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Abstract

We consider a forwarding game on directed graphs 
where selfish nodes need to send certain amount of flow 
(packets) to specific destinations, possibly through several 
relay nodes. Each node has to decide whether to pay the 
cost of relaying flow as an intermediate node, given the 
fact that its neighbors can punish it for its non-cooperation. 
In this work we simplify the original network model, and 
provide the first experimental evaluation of these equilibria 
for different classes of graphs. We provide clear evidence 
that these equilibrium solutions are indeed significant and 
establish how these equilibria depend on various properties 
of the network such as average degrees and flow demand 
density. Our main results establish experimental bounds 
for the path dilation in this model: the average ratio of the 
routed flow cost at equilibrium over the cost of the optimal 
routing which would involve shortest path routing in our 
model.

Keywords: Selfish nodes, Utility, Equilibrium flow.

1   Introduction

Network routing typically requires transmissions to go 
through intermediate nodes that relay traffic from an origin 
to a destination. In many cases intermediate nodes receive 
no utility from relaying traffic for an origin-destination 
pair: the reason the node is asked to relay the traffic can be 
simply because it happens to lie on the shortest path from 
the origin to the destination node. However retransmission 
may incur a cost, especially in wireless networks. This 
can be addressed by designing a scheme of payments. 
A payment can provide an incentive for intermediate 
nodes to relay the required traffic. However, we can see 
that there are different incentives already present in the 
network for relaying traffic: if all nodes decide not to relay 
anyone else’s traffic, then only neighbors will be able to 
communicate. Therefore, assuming that all nodes participate 
in the network because they require to communicate with 
several other nodes, they would prefer to have a functioning 
network, so that their own flow is routed to its destination, 
and also receive the flow that is addressed to them. In other 
words, each node has an incentive for other nodes to keep 
relaying traffic for its own benefit. If a node y decides to 

stop relaying incoming traffic of a neighbor x, then the 
neighbor, naturally, will be unhappy and may choose to 
punish the node by stopping all traffic towards it, including 
traffic that was trying to reach node y itself. Therefore, the 
decision of x not to relay traffic results in x losing out on 
traffic addressed to itself. In that case the node has a clear 
incentive to relay traffic up to a point, in order to avoid 
punishment from its unhappy neighbors. Such a model, 
does not involve payments in order to achieve successful 
relaying of traffic, but it does involve the possibility of 
punishment of a non-relaying node. The incentives are 
different, but still aligned towards getting some of the 
nodes to decide to cooperate. 

We consider the scenario of a connected network, 
modelled as a directed unweighted graph. In this network 
we have a number of designated origin-destination pairs 
(s, t), each associated with a positive parameter ds, t. These 
origin-destination pairs describe the network flow demands 
in the network: source node s wants to send an amount 
of flow ds, t to its target node t. Each node might be a 
designated source (and therefore would like to send flow to 
specific destinations), or a destination (and therefore would 
like to receive flow from predetermined source nodes), or, 
in most cases, it is both a source and a destination. Nodes 
receive utility from all flows successfully delivered or 
received. All nodes need to pay a cost which is proportional 
to the amount of traffic they need to transmit. If a source 
node can communicate directly with its target then of course 
it is to the benefit of both to have this communication. If, 
however, there is no direct connection, then an intermediate 
node, or several intermediate nodes must be used as relays, 
or forwarding nodes. These nodes can decide to relay traffic 
and therefore pay the cost of transmission themselves for 
someone else’s traffic. Although this seems counterintuitive, 
it has been established very recently that there exist cases 
where it is the node’s overall benefit to relay someone else’s 
traffic, although not necessarily all of the traffic requests. 
Therefore, assuming that each node plays strategically, 
there exist cases where it is the benefit of every node in the 
network to relay traffic for others, even though everyone is 
selfish (tries to maximize its own utility) and there are no 
payments allocated.

The recent work of Karakostas and Markou [4] 
establishes theoretically that these solutions exist in 
instances of this network traffic problem. However, these 
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results do not give any insight of whether such solutions 
exist often, or whether they are realistic. For example, it is 
possible that only an infinitesimal fraction of the network 
instances actually have such solutions. Or it might be the 
case, that in such solutions only an infinitesimal amount of 
the original flow finds its way to its destination. 

In this paper we provide an experimental investigation 
of this model. We show that these solutions are realistic, 
in the sense that random network instances have non-
trivial solutions with high probability, and those flow 
solutions carry a significant fraction of the total flow. We 
also establish how these equilibrium solutions depend on 
various network parameters. Our work includes minor 
modifications and simplifications to the model used in 
[4]. Furthermore, our main results involve the analysis 
of the price of having an incentive-based routing in 
this forwarding model. In general, the price of anarchy 
refers to the ratio of the cost achieved at the equilibrium 
solution divided by the cost of the optimal solution. In 
our model, the cost is the energy required for relaying and 
all transmission. Therefore this cost is directly related to 
the hop length of the chosen routing paths. The optimal 
solution would route all flow along the shortest path 
connecting the origin to the destination node. However, at 
equilibrium, flow may be routed along longer paths that 
include nodes that have the right incentives. Therefore, 
quantifying the price of anarchy involves looking at path 
dilation, i.e., the length of the equilibrium routing paths 
compared to the shortest paths. Our experiments show that 
path dilation at equilibrium is, in most cases, less than 2, 
i.e., the equilibrium paths are no more than twice the length 
of the shortest path, and often the dilation is around 1.4, 
i.e., the equilibrium flows are about 40% longer than the 
shortest paths.

The main contr ibut ions of  this  work include 
establishing the fact that the equilibrium strategies exist 
very often in practice, carry a significant amount of flow, 
and lead to a moderate price of anarchy. Our experimental 
results show how the strategies are affected by different 
parameters of the network: (1) the average degree; (2) the 
demand density; and (3) the type or structure of network 
connectivity.

The paper is organized as follows. We start with an 
overview of related work and background required in 
Section 2. We proceed in Section 3 with a formal definition 
of the network flow problem. We present a simplified 
version of the model and describe the theoretical results 
derived for this simplified model in Section 4. Then we 
give an experimental evaluation of this model in Section 5, 
concluding in Section 6.

2   Background and Related Work

In multi-hop networks, selfish behaviour is a frequent 
and reasonable assumption that captures the behaviour of 
self-interested entities that need to coexist and possibly 
cooperate in a common environment. A selfish node in 
a network will choose an action that maximizes its own 
utility (or payoff) without any concern about the result 
of its decisions to the rest of the nodes. Selfish behaviour 
has been studied using game theoretic techniques in many 
different areas and problem settings, including wireless ad-
hoc multi-hop networks [1]. For a wireless sensor network 
for example, every node needs to preserve its battery life, 
as it is usually a scarce resource. However, if nodes choose 
to refuse to relay traffic, the network will cease to function. 
This will lead to no flow being delivered to its destination 
and all utilities being equal to zero for all nodes. Note that 
here we ignore flow demands between source-destination 
pairs that can communicate directly. These flows will 
always be successful in our model, and form what we will 
refer to as a trivial solution, or trivial equilibrium. If nodes 
decide not to relay any flow, the network is in a worst-
case equilibrium in the network, in the sense that in such 
equilibria the minimum amount of flow is transmitted, 
namely only the flow between neighbors, since the strategy 
of a node not relaying for anyone, also results in their own 
flow not being relayed. Naturally the following question 
arises: do there exist network stable states (equilibria) 
other than this pathological case, i.e., equilibria where 
some nodes do relay flow for others (and therefore do pay 
the cost for someone else’s flow)? Several recent papers 
[4][6][8-9] show that indeed these strategic solutions do 
exist for relatively natural network relay models. There 
are cases where it is to the benefit of everyone involved 
to relay traffic, because this will lead to a better utility 
outcome for themselves [4]. There are many ways to avoid 
the trivial solution of zero-relaying, which is a form of the 
well-known “tragedy of the commons.” Payment schemes 
are a common way to provide incentives to intermediate 
nodes to relay packets. Reputation-based protocols are 
based on keeping records of the past actions of neighbors: 
each node keeps track of the amount of traffic its neighbors 
has forwarded in the past and follows a specific protocol 
to decide the amount of traffic it will route in each round. 
The decisions can be local [1][3][5] (each node decides 
according to its own private information about the past 
actions of its neighbors) or centralized (a central authority 
collects all information as a central repository, and decisions 
are based on the statistics from the entire network) [7-8].

We focus on the work related to connectivity in such 
networks based on reputation systems, following the 
analysis of [4]. The main result we focus on, shows that 
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equilibrium forwarding strategies do exist, without any 
payment or a centralized reputation system. In fact the 
main theoretical result shows that there exist equilibrium 
forwarding strategies that route a non-zero fraction of flow 
for every source-destination pair. This is a rather surprising 
and interesting result that raises many immediate questions 
about the practical properties of such equilibrium strategies. 
Note that the result does not guarantee that such equilibrium 
strategies exist for every network instance. Far from that, 
there are several simple networks that certainly do not 
have any equilibrium strategies other than the trivial one 
(the one that connect only neighboring source-destination 
pairs and therefore there is no relaying involved). The 
natural question to ask is how often do these networks have 
such non-trivial equilibrium flows, and how significant 
these flows are. The theoretical results guarantee that if 
an equilibrium exists, a non-zero amount of flow is routed 
for every source-destination pair. However, it may be 
possible that the fraction of the flow routed is insignificant. 
In this work we answer both these questions, by showing 
the frequent existence of non-trivial equilibria and their 
practical significance.

Similar Nash equilibria for relay games are also 
explored experimentally by Félegyházi et al. [2]. The 
relay game in that work is not using payments or any 
other explicit incentive for relaying nodes, but it is based 
on reputation. The game is modelled as a repeated game 
and conditions for the existence of equilibrium solutions 
are established theoretically. The authors also present 
experiments to establish the probability that a random 
network will indeed allow an equilibrium relay solution. 
However, the experimental results are used mainly to 
explore particular strategies for the repeated game, or check 
whether specific conditions hold.

3   Definitions

We describe a model that is significantly simplified 
compared to that presented previously in [4] but still 
captures an important sub-class of the forwarding game, 
where only successful flows are routed in the network. We 
will explain this distinction in more detail further on.

Modeling of the Network. Let G = (V, E) be a directed 
graph, representing a connected network that consists of 
nodes that are elements of the set V. If node u ∈ V can 
communicate directly by sending data to node v ∈ V, then 
there is a directed edge (u, v) ∈ E. The special case where 
G is undirected is a reasonable model for wireless ad-hoc 
networks, when communication links are bi-directional. We 
are also given a set of origin-destination pairs (si, ti) ∈ V × 
V for I = 1.k, and flow demands di ≥ 0 for each pair. We 
will call each such pair a commodity. The i-th commodity, 

would like to send its flow demand from the source si 
to the target ti. Each commodity can choose to split the 
flow along any number of paths from si to ti. Note that we 
describe the model using these sets of paths as it is more 
intuitive and makes it easier to formulate our results. This 
formulation would be exponential in size and would not be 
useful in practice, but it is often used in related literature. 
Alternatively, we use the equivalent edge-flow formulation 
that is polynomial in size; in this formulation the amount of 
flow that commodity i assigns on edge e = (u, v) is denoted 
by fe

i or fuv
i.

Successful vs. Unsuccessful Flows. The general 
model in [4] allows intermediate nodes to decide to drop a 
certain amount of flow (decide not to relay). Therefore, on 
a connection e = (u, v), the node u might transmit a certain 
amount of flow fe

i, but node v may decide to only retransmit, 
say, half of it on the next edge towards its destination. In 
this case there is an amount of flow that is not successful: 
it is transmitted by a source node, but it never reaches its 
destination. One of the theoretical results in [4] is that 
some networks have equilibrium flow solutions that use 
only successful flows. That is, a node never transmits more 
flow that is actually relayed to its destination. We focus on 
this particular case for our experiments. There may also be 
equilibrium solutions with unsuccessful flows, according to 
[4], but those are more complex and less practical to work 
with, as it is NP-hard to compute them, or to check whether 
they exist. Hence the model we define here is significantly 
simplified compared to the one in [4], because it doesn’t 
allow for the routing of unsuccessful flow. However, note 
that there is no loss in generality for the particular case 
we are interested in (equilibrium solutions with successful 
flows only). 

Game Definition. For every edge e = (u, v) there are 
two “strategic” parameters associated with the decision 
of how much flow the edge should carry. The receiving 
node v needs to decide how much flow from this edge it 
will relay further. Note that an edge e = (u, v) will carry 
“through flow” (flow that needs to be relayed by v to some 
destination) and “arriving flow” (flow with destination v). 
The maximum amount of flow of the edge e = (u, v) that 
v is going to tolerate is denoted by β e. This means that v 
is simply not going to relay anything more than this limit. 
The limit β e needs to be decided by node v and is one of the 
strategic variables in the model. On the same edge, u also 
has a threshold that shows its own tolerance of dropped 
flow from v. If v is dropping a lot of flow (β e is too low) 
then u might decide not to forward any flow to v, by cutting 
off the edge e. Note that this is an important decision 
that can hurt v, because the edge e also carries flow with 
destination v. In other words, u will send two kinds of flow 
to v: (1) flow to relay further, and (2) flow with destination v. 
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If v does not relay enough then u can cut off the edge, and v 
will lose the flow with destination v it received through that 
edge. For every edge e = (u, v), the node u has a strategic 
variable α e that denotes the minimum amount of through-
flow that v is expected to relay. If v relays less, then the 
edge e is automatically cutoff. So, whenever β e < α e the 
edge e will be automatically cut off. Therefore α e plays the 
role of the threshold referred to before. As a result, an edge 
e = (u, v) can be cut off either by u, when it increases its 
expectation α e above v’s forwarding limit β e, or it can be 
cut off by v, when it lowers the flow it relays β e below u’s 
expectation α e.

The complete formal description of the game-theoretic 
model of the network is as follows: There is a player for 
each node, with the utility function defined in equations. 
Each player (node v) needs to decide on its own strategy, 
which includes the following variables:

 yα e: The tolerance values for each outgoing edge e = (v, 
x). If the target neighbor x on the edge e is not relaying at 
least α e then the edge is cut off.
 yβ e: The drop thresholds for each incoming edge e = (x, v). 
v will relay at most β e of flow coming from e.
 y fe

vx: The flow assignment that v will route towards all of 
its assigned targets x.

The strategy of a node σ v contains values for all of the 
above parameters: α e for outgoing edges e, all β e’ for 
incoming edges e’, and all flow assignments fe

vx for all 
edges e in the graph and all destination nodes x.

The player utility function is defined as a simple 
generalization of the one in [4]. A node u gets utility either 
(1) from receiving flow destined for itself, or (2) by the 
flow originating from itself and actually arriving to its 
destination. On the other hand, a node u will incur cost 
(negative utility) whenever it needs to transmit flow (its 
own or relayed traffic). We define the utility of a node y as 
the weighted summation of these three components:

  (1)

The weights ws ≥ 2 and wr ≥ 1 model the trade-
off between the successful flow utility and the cost of 
transmission (note that the later has a base unit weight of 1, 
while ws is used for the flow that is sent from a node, and wr 
is used for the utility of arriving flow). We assume that ws ≥ 
2 since we need to have some utility from sending flow to a 
destination after subtracting the cost of transmission (if ws = 
1 then it does not make any sense to transmit any flow). The 
weights ws, wr depend on the application and other details 
of the network, and determining their actual values can be 
a difficult task. We do not explicitly associate any cost with 

receiving flow because this can be easily modelled in the 
utility function by choosing the weights appropriately.

Each node will choose to relay traffic in a way that 
maximizes it own utility as defined by equation . In order 
to maximize its utility it needs to pick a strategy wisely. A 
Nash equilibrium (or equilibrium solution) in this network 
game is a complete strategy profile σ  for all nodes σ  = (σ v1, 
σ v2, …, σ vn), such that no node has a unilateral incentive to 
change its own strategy. In other words, assuming that the 
nodes are using the strategies in σ , no node v can increase 
its own utility by changing only its own strategy σ v in the 
strategy profile σ .

Connected Non-Trivial Nash Equilibria. Recall that 
the network instance includes many source-destination 
pairs, and for each pair there is some amount of demand 
(maximum amount of flow available to be sent to the 
destination). In fact every node will be part of some 
such pair, otherwise there is no reason for being part of 
the network in the first place. It is easy to see that if the 
source node u of a source-destination pair u, v is connected 
directly to the target v (there is a directed edge (u, v) in 
the graph) then it is always beneficial for both nodes for 
u to send all of its duv demand to v. Therefore there is a 
trivial equilibrium solution, where only neighbor demands 
are routed in the network and no other flow is sent. We 
will call this the trivial Nash equilibrium or simply the 
trivial solution. Obviously we are interested in non-trivial 
equilibria. We say that a flow assignment is connected if it 
routes a non-zero amount of flow for each commodity. A 
connected non-trivial Nash equilibrium solution is what we 
are interested in. In what follows, whenever we refer to an 
equilibrium solution we mean a connected non-trivial Nash 
equilibrium solution, unless we explicitly want to make a 
reference to trivial solutions or commodities with zero flow 
routed.

4   Existence of Equilibrium Solutions

Looking at the definition of the model we see that the 
equilibrium solution depends heavily on the choice of the 
α  and β  parameters. A node would rather relay as little 
through-traffic as possible: through-traffic incurs only costs. 
However, if the node starts reducing the amount of flow it 
is supposed to relay, then incoming edges will eventually 
be cut off and this will stop the node from receiving flow 
destined for it and lose utility. Hence the decision to relay 
less traffic needs to be balanced with the traffic a node 
expects to receive from each edge. This is precisely the 
point that is used to characterize the equilibrium solutions 
in this network game. Following the analysis of we can 
extend the main theorem regarding successful flows to 
our network model that has a slightly generalized utility 
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function. The main difference in the utility function we 
introduce here is the use of the scaling parameters ws and wr.

So far we have described the flow assignments in terms 
of edges. We now switch to path flows as this formulation 
makes the description of the theorem and flow splits more 
intuitive. Recall that everything can be also described 
in terms of edges and, in fact, we do use the edge-flow 
formulation in our experiments. 

For every source-destination pair (ui, vi) we denote the 
set of all possible paths connecting ui to vi by Pi. Recall 
that each node is essentially trying to optimize the amount 
of flow it will get to its destination, but it will also need 
to make sure the flow routing it proposes is tolerable 
by the nodes it needs to use as relays. We can write this 
optimization problem as a linear program, and by setting ws = 
2 for simplicity we get the following:

  (2)

Note that the size of this linear program is exponential 
in the number of nodes since it is formulated using paths. 
However we can easily convert it to a linear program 
written on the network edges that has size polynomial in 
the size of the network.

Let D be the total demand in the network between 
neighboring nodes. A trivial equilibrium solution will route 
a total flow equal to D. The following theorem describes 
the non-trivial equilibrium solutions [4]: 

Theorem 1.  A network game has  non-tr ivia l 
equilibrium solutions with only successful flows if and only 
if the linear program described in (2) has a solution with 
objective value ∑PfP

* > D.
The complete proof of this theorem is analogous to the 

proof of Theorem 2 in [4].

5   Evaluation

In this section, we present an extensive set of 
experiments to evaluate the forwarding model presented 
above. Our main goals are the following:
(1) The theoretical results state that equilibria solutions 

may exist for some networks. How often do these 
network games actually have such equilibrium 
solutions?

(2) These equilibrium solutions route a non-zero fraction of 
the available flow potentially for every commodity. But 
is this routed fraction significant or very close to zero?

(3) How good are the equilibrium solutions compared to 
the optimal routing solution?
We answer all these basic questions by analyzing 

random families of graphs with randomly chosen source-
destination pairs and demands. For these random graphs we 
solve the linear program (2) and find the equilibrium flow 
assignments.

Graphs are generated according to the Erdös-Renýi 
model (Gnm), and the Barabasi-Albert power-law model. 
The Erdös-Renýi model is probably the most widely used 
and well-studied model of random graphs. Unfortunately, 
due to its simplicity, it may not capture properties that 
are inherent in networks similar to those targeted by our 
protocol, such as the Internet, ad-hoc wireless networks, 
and social networks. There are several random graph 
models that attempt to model the structure of such 
networks, and especially their power-law (or scale-free) 
degree distributions; we use the Barabasi-Albert model as a 
representative of this family of random graph models, since 
it exhibits the preferential attachment property, i.e., the 
existence of nodes that attract more links as they become 
more well-connected. Since our networks are envisioned as 
mainly ad-hoc, the preferential attachment property should 
capture the fact that certain nodes are more ‘central’ than 
others due to, for example, their physical placement on the 
terrain. We leave the testing of our model on other random 
graph models as future work.

Various edge densities are used. Self-loops and multi-
edges are not allowed. Commodity pairs are chosen 
uniformly at random. Flow demands are chosen uniformly 
at random between 1 and a predetermined maximum 
value. All demands are integers. We choose wr = 1 for our 
experiments. As discussed above, the parameter should be 
greater or equal to 1 in general. The boundary case of wr = 
1 means that arriving flow is worth as much as the cost to 
transmit it. Note that we maintain ws = 2, and, therefore, (2) 
applies to our case.

Given a randomly generated instance (graph plus 
commodities) we solve the linear program (2) and 
compare the total routed flow at equilibrium with the best 
possible solution. In the optimal solution all flow is routed 
(complete cooperation). Note that trivial flow, which is 
the flow between source-destination pairs that happen to 
be neighbors, will always be routed, so when we compute 
the ratio of equilibrium flow versus optimal, we subtract 
the trivial flow. In order to understand the efficiency of the 
equilibrium solution, we define the equilibrium flow ratio to 
be (equilibrium flow-trivial flow) divided by (optimal flow-
trivial flow). This ratio will always be between 0 and 1. Our 
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experiments explore the equilibrium flow ratio for varying 
values of edge density, commodity density, and graph type. 
The experiments are done on a 16-processor Intel Xeon 2.27 
GHz machine with 24 GB of memory. The linear program 
is solved by the CPLEX solver, using IBM’s OPL Studio.

5.1 Amount of Successful Flow at Equilibrium
Figure 1 shows two series of histograms. On the left 

we include a series of histograms that plot the resulting 
equilibrium flow ratio distribution for 100 different 
experiments with increasing edge density. On the right 
we have a similar series of histograms with increasing 
commodity density. Each histogram also shows the average 
and standard deviation of the plotted values. We see that for 
a relatively sparse network with average degree 4 (top left 
histogram), the equilibrium solution will route just below 
14% of the available flow. For a network with average 
degree 10 however, the equilibrium solution is expected to 
route close to 70% of the available flow. For average degree 
12 the equilibrium flow is over 85% of the total available 
(bottom left histogram). We see a similar but slightly more 
modest increase as the commodity density increases. Figure 
1 shows that equilibrium flows carry non-negligible flow 
in the network and they increase significantly when the 
network becomes more dense, or when the flow demands in 
the network become more dense.

Figure 1 Percent of Available Flow Routed at Equilibrium for 
Erdös-Renýi Graphs as a Function of Edge Density, 
and Commodity Density

This is an interesting, typically game-theoretic 
result: the more overloaded the network becomes, the 
more efficient are the equilibrium flows. In other words, 
the incentives become stronger for nodes to relay when 
the network is more dense with flow demands, or with 
possible flow paths. Going back to the description of the 

equilibrium constraints of this game, we see that essentially 
an equilibrium flow solution is exploiting nodes that have 
an incentive to relay flow in order to keep edges connected. 
In a sense, these connected edges e = (u, v) are a deal 
between nodes u and v: u will continue to send v flow with 
destination v (and therefore flow that v wants to receive) 
provided that v relays enough flow further in the network. 
Increasing the edge density by adding more edges in the 
network, increases the probability that there are such deals 
to be made across edges for each flow demand. If the 
network is sparse then the existing paths may not bring 
together nodes whose interests are aligned. The same 
holds true for increasing the density of commodities. The 
more source-destination pairs we add to the network, the 
more likely it becomes that edges will remain open as the 
interests of the nodes incident to those edges are aligned. 
Figure 1 also shows that edge density has a stronger impact 
on the equilibrium flow routed. A dense network is likely 
to reach a very good level of efficiency, routing almost all 
available flow.

In Barabasi-Albert power-law graphs we see a different 
picture. Figure 2 shows how the routed equilibrium flow 
changes when edge density increases and when demand 
density increases. For similar values of edge density and 
commodity density, we see that the expected equilibrium 
flow is significantly lower than what we see in Erdös-Renýi 
graphs. However we still see that increased density has 
a positive effect (expected amount of flow routed is still 
increasing), albeit at a more modest rate. We also observe 
that increasing edge density has a marginally more positive 
effect on the flow routed at equilibrium. The equilibrium 
flows are calculated by solving the linear program (2). 
The generated linear program has a size that grows fast 

Figure 2 Percent of Available Flow Routed at Equilibrium for 
Power-Law Graphs as a Function of Edge Density 
(Left) and Demand Density (Right)
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with the graph size. For a graph with n nodes, m edges, 
c commodities, the number of constraints is bounded 
by O(nm + m2c). This is a generous over-estimate as the 
expected node degree is smaller than what is used for the 
calculation of the upper bound (maximum possible degree 
is O(m), the number of edges in the graph). The expected 
size of the linear program is O(nd + d2c) where d is the 
maximum of the average out-degree and average in-degree. 
In practice the solve-time can vary greatly with different LP 
instances. The running time is shown in Figure 3 for power-
law graphs. The results show that the variance increases 
as the number of edges (edge density) and the number of 
commodities increase.

Figure 3 Solve Time for Finding the Flow Routed at Equilibrium 
for Power-Law Graphs as a Function of Edge Density 
(Left) and Demand Density (Right)

Figure 4 compares the percent of available flow routed 
at equilibrium as a function of increasing commodity 
density. The results for Erdös-Renýi (Gnm) graphs are on the 
left side and the results for power-law (Barabasi-Albert) 
graphs are on the right. We see clearly that the equilibrium 
solution has a stronger dependence on the available 
commodity flow pairs for Gnm graphs rather than for power-
law graphs. A well-known characteristic of power-law 
graphs is that there is a small number of strongly connected 
nodes, nodes with degree that greatly exceeds the average 
degree of the graph. These high-degree nodes are usually 
referred to as “hubs.” In terms of connectivity, power-law 
graphs are more fault-tolerant than Erdös-Renýi graphs, 
in case of random failures of nodes or edges. Adding a 
random edge in the network may connect a hub to another 
node, or connect two average-degree nodes. In case the 
new edge is added to a hub, the result is minimal in terms 
of connectivity and path length, since the hub node is 
already very well connected, with a very high degree. If 
the new edge connects two average degree nodes, then the 
new edge is in a part of the network that does not affect 
connectivity as much, as the hubs are the nodes that make 
the components of the network well-connected. Hence, 

adding new edges in a power-law graph is expected to have 
a moderate effect in terms of connectivity. The structure of 
power-law graphs makes it more common for connecting 
paths to pass through hubs: Nodes with average degree are 
usually in components that are connected together by hubs. 
This is consistent with the results for sparse graphs that we 
have shown above. As the commodity density increases, 
the graph connectivity is not affected in any way. Most of 
the added commodity pairs will naturally involve average 
degree nodes, and therefore will have fewer chances of 
finding willing relaying nodes. As a result, the increasing 
commodity density does not have a strong impact on the 
routed traffic at equilibrium. 

5.2 Path Dilation
Given a network instance (network connectivity and 

origin-destination demand pairs), the optimal routing of the 
flow would be along the shortest path connecting the origin 
and the destination of each demand pair. This minimizes 
the total energy required for the flow to be transmitted and 
reach its destination.

However, this routing may not be compatible with 
the incentives of the individual nodes: a selfish node on a 
shortest path may not have an incentive to relay flow for 
others. Hence the chosen paths at equilibrium may use 
longer paths. These paths are less cost-efficient, but involve 
nodes that are willing to keep certain edges connected, 
and therefore relay flow, since they are receiving flow 
for themselves from those edges. The lack of centralized 
optimal control is expected to lead to longer routing paths. 
In this section we present experimental results to quantify 
how much longer we should expect the equilibrium paths 

Figure 4 Percent of Available Flow Routed at Equilibrium for 
Erdös-Renýi Graphs and for Barabasi-Albert Graphs as 
a Function of Commodity Density
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to be, compared to the optimal ones (shortest paths). 
We run experiments on randomly generated graphs as 
before, on Erdös-Renýi and Barabasi-Albert (power-law) 
graphs, varying the edge density (average number of edges 
per node) and the demand density (average number of 
destinations per node).

As mentioned above, power-law graphs have a very 
different structure to Erdös-Renýi graphs with a small number 
of very popular, highly connected nodes, and a long tail of 
sparsely connected nodes. The graphs usually have relatively 
short paths connecting nodes, but many of those paths are 
expected to pass through the same, very popular nodes.

Therefore, when we increase the density of the graphs, 
we do not expect to see a very strong impact to path dilation 
or amount of flow routed, since most of the new edges or 
demands will involve the long tail of sparsely connected 
nodes.

Figure 5 shows the experimental results for increasing 
number of flow demand pairs. The x-axis is the average 
number of destination demands for each node of the 
network. For example, demand density of 8 means that, 
on average, each node in the network wants to send flow 
to 8 destinations. The y-axis is the sum of lengths of all 
paths used from successful flows, divided by the sum of all 
shortest paths that would be used for all successful flows 
for an cost-optimal routing solution

The figure also includes the amount of successful flow 
as a percent of the total flow demand that could actually 
be routed in the network. As we generate random graphs 
and random st-pairs, it is possible that there are no directed 
paths between some of the generated st-pairs and therefore 
no flow could be routed through those paths anyway. These 
origin-destination pairs are ignored.

Here there is a clear downward trend of path dilation, 
as we increase the demand load on the network for random 
Erdös-Renýi graphs, while power-law graphs show very 
little sensitivity to the demand density. The amount of flow 
routed is also far less sensitive for power-law graphs. As we 
mentioned above, we do expect this behaviour, as a result 
of the structure of power-law graphs. When we add new 
demand pairs in the network, we are more likely adding 
origin-destination nodes in the much larger, less connected 
part of the network.

Unlike power-law graphs, increasing the demand 
density in Erdös-Renýi graphs results in better paths. This 
is a result of having more demand in the network, which, in 
turn, increases the probability of having nodes on shortest 
paths that are willing to relay flow to keep edges connected 
for themselves. 

Figure 6 shows the experimental results for increasing 
number of edges per node. The x-axis is the average out-
degree for each node of the network. For example, average 
degree of 10 means that, on average, each node in the 

Figure 5 Path Dilation and Percent of Available Flow Routed at 
Equilibrium for Erdös-Renýi Graphs and for Barabasi-
Albert Power-Law Graphs as a Function of Demand 
Density

Figure 6 Path Dilation and Percent of Available Flow Routed at 
Equilibrium for Erdös-Renýi Graphs and for Barabasi-
Albert Power-Law Graphs as a Function of Edge Density, 
the Average Number of Out-Edges for Each Node
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network has 10 neighbors through which they can choose 
to send flow. The demand density for these experiments is 8, 
and the network has 50 nodes.

Here the results are quite different. Both power-law 
and Erdös-Renýi graphs behave in a more similar manner, 
with the path dilation increasing with the average degree. 
Again, the effect is marginal for power-law graphs, i.e., 
we do not see any significant change when we increase 
the edge density of the graph. For Erdös-Renýi graphs, 
path dilation now increases with edge density. When we 
increase the number of edges in the network, the shortest 
paths are expected to decrease for Erdös-Renýi, and less so 
for power-law graphs, for the same reasons as mentioned 
above (additional edges connect the larger, less dense part 
of the network and are more likely to have little effect, as 
short paths are more likely to involve the very few, very 
popular nodes).

For the range of parameters used in the experiments, 
the variance of the path dilation values is relatively low in 
Erdös-Renýi graphs, and higher for power-law graphs.

Figure 7 shows a histogram for path dilation for power-
law graphs. The values come from 100 random graphs 
with 50 nodes, and edge and demand density 8. The values 
are clustered around the mean, and are bounded below 2. 
Figure 8 shows the corresponding histogram for Erdös-
Renýi graphs. Here the values show higher variance and 
mean, but still bounded below 3.

6   Conclusion

We considered a natural relaying problem modelled 
as a game theoretic problem. For this model, the existence 
of equilibrium flows that are based on natural incentives 
for relaying as opposed to payments is provable. We 
experimentally established that these equilibrium solutions 
can carry a significant fraction of the available flow, and 
that the resulting paths are not much longer than the 
shortest ones. We focused on two random graph models: 
the Barabasi-Albert power-law model, and the Erdös-Renýi 
random graph one.

For a relatively wide range of densities of both edges 
and demands, the power-law networks behave arguably 
in an efficient and very stable manner at equilibrium. Path 
dilation is usually less than 1.4 and we expect at least 80% 
of the available flow to be routed successfully, without the 
need of any central control, or any payment scheme.

For Erdös-Renýi graphs, we see a much higher 
sensitivity to both edge and demand densities. High edge 
density makes the network more successful, in the sense 
that more flow is routed, but this results in longer, more 
inefficient paths. For demand density, things are very 
different. Higher demand density makes the network more 
successful (more flow is routed) and more efficient (paths 
are shorter at equilibrium). 

This work is only the first step towards the experimental 
study of the model in [4] and its more realistic simplified 
versions. Further work is needed in order to develop and 
study even simpler versions (for example, restricting each 
node to only a local view of the network, instead of a 
global knowledge of the strategic decisions of all nodes). 
Another issue we leave open is a study of other reputation 
mechanisms as compared to our models; in fact, this is 
a rich area for both theoretical and experimental studies. 
Currently, we do not have the theoretical background 
for characterizing the Nash equilibria of other reputation 
schemes in a way similar to Equation (2).
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