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Abstract

This paper considers mobile computation offloading when concurrent local execution (CLE) is used to enforce task execution
time constraints. This mechanism can ensure that hard task deadlines are satisfied regardless of any randomness induced by the
wireless channel, network or cloud servers. In this type of system, mobile device energy may be reduced by segmenting a task
upload into multiple parts, rather than doing a conventional contiguous task upload. The paper uses this mechanism to adapt to
changes in channel conditions during the offload. Unlike the contiguous task offload case however, the upload initiation times of
each part must be determined dynamically. This is done while ensuring that hard task deadlines are always satisfied. In this paper,
the multi-part computation offloading case is considered. In multi-part offloading, the task to be offloaded is partitioned into K
upload parts before any offload initiation decisions are made. In this case, current channel state information is incorporated into the
offload decisions, and the system must always satisfy a hard task execution time constraint using concurrent local execution. The
paper considers the case for Markovian wireless channels. A provably energy-optimal online computation offloading algorithm
(MuliOpt) is introduced for multi-part offloading. MultiOpt is shown to be optimal using Markovian decision process stopping
theory. Since the computational complexity of MultiOpt can be significant, simpler and more computationally efficient heuristics,
which also respect the hard task execution deadline, may be used. The paper introduces two such heuristics, the Immediate
Offloading, and Multi Threshold algorithms. The mobile energy use of MultiOpt is compared to these heuristics, as well as to
local execution without offloading and an offline energy bound. Simulation results show that MultiOpt performs significantly better
when compared to the proposed heuristics, as well as when K increases.

Keywords: Cloud computing, mobile computation offloading, energy efficiency, mobile task execution performance, hard job
deadline constraints

1. Introduction

Mobile device energy consumption can sometimes be im-
proved by using mobile computation offloading (MCO). This
is accomplished by having the mobile device arrange for tasks
to be executed remotely, rather than running them locally
on the device itself. Remote execution is typically done on
infrastructure-based cloud servers that are accessed by the mo-
bile device using wireless communication channels. There is a
large prior literature that deals with the various issues around
performing computation offloading [1] [2] [3] [4] [5].

A wide variety of systems have been proposed for mobile
computation offload implementation. References [6] and [3]
have proposed architectures that control the offloading using
facilities from the Microsoft .NET and Android-based APIs, re-
spectively. Computation offloading typically reduces execution
energy consumption but usually incurs communication energy
costs since the tasks to be executed (and their inputs/outputs)
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must be transferred over wireless network links. This may also
incur additional latency that would not occur otherwise. The
tradeoff between energy saving and computing performance for
single device offloading has been studied extensively [7] [8] [9].

In the multi-user case, References [10] [11] [12] [13] have
considered single task offloading where the entire task is either
offloaded or executed locally. Various studies have also consid-
ered the case where a given job may be partitioned into multi-
ple tasks, each of which may be executed locally or offloaded
[3] [6] [14] [15] [16]. This work raises the issues of how to
perform the partitioning, and which tasks should be offloaded
given that there may be data dependencies between the tasks.
There is also work that models MCO as a competitive game.
In this type of system there may be resource contention among
the devices, such as the case where they share communication
channels and/or cloud servers [17] [18] [19] [20].

Early mobile computation offloading work tended to take a
static view of the communication channels used during the of-
fload. More recently, work has considered the case where the
mobile device must interact with cloud server(s) over stochastic
transmission channels and/or variable network conditions. As
an example, Reference [7] models the communication energy
using statistical inputs, but the wireless channel is assumed to
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be static throughout the offload, i.e., the channel is quasi-static.
In this work, random network conditions are addressed using
prediction.

The importance of task execution time constraints for inter-
active applications was highlighted in Reference [21]. This pa-
per also discussed problems of achieving this, when offloading
using stochastic wireless channels. Energy optimal cloud com-
puting was addressed in Reference [22], which included a treat-
ment of task execution time deadlines assuming random wire-
less channels. Although task completion time deadlines were
addressed, their observance was considered statistically rather
than as a hard constraint which has to be satisfied. Dynamic
programming was used to optimize computation offloading de-
cisions in [23], but task execution time deadlines were not con-
sidered. CPU frequency scheduling was used in [24] to control
mobile task execution time, when remote offloading occurs un-
der random wireless channel conditions. This was combined
with mobile transmit power control, to target task deadlines.
However, since there are limits on radio transmit power and
CPU frequency, satisfying execution time constraints is not al-
ways possible. For this reason, a violation parameter was used
to characterize execution time deadline misbehaviour. This ref-
erence assumed the well-known Gilbert-Elliot Markovian chan-
nel model, as is the case in our simulation results.

Reference [25] used concurrent local execution (CLE), in or-
der to ensure the satisfaction of hard deadlines. In CLE, a hard
deadline is guaranteed by permitting simultaneous remote and
local task execution when it is needed to ensure task comple-
tion times (cf. [25] [26]). Reference [25] proposed an on-
line mobile computation offloading algorithm, OnOPT, that was
shown to be energy optimal and satisfies hard deadline con-
straints. Reference [26] proposed an on-line mobile computa-
tion offloading algorithm, MultiOPT, that was shown to be en-
ergy optimal and satisfies hard deadline constraints for the case
of splitting the uploading data into two parts.

Our paper generalizes [26], by extending multi-part mobile
computation offloading to an arbitrary number of parts (instead
of just two) when CLE is used. More specifically, the task to
be remotely executed is segmented into K parts, with K asso-
ciated upload initiation time decisions. We assume that both
K, as well as the bit-sizes of the K parts are predetermined.
Multi-part offloading can be used to reduce mobile energy use
when wireless channel conditions change during the compu-
tation offload. In multi-part offloading, at the end of uploading
one part, the wireless channel may have deteriorated, and there-
fore a decision to wait until more favourable channel conditions
may lead to lower overall mobile device energy consumption.
These decisions have to be made using CLE, so that the system
always satisfies the given hard task execution time constraint.
Since the task is uploaded in separate parts, separate offload
initiation time decisions are needed for each, so that mobile de-
vice energy consumption is minimized.

The paper considers the Markovian wireless channel case.
Under this assumption, a new computation offloading algorithm
(MultiOpt) is introduced for multi-part offloading. MultiOpt is
shown to be energy optimal, in the sense that no other CLE
online computation offloading algorithm can achieve a lower

mean mobile device energy consumption. This is shown by
creating a new Markov process, which incorporates time in the
given Markovian channel model, and then, by using optimal
Markovian stopping.

The energy performance of MultiOpt is compared to simpler
CLE heuristics that also ensure that hard task execution dead-
lines are observed, namely, Immediate Offloading, and Chan-
nel Threshold, as well as to local execution without offloading.
Results show that the proposed algorithm can significantly im-
prove mobile device energy consumption compared to the other
approaches, while guaranteeing hard task execution deadlines.

2. System Model

We consider the execution of computational tasks (jobs) gen-
erated by a mobile device, either locally (by the device itself),
or by offloading them on a remote cloud server through a wire-
less transmission channel. CLE is employed in order to ensure
the completion of jobs before their hard deadlines. Our discus-
sion will focus on single job offloads, but each job could be
a sub-task associated with multiple local/remote job execution
components (e.g., [27] [28]). We assume that each job can be
split into K parts for offloading, each with a (known) number of
bits to be transmitted through the uplink channel. Splitting the
upload in this way can be advantageous when channel condi-
tions change during the offload. For example, it may be better,
energy-wise, to delay further uploading when channel condi-
tions worsen, hoping that it will improve in time to complete
the computation offload. We refer to this scenario as K-Part
offloading throughout this paper.

Note that time is taken to be discrete, i.e., quantized into
equal length time slots that are referred to by their time slot
indices. The time slot duration is defined so as to accommo-
date the channel propagation model discussed in Section 4 and
may contain multiple packet transmission times on the channel.
Each job to be executed is characterized by the following:

tR: Release time of the job, i.e., the time when the job is ready
to start execution, either locally or via offloading. This is
marked on the left side of Figure 1. For convenience, we
will assume that tR = 1.

tD: Hard deadline of the job, i.e., the job execution results
must be available at the mobile device by time tD. This
is shown on the right side of Figure 1, where TD =
tD−tR+1 is the maximum number of time slots available
for completing the job.

Sup: Number of bits transmitted through the uplink channel
when uploading the job to the cloud.

Supi
: Bit-size of the ith piece, where Sup = Sup1

+ Sup2
+

. . .+ SupK
.

Sdown: Number of bits transmitted through the downlink chan-
nel when downloading job results from the cloud.
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2.1. Local Execution

Using the model described in [7], i.e., the local execution
energy consumption for a job is determined by its CPU work-
load, we assume that the local execution energy consumption
EL, and the amount of time to complete local execution TL, are
known at the time of task generation.

We must ensure that the job deadline constraint is always
satisfied. Therefore, local execution must start TL time slots
prior to the job deadline, if remote execution results have not
arrived by then (cf. Figure 1). That is, the local execution start
time is given by tL = tD − TL + 1.

2.2. Remote Execution

The K-Part offloading timing sequence is shown in Figure
1. The first job piece begins uploading at to1 , and ends at tf1 ,
then TW1 time slots t∗ok before the second piece begins upload-
ing at to2 , and so on, until the Kth piece is uploaded. Note that,
by definition, if to1 > tD, then there is only local execution.
It is assumed that the uplink channel uses bit rate adaptation
to accommodate random variations in channel conditions. As
a result, time intervals Tupi = tfi − toi + 1, i = 1, . . . ,K,
are random variables, dependent on the evolution of the uplink
channel state as a given upload occurs. After its uploading is
complete, the job is executed on the server in Texec time slots,
and its execution results are downloaded to the mobile device
in Tdown time slots. We assume that the execution time Texec

is assigned when the job is released, by the cloud server, which
is communicated to the mobile device (or is prescribed by, say,
the contractual agreement between the user of the device and
the cloud server operator). We assume that Tdown is also com-
municated to the mobile device at this time; more generally, we
can treat the dowloaded results as the K + 1’th job piece trans-
mitted over the channel, but we will avoid doing this, in order to
simplify our presentation. In this paper, we assume that power
control is used on the downlink, so that Tdown is known before
the upload. Therefore, the total offloading time Toff is given
by

Toff =

K∑
i=1

Tupi +

K−1∑
i=1

TWi + Texec + Tdown, (1)

where TWi
is the number of time slots that elapse after upload-

ing the ith piece and before uploading the (i+1)th piece. If the
dowloaded results are received before deadline tD, any local
execution of the job is automatically terminated.

In what follows, we define

Trest = Texec + Tdown. (2)

As in many of the references, we assume that the current state
of the channel can be determined prior to making the decision
to start an offload. This information can be learned in a variety
of ways, such as via a short handshake with the basestation at
the start of the time slot.

3. Offline Bound

In this section, an offline lower bound on mobile device en-
ergy is derived. This bound is used in Section 6 for performance
comparisons with various online computation offloading algo-
rithms. Since the bound is offline, we assume that the wireless
channel states are known for all future time slots, i.e., we know
the bit rate (in bits per time slot) at all times 1 ≤ t ≤ tD (recall
that tR is taken to be 1). When a job is released, the bound
chooses the job offload times so that its deadline is met and
the energy needed is minimized. Let tfi(toi), 1 ≤ i ≤ K, be
the upload finishing time as a function of the uploading starting
time toi for the ith part, and define tf0(to0) = 0. Etr and Erc

are the energy costs per time slot for channel transmitting and
receiving, respectively. The optimal values for toi are found by
solving integer programming (IP) program (3)-(5).

The first term in (3) is the local execution energy cost in-
curred, the second term accounts for the energy cost of upload-
ing the K job parts, and the last term is the cost for downloading
the results from the cloud. Constraint (4) ensures that the en-
ergy used in offloading does not exceed that of executing the
job locally. Note that if the IP is infeasible, then there are no
feasible uploading start times toi , i.e., it is best to execute only
locally without offloading.

4. Markovian Channel and the Time-Dilated Absorbing
Markov Model

We assume that there is a known channel state Markov chain
(CSMC), i.e., the channel conditions evolve from one time slot
to the next according to a homogeneous finite state Markov
chain. Each state in the CSMC has an associated bit rate that
gives the number of bits per time slot that can be uploaded in
that state. The CSMC transition matrix is defined as P = [Pij ],
where Pij is the probability of transitioning to channel state j
in the next time slot, given that the channel is currently in state
i. As defined, CSMC is memoryless, but in what follows we
will need to incorporate time in it. Therefore, we will consider
the tree-like Markov chain produced by following the evolution
of the channel, starting from an initial state at time t = 1, and
branching out from each state according to the transition proba-
bilities of the CSMC. We refer to this new Markov chain as the
corresponding time-dilated absorbing Markov chain (TDAMC).
We will denote by Xt a state in this Markov chain, reached after
running the channel for t time slots. We will consider subtrees
of this TDAMC (such at TDAMC1 below), endowed with en-
ergy costs and absorbing states.

The part of the TDAMC that models the offloading progress
if the uploading of Sup1

is initiated at a time slot ts, will be
denoted as TDAMC1. An example of TDAMC1 is shown
in Figure 2. To simplify the exposition, the diagram shows
the two-state Gilbert-Elliot channel case, but the procedure is
valid for any Markovian channel. In the Gilbert-Elliot case, the
channel is modelled by a CSMC with two states {G,B} (i.e., a
“Good” one with the higher bit rate, and a “Bad” one, respec-
tively), and with transition probabilities PGG, PGB , PBG, PBB .
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Figure 1: Job offloading timing parameters.

min
to1 ,...,toK

max(tfK (toK ) + Trest, tL)− tL
TL

EL + Etr

K∑
i=1

(tfi(toi)− toi + 1) + ErcTdown (3)

s.t.
max(tfK (toK ) + Trest, tL)− tL

TL
EL + Etr

K∑
i=1

(tfi(toi)− toi + 1) + ErcTdown ≤ EL (4)

tfi−1
(toi−1

) + 1 ≤ toi ≤ tD, i = 1, . . . ,K. (5)

In each time slot, TDAMC1 transitions to a new state in ac-
cordance with these transition probabilities. For clarity, each
state sat in the figure is subscripted by its time slot t, and su-
perscripted by a unique identifier a that distinguishes it from
the other channel states reachable after t time slots. Hence, the
TDAMC1 of Figure 2 models the offloading process initiated
at time slot ts, when the channel state that has been reached at
that time is s19ts . The bit rate at each state is also indicated.

In general, TDAMC1 is a rooted subtree of the TDAMC,
constructed as follows: The root state is the (known) chan-
nel state Xts at current time slot ts. At each subsequent time
slot, the Markov chain tree branches forward, according to the
transitions possible from the current state (Xts , initially) to
other TDAMC states. At each state, the number of job bits
transmitted is determined by the bit rate associated with that
state. The branching continues to create all possible paths of
states needed to upload Sup1

bits, up to some state Xtf1
cor-

responding to upload finishing time tf1 for each path from the
root (such as s37ts+1, s

75
ts+2, represented by squares in Figure 2).

At time tf1 + 1, the second part Sup2
is released. Continu-

ing the branching of the TDAMC, and after a possible wait-
ing period, the uploading of Sup2

commences, followed by the
rest of the K pieces, and the job execution in the cloud in
time Texec, and the downloading of the results in time Tdown,
ending in an absorbing state (this part of the offloading for
K = 2 is depicted in Figure 2 as subtrees hanging from states
s73ts+2, s

74
ts+2, s

149
ts+3, s

150
ts+3). The optimal waiting time for each

path, i.e., the waiting times which optimize the total (over all
paths) expected energy cost for uploading Sup2 , . . . , SupK

, is
solved in Section 5. Then the energy cost of each subtree is the
optimal expected cost (over all paths) of completing offloading,
when uploading Sup1

finishes in time slot tf1 and state Xtf1
.

In fact, TDAMC1 does not need to extend all the way into
these subtrees, but can treat states Xtf1+1 as absorbing states,
each with cost equal to the energy cost of its own subtree. This
process can obviously be repeated, in order to build the corre-
sponding TDAMCi for any piece i.

Similarly to [25], the probability of uploading Supi
bits in

Tupi time slots, starting at time slot toi , and a state Xtoi
, for i =

1, . . . ,K, can be calculated by building a separate TDAMCi,
with a set of absorbing states Ai, and a set of transient states
Ti, for i = 1, . . . ,K. It encodes the evolution of the channel
starting at time slot toi and state Xtoi

, and until Supi
bits are

uploaded, at which point an absorbing state in Ai is reached.
Its transition matrix can be written [29] as

Pi =

[
Qi Ri

0 IAi

]
, (6)

where the |Ti|× |Ti| sub-matrix Qi contains the probabilities of
transitioning between transient states, the |Ti|×|Ai| sub-matrix
Ri contains the probabilities of transitioning from a transient
state to an absorbing state, and IAi is an |Ai| × |Ai| identity
matrix.

The theory of absorbing Markov chains implies that various
statistics can be computed by forming the fundamental matrix
Ni = (I − Qi)

−1, where Ni[l,m] gives the expected number
of times that TDAMCi is in transient state m if the system is
started in transient state l. Given the structure of TDAMCi, Ni

can be easily decomposed and calculated as in [25], since the
particular structure of matrices Qi, Ni, N

−1
i is the same simple

one as in [25]. The absorption probabilities matrix Wi for all
absorbing states is given by

Wi = NiRi, (7)

where Wi is a |Ti| × |Ai| matrix, and Wi[l,m] gives the prob-
ability that absorbing state m will be reached when starting in
transient state l. Therefore, the probability of uploading the ith
part with size Supi in Tupi time slots, starting at time slot toi
and state Xtoi

, is

Ptoi
(Supi , Tupi , Xtoi

) =
∑

j∈Si Wi[Xtoi
, j], (8)

where Si is the set of absorbing states in TDAMCi reached by
a path of length Tupi

+ 1 from the root Xtoi
.

For i = 1, 2, . . . ,K − 1, if the uploading of Supi starts at
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Figure 2: TDAMC1 when offloading Sup1 starts at time ts.

time slot toi , the expected offloading energy cost when offload-
ing starts at time slot toi in state Xtoi

and finishes exactly in
Tupi

time slots or at tD (whichever comes first), is given by
equation (9), where Etr is the transmission energy of the mo-
bile device during one time slot, while the expected energy cost
of uploading SupK

is given by equation (10), where Erc is the
energy consumption of the mobile device during one time slot
when receiving from the server. Then, the expected offloading
energy cost Eoffi for i = 1, 2, . . . ,K is computed by equation
(11), where Bmax and Bmin, respectively, are the bit rates at
the best and worst channel states.

Similarly, the local execution energy cost corresponding to
the uploading of the ith job piece, for i = 1, 2, . . . ,K − 1 is
given by (12)1, while the local execution energy cost due to the
Kth job piece and the rest of offloading time Trest is given by
(13). Then, the expected local execution energy cost ELi for
i = 1, 2, . . . ,K is computed by equation (14).

5. Optimal Algorithm for K-Part Offloading

In this section we use the TDAMC’s constructed in Section
4, and the theory of optimal stopping for Markov decision pro-
cesses [30], in order to define optimal offloading algorithms,
and prove their optimality. Recall that, for simplicity, we have
set tR = 1. A high-level description of algorithm MultiOpt
(cf. Algorithm 1) is as follows: Starting from time slot t = 1
(the release time of the job), at each time slot t the algorithm
considers TDAMC1 in order to determine the expected cost
of the whole offloading process if uploading Sup1

commences
at the current time t. If that cost is less than the expected of-
floading cost when the algorithm waits one more time slot, then
t∗o1 = t (offloading Sup1

commences), otherwise the algorithm
postpones its decision for time slot t+1. Once the uploading of

1We set tf0 = tR − 1.

Sup1 finishes, for the rest of the parts the algorithm repeats the
same decision process at every time slot (using TDAMCi to
compute expected costs), to determine the time t∗oi of starting
uploading Supi

for i = 2, 3, . . . ,K.
At any time slot t (and state Xt), and given that pieces

1, 2, . . . , i − 1 have already been uploaded, MultiOpt decides
the uploading starting time t∗oi ≥ t for Supi . Its decisions t∗oi
for i = 1, 2, . . . ,K are optimal iff they are the solutions of the
minimization problems (one for each i) (15)-(16), where Si is
the set of states reachable after running the channel until time
slot toi , Ŝi is the set of absorbing states of TDAMCi rooted
at Xtoi

, and vi+1(tfi , Xtfi+1) is the optimal expected energy
cost for the rest of the offloading when Supi finishes upload-
ing at time tfi , i.e., the cost of the absorbing state Xtfi+1 of
TDAMCi. In (15)-(16), gi(Supi

, tfi−1
, Xtoi

) is the expected
energy cost of uploading Supi

, if uploading of Supi−1
finishes

at tfi−1 and uploading Supi starts at time slot toi and state Xtoi
,

and is given by (17)-(18). Note that we allow the algorithm to
decide not to offload or stop offloading if this is to its benefit,
by allowing uploading decisions to take the value tD + 1.2

For every time slot toi and state Xtoi
, we define the expected

cost Vi(tfi−1 , Xtoi
) recursively in (19), for i = 1, . . . ,K.

Vi(tfi−1 , Xtoi
) can be computed using Dynamic Programming

(DP), and it is the minimum between the expected total cost of
starting uploading Supi

at time slot toi and state Xtoi
, and the

expected cost of postponing that decision to time slot toi + 1

E[Vi(tfi−1
, Xtoi+1)|Xtoi

] =∑
Xtoi

+1∈Ti

Pr[Xtoi+1|Xtoi
]Vi(tfi−1

, Xtoi+1),

where Ti is the set of states reachable after running the chan-
nel for toi + 1 time slots. Note that (19) implies a policy, that

2Equations (9), (10), (12), (13) have been set up to reflect this.

5



Êoffi(Supi
, Tupi

, toi) = Etr[min{tD, toi + Tupi
− 1} −min{tD, toi − 1}] (9)

ÊoffK (SupK
, TupK

, toK ) = Etr[min{tD, toK + TupK
− 1} −min{tD, toK − 1}] (10)

+Erc[min{tD, toK + Trest − 1} −min{tD, toK + Texec − 1}]

Eoffi(Supi
, Xtoi

) =

Supi
Bmin∑

Tupi
=

Supi
Bmax

Ptoi
(Supi

, Tupi
, Xtoi

)Êoffi(Supi
, Tupi

, toi) (11)

ÊLi(Tupi , tfi−1 , toi) =

{
0, toi ≤ tL − Tupi

or tfi−1
≥ tD

min{tD,toi+Tupi
−1}−max{tL,tfi−1

+1}+1

TL
EL, otherwise

(12)

ÊLK
(TupK

, tfK−1
, toK ) =

{
0, toi ≤ tL − (Tupi

+ Trest) or tfi−1
≥ tD

min{tD,toK+TupK
+Trest−1}−max{tL,tfK−1

+1}+1

TL
EL, otherwise

(13)

ELi(Supi , tfi−1 , Xtoi
) =

Supi
Bmin∑

Tupi
=

Supi
Bmax

Ptoi
(Supi , Tupi , Xtoi

)ÊLi(Tupi , tfi−1 , toi) (14)

vi(tfi−1 , Xt) =



0, t > tfi−1
≥ tD

min
t≤toi≤tD+1

∑
Xtoi

∈Si
Pr[Xtoi

|Xti ]
(
Eoffi(Supi

, Xtoi
) + ELi

(Supi
, tfi−1

, Xtoi
)

+
∑

Xtfi
+1∈Ŝi

Wi[Xtoi
, Xtfi+1]vi+1(tfi , Xtfi+1)

)
, tfi−1

< t ≤ tD

(15)

vK(tfK−1
, Xt) =


0, t > tfK−1

≥ tD

min
t≤toK≤tD+1

∑
XtoK

∈SK
Pr[XtoK

|Xt]
(
EoffK (SupK

, XtoK
)

+ELK
(SupK

, tfK−1
, XtoK

)
)
, tfK−1

< t ≤ tD

(16)

gi(Supi
, tfi−1

, Xtoi
) = Eoffi(Supi

, Xtoi
) + ELi

(Supi
, tfi−1

, Xtoi
) (17)

+
∑

Xtfi
+1∈Si

Wi[Xtoi
, Xtfi+1]Vi+1(tfi , Xtfi+1), i = 1, . . . ,K

gK(SupK
, tfK−1

, XtoK
) = EoffK (SupK

, XtoK
) + ELK

(SupK
, tfK−1

, XtoK
) (18)

Vi(tfi−1 , Xtoi
) =


0, toi > tfi−1

≥ tD
tD−max{tfi−1

+1,tL}+1

TL
EL, toi ≥ tD > tfi−1

min{gi(Supi
, tfi−1

, Xtoi
), E[Vi(tfi−1

, Xtoi+1)|Xtoi
]}, tD > toi .

, i = 1, . . . ,K (19)

dictates whether at any time toi and state Xtoi
the algorithm

should start uploading Supi (if the min is attained by gi), or
should otherwise wait.

We prove optimality by (reverse) induction. It is well known
(e.g., Theorem 1.7 in [30]) that policy VK is optimal, i.e., solves

the original problem (16), since

vK(tfK−1
, XtK ) = VK(tfK−1

, XtK ), ∀tK > tfK−1
, XtK .

(20)
Hence the following holds:

Lemma 1. [30] The optimal time for starting uploading SupK

is
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t∗oK =

argmin
tfK−1

<toK≤tD
{VK(tfK−1

, XtoK
) = gK(SupK

, tfK−1
, XtoK

)}

(21)

Assuming that decisions t∗oK , t∗oK−1
, . . . , t∗oi+1

are optimal,
i.e.,

vk(tfk−1
, Xtk) = Vk(tfk−1

, Xtk), ∀tk > tfk−1
, Xtk (22)

holds for k = K,K−1, . . . , i+1, we prove that the ith decision
t∗oi of MultiOpt is also optimal. Note that (15) becomes (23).
But then, Theorem 1.7 in [30] can be applied again, to show

Lemma 2. [30] The optimal time for starting uploading Supi

is

t∗oi = argmin
1≤toi≤tD

{Vi(tfi−1 , Xtoi
) = gi(Supi , tfi−1 , Xtoi

)}

(24)

Lemmata 1 and 2 imply that the on-line algorithm MultiOpt
(Algorithm 1) is optimal for general Markovian channels.

Algorithm 1 MultiOpt (Multi-decision online Optimal)
Input: Local execution starting time tL, local execution energy

EL, job deadline tD, and job sizes Sup1
, Sup2

, . . ., SupK
.

1: i = 1
2: for all t = 1, . . . , tD do
3: if job finished uploading then
4: Break
5: end if
6: if currently uploading then
7: Continue
8: end if
9: if min in (19) is gi then . part i− 1 has been uploaded

but i has not started uploading
10: start uploading part i
11: i = i+ 1
12: end if
13: end for

6. Simulation Results

In this section, computer simulation is used to study the
performance of the proposed K-Part offloading algorithm for
K = 2 , 3 and 4. For comparison, we also plot the Offline
Bound given in Section 3, and performance of Local Execu-
tion and three other algorithms, referred to as OnOpt Algo-
rithm, Immediate Offloading, and Multi Threshold. These algo-
rithms all employ concurrent local execution (CLE) to ensure
that job execution time constraints are satisfied. The Local Ex-
ecution algorithm executes the entire job locally without doing
any offloading. The OnOpt Algorithm is an online algorithm
proposed in [25] that finds the optimum offloading decision to
minimize the expected energy consumption of the mobile de-
vice. It is the special version of MultiOpt when K = 1. For

the Immediate Offloading algorithm, a job is offloaded imme-
diately at the release time if S/Bmax+Trest ≤ TD; otherwise,
the job is executed locally without offloading since offloading
cannot be completed before the job deadline even with contigu-
ous best wireless channel states. For the Multi Threshold al-
gorithm, uploading for the first piece starts at the first time slot
when the channel condition is above a given threshold, if the
remaining time before the job completion deadline is at least
Sup/Bmax + Trest; otherwise no offloading is performed for
the entire job. For the Gilbert-Elliot channel, any threshold
between the good and bad states can be used, i.e., uploading
starts at the first time slot with the good channel state. After
the (i − 1)th piece is uploaded, uploading for the ith piece
starts as soon as the channel state becomes above the thresh-
old, if the remaining time before the job completion deadline
is no less than

∑K
k=i Supk

/Bmax + Trest; otherwise, upload-
ing is stopped. In both the Immediate Offloading and the Multi
Threshold algorithms, local execution starts at time slot tL if of-
floading (includes uploading to, remote execution at, and down-
loading from the server) is not completed at time slot tL − 1,
i.e., they ensure that the job deadline is satisfied.

In this simulation, the job size Sup, i.e., total amount of data
to be uploaded, is split into K equal parts i.e., Sup1 = Sup2 =
· · · = SupK

= Sup/K. The default parameters used in the
simulations are given as follows. Each time slot is 1 ms. The
transmit and receive power is 1 W and 0.5 W, respectively,
which means that the transmission and receive energy during
each time slot is Etr = 1mJ and Erc = 0.5mJ, respectively.
In our offloading results we have used the well-known Gilbert-
Elliot channel model, that is often used to model random wire-
less channels [22] [24] [31] [32] [33] [34]. This model is often
used to characterize burst noise effects in wireless links, where
the channel can abruptly transition between good and bad con-
ditions. This is a good test for computation offloading algo-
rithms with hard execution time constraints, since the channel
may be less predictable than those where channel conditions
are more correlated and predictable. We assume that PBB =
1 − PGG for the channel state transition probabilities. In this
case, PGB = PBB , PBG = PGG, the equilibrium channel state
probabilities are given by Pg = PGG and Pb = PBB , and PGG

can be used as a measure of the average channel quality. The
data transmission rates are Bb = 1Mbps and Bg = 10Mbps, or
Bb = 1kb per time slot and Bg = 10kb per time slot. Note that
in the two-state channel model, Bmax = Bg and Bmin = Bb.
In the results below, each value of average energy consumption
is obtained after repeating the simulation for 1500 runs.

6.1. Simulation Set 1
In this section we consider a job with D = 10M CPU cycles

and TD = 60 time slots. The local execution energy per CPU
cycle is vl = 2 × 10−6mJ and the local computation power is
fl = 1M CPU cycles per time slot [35, 36]. Therefore, the
local execution time is TL = D/fl = 10 time slots, and the
local energy consumption EL = vlD = 20mJ. We consider
that the remote execution time is Texec = 1 time slot, i.e., the
remote processing speed is 10 times of the local processing.
The download time Tdown is assumed to be 1 time slot.
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vi(tfi−1
, Xt) =



0, t > tfi−1 ≥ tD

min
t≤toi≤tD+1

∑
Xtoi

∈Si
Pr[Xtoi

|Xti ]
(
Eoffi(Supi

, Xtoi
) + ELi

(Supi
, tfi−1

, Xtoi
)

+
∑

Xtfi
+1∈Ŝi

Wi[Xtoi
, Xtfi+1]Vi+1(tfi , Xtfi+1)

)
, tfi−1

< t ≤ tD

(23)
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Figure 3: Average energy consumption versus data size Sup: PGG = 0.2

Figure 3 shows the average energy consumption of the mo-
bile device as the data size Sup increases. The energy used by
Local Execution is constant for all Sup. When Sup is smaller,
the delay constraint is less stringent, and it is more likely for
offloading (without local execution) to meet the delay con-
straint due to a shorter channel uploading time. In this case, the
Multi Threshold and MultiOpt algorithms have approximately
the same average energy consumption, since it is more likely
for the MultiOpt algorithm to decide starting the uploading as
soon as the channel state is good, making it to start the up-
load at the same time slot with the Multi Threshold algorithm.
Compared to OnOpt, the energy consumption of MultiOpt with
K > 1 is lower, indicating that splitting the job uploading into
multiple pieces brings more flexibility that helps the mobile de-
vice to avoid uploading during bad channel states; on the other
hand, since OnOpt uploads the job continuously, its uploading
is more likely to encounter bad channel states, and therefore,
takes a longer time and consumes more energy. The Immedi-
ate Offloading algorithm consumes higher energy as compared
to the other algorithms, because there is a certain probability
to encounter bad channel state at the job release time and the
following time slots, and the probability becomes higher when
PGG is lower. As Sup increases, a longer time is needed for
wireless transmissions, and the offline bound and the Multi-
Opt algorithms may decide not to offload, resulting in the same
energy consumption as Local Execution, while the Immediate
Offloading and Multi Threshold algorithms waste energy con-
sumption by offloading unnecessarily and result in much higher

energy consumption.
Comparing the MultiOpt algorithm with K = 1 (i.e., the

OnOpt algorithm), 2, 3, and 4, we can see that splitting the job
into multiple pieces helps reduce the energy consumption of
the mobile device, since doing this can avoid uploading during
some bad channel states, provided the job completion deadline
can be satisfied.
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Figure 4: Average energy consumption versus computation load D: PGG =
0.5

Figure 4 shows the average energy consumption of the mo-
bile device versus the amount of computation load D. Deadline
TD is set to 40 time slots. When D is small, the MultiOpt al-
gorithm (including OnOpt) does not offload because the local
execution energy is low and less than the energy needed to up-
load the data. As D increases, the energy required for local
execution increases, and it becomes more likely that offload-
ing consumes less mobile device energy than local execution.
The energy consumption for MultiOpt becomes constant when
D is sufficiently large. This is because the delay constraint is
relatively loose in the simulated system, which allows offload-
ing to be completed before tL. Therefore, when D is relatively
large, the energy consumption is the same as the energy con-
sumption for wireless transmissions, which does not depend on
D. The figure also shows that MultiOpt can save mobile device
energy by splitting the job into multiple pieces and uploading
separately.

6.2. Simulation Set 2
In this set of results, we use the application parameters for

x264 (H.264) encoding from [37], and consider a job with
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Sup = 60Kb, D = 18M CPU cycles, and TD = 60 time slots.
The local execution energy per CPU cycle is vl = 1.5×10−6mJ
and the local computation power is fl = 600 M CPU cycles per
second or fl = 0.6 M CPU cycles per time slot. Therefore, the
local execution time is TL = D/fl = 30 time slots, and the
local energy consumption EL = vlD = 27mJ. The remote ex-
ecution time Texec is 3 time slots, and the download time Tdown

is 1 time slot.
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Figure 5: Average energy consumption versus PGG

Figure 5 shows the average energy consumption of different
algorithms as PGG varies. The offline bound is close to the en-
ergy consumption of Local Execution only when PGG is close
to 0, in which case the channel is almost always in the bad state
and local execution is almost always the optimum choice. The
Immediate Offloading and Multi Threshold algorithms result in
much higher energy consumption when PGG is small. Since
the channel is in the bad state in most time slots, uploading
data requires a long time. Therefore, there is a high proba-
bility that offloading cannot meet the delay constraint and/or
consumes high energy; furthermore, due to the long uploading
time, there may be a long overlap time between offloading and
local execution. As a result, energy is unnecessarily wasted
in the Immediate Offloading and Multi Threshold algorithms
by performing offloading. As PGG increases, the possibility
that offloading can meet the deadline increases, so that less lo-
cal execution is performed, and the total energy consumption
decreases for all the offloading algorithms. The Multi Thresh-
old algorithm consumes slightly lower energy than Immediate
Offloading. By delaying the uploading (of each piece of the
job) until the channel state becomes good, it reduces the trans-
mission time and saves energy consumption. The difference
is more obvious when PGG is smaller, since the probability of
encountering bad channel states is higher.

When PGG is low, the MultiOpt (including OnOpt) algorithm
chooses to not offload, and therefore, results in the same energy
consumption as Local Execution; and when PGG is larger, the
algorithm more likely chooses to offload, since channel condi-

tions become better and a shorter time and less energy is needed
to offload. Figure 5 also shows that, the energy consumption of
MultiOpt is lower when K is larger, if the mobile device de-
cides to offload, since splitting the job into more pieces brings
more flexibility that helps the mobile device avoid transmis-
sions in bad channel conditions.

By comparing the MultiOpt and Multi Threshold algorithms,
we can see that for given K, when PGG is relatively large, the
two algorithms consume almost the same energy. This is be-
cause the channel condition in general is good, so that the time
required for uploading the data is relatively short, and the time
required to complete offloading is much less than TD. For the
MultiOpt algorithm, if the decision is to offload the next piece
of the job, it is most likely the first time slot with a good channel
state, which is the same as the Multi Threshold algorithm. The
gap between the MultiOpt algorithm and the offline bound is
due to the fact that the MultiOpt algorithm can only use statisti-
cal channel information, while the offline bound has knowledge
of the channel states of all future time slots.

For all the offloading solutions, the mobile device energy
consumption decreases as PGG increases, since the probabil-
ity of having the good channel state increases, which reduces
the time needed to upload the data and makes it more likely for
offloading to meet the delay constraint and consume less en-
ergy. When PGG is relatively small, the energy decreases fast
as PGG increases; and when PGG is sufficiently large, further
increasing PGG does not help reduce the energy consumption
significantly, since each piece of the job has to be uploaded in
consecutive time slots.
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Figure 6: Average energy consumption versus TD : PGG = 0.3

Figure 6 shows the average energy consumption of the algo-
rithms as the job deadline TD changes. When TD is small, the
MultiOpt (including OnOpt) algorithm decides to not offload
most of the time, resulting in the same energy consumption
as Local Execution; the offline bound result in lower energy
consumption than Local Execution, since it foresees the future
channel states and can decide to offload at a future state; while
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Immediate Offloading and Multi Threshold most likely result
in concurrent offloading and local execution, since offloading
cannot meet the delay constraint, and therefore, result in higher
energy consumption than Local Execution. The Multi Thresh-
old algorithm achieves some lower energy consumption than
the Immediate Offloading algorithm by delaying the offloading
until the first time slot with the good channel state.

As TD increases, more time is available to offload before trig-
gering local execution, resulting in even lower energy consump-
tion for all the offloading algorithms. When TD is sufficiently
large, all the offloading algorithms can achieve lower average
energy consumption than using Local Execution. For given K,
the MultiOpt and the Multi Threshold algorithms result in the
same average energy consumption.

For the offline bound, a loose latency constraint helps it find
a better offloading time so that fewer time slots are needed to
complete the required transmissions. Ideally, the minimum en-
ergy consumption is achieved if there are six consecutive time
slots with good channel states before tL. In general, a larger
TD increases the possibility of having a shorter time interval to
complete the uploading, thus reducing the energy consumption.
When TD is small, increasing TD helps reduce the energy con-
sumption significantly; and when TD is relatively large, further
increasing TD does not help reduce the energy consumption,
since it is almost always possible to complete uploading with
six time slots before tL.

7. Conclusions

This paper has considered mobile computation offloading
when concurrent local execution (CLE) is used to enforce task
execution time constraints. During task offloading, mobile de-
vice energy may sometimes be reduced by segmenting the task
upload into multiple parts, rather than doing a conventional con-
tiguous task upload. The advantage of this is that the mobile
device can dynamically adapt to changes in channel conditions
during the offload. The paper considered the case where the
upload is segmented into K parts; in this case, K separate up-
load initiation decisions are needed. The proposed algorithms
do this, while ensuring that hard task deadlines are always sat-
isfied.

The paper analyzed the case of random Markovian wireless
channels. An online energy-optimal computation offloading al-
gorithm, MultiOpt, was introduced, and was shown to be opti-
mal in terms of expected energy consumption using Markovian
decision process stopping theory. Since the computational com-
plexity of MultiOpt can be significant, simpler and more com-
putationally efficient heuristics, that always satisfy hard task
execution deadlines, may be used. The paper introduced two
such heuristics, the Immediate Offloading, and Multi Thresh-
old algorithms. The mobile energy use of MultiOpt was com-
pared to these heuristics, as well as to local execution without
offloading. Simulation results showed that MultiOpt performs
significantly better when compared to the proposed heuristics,
as well as when K increases.
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