
condition is poor, the offline bound, MultiOpt, and OnOpt
algorithms are more likely to decide to not offload, resulting
in energy consumption very close to that of Local Execution,
while the Immediate Offloading and Channel Threshold al-
gorithms may consume much more energy than the latter by
offloading. As PGG increases, the average energy consumption
of all the offloading algorithms decreases, since a shorter
time is needed to complete the uploading due to better
channel conditions. The energy consumption of the offline
bound decreases with PGG much faster than that of the other
offloading algorithms due to available future information, and
then becomes almost constant when PGG is sufficiently large
(e.g., exceeds 0.5 in Figure 4). Immediate Offloading results
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in the highest energy consumption among all the algorithms.
As expected, the average energy consumption of the proposed
MultiOpt algorithm is lower than that of the OnOpt for all
PGG values, and for the same reasons as above. When PGG

is close to 1, all offloading algorithms have about the same
average energy consumption, since the channel conditions are
almost always Good, and all the algorithms make the same
offloading decisions.

Figure 5 shows the average energy consumption of the
algorithms as the job deadline TD changes. In general, as TD

increases, the average energy consumption of all the offloading
algorithms decreases, while that of the Local Execution is
not affected. When TD is small, offloading is less likely to
meet the deadline requirement; therefore, the offline bound,
MultiOpt and OnOpt algorithms are more likely to decide not
to offload, and, as a result, the average energy consumption
of these algorithms is the same as or close to the energy con-
sumption of Local Execution. When TD is sufficiently large,
the MultiOpt algorithm is almost the same as the Channel
Threshold algorithm in terms of average energy consumption,
since both algorithms end up deciding to offload at the earliest
Good state for each part of the data.

VI. CONCLUSIONS

This paper considered the issue of multi-decision mobile
computation offloading. Multi-decision offloading can be used
to reduce mobile energy use by partitioning the upload of a
task to be executed into separate parts, rather than offloading
it as a single contiguous multi-packet upload. The paper
considered the multi-decision problem when task execution
completion times are subject to hard deadline constraints, and
when the wireless channel can be modelled as a Markov
process. An online mobile computation offloading algorithm,
MultiOpt (Multi-decision online Optimum), was introduced,
and was proven to be energy-optimal. Although the proposed
algorithm is proven to be optimal, the paper also presented
results using the Gilbert-Elliott channel model, which is



commonly used to model burst noise effects. The proposed
algorithm performance was compared to four others, namely,
Immediate Offloading, Channel Threshold, Local Execution
and optimal single-part offloading. Our simulation results show
that the proposed algorithm can significantly improve mobile
device energy consumption even when compared to energy
optimal single part offloading, over a wide range of system
parameters.
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