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Abstract

In network routing problems, assuming that packet
transmission incurs costs, the optimal solution would
chose to route all flow along shortest paths. Interme-
diate nodes will need to relay the flow in most cases
and therefore will require some sort of payment, if
the flow they are asked to relay does not bring any
utility to them. We consider such a forwarding game
on directed graphs where nodes need to send certain
amount of flow (packets) to specific destinations, pos-
sibly through several relay nodes. All nodes in the
network act selfishly and will forward packets only if
it is to their benefit. The model assumes that each
node receives some utility from sending its flow to the
predetermined destinations and from receiving flow.
However each node has to decide whether to relay
flow as an intermediate node from other sources, as
relaying has an associated cost. This model assumes
that there is no payment scheme. Somewhat surpris-
ingly, this game has possibly several strategies that
allow a significant amount of the flow to be routed
while all nodes have a positive outcome, which sug-
gests that in this model the nodes have indeed incen-
tives to relay flow even if payments are not explicitly
allocated. Previous theoretical work establishes the
existence of these strategies (Nash equilibrium solu-
tions). In this work we simplify the original network
model, and provide the first experimental evaluation
of these equilibria for different classes of graphs. We
provide clear evidence that these equilibrium solu-
tions are indeed significant and establish how these
equilibria depend on various properties of the net-

work such as average degrees and flow demand den-
sity. Our main results establish experimental bounds
for the path dilation in this model: the average ratio
of the routed flow cost at equilibrium over the cost
of the optimal routing which would involve shortest
path routing in our model.

1 Introduction

Network routing typically requires transmissions to
go through intermediate nodes that relay traffic from
an origin to a destination. In many cases intermedi-
ate nodes receive no utility from relaying traffic for an
origin-destination pair: the reason the node is asked
to relay the traffic can be simply because it happens
to lie on the shortest path from the origin to the
destination node. However retransmission may incur
a cost, especially in wireless networks for example.
This can be addressed by designing a scheme of pay-
ments. A payment can provide an incentive for in-
termediate nodes to realy the required traffic. How-
ever, we can see that there are different incentives,
already present in the network for relaying traffic:
if all nodes decide not to relay anyone else’s traf-
fic, then only neighbors will be able to communicate.
Therefore, assuming that all nodes participate in the
network because they require to communicate with
several other nodes, they would prefer to have a func-
tioning network, so that their own flow is routed to
its destination, and also receive the flow that is ad-
dressed to them. In other words, each node has an
incentive for other nodes to keep relaying traffic for
its own benefit. If a node y decides to stop relaying
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incoming traffic of a neighbor x, then the neighbor,
naturally, will be unhappy and may choose to punish
the node by stopping all traffic towards it, including
traffic that was trying to reach node y itself. There-
fore, the decision of x not to relay traffic results in x
losing out on traffic addressed to itself. In that case
the node has a clear incentive to relay traffic up to a
point, in order to avoid punishment from its unhappy
neighbors. Such a model, does not involve payments
in order to achieve successful relaying of traffic, but
it does involve the possibility of punishment of a non-
relaying node. The incentives are different, but still
aligned towards getting some of the nodes to decide
to cooperate.

This model can be formalized as follows. We con-
sider the scenario of a connected network, modelled
as a directed unweighted graph. In this network we
have a number of designated origin-destination pairs
s, t, each associated with a positive parameter ds,t.
These origin-destination pairs describe the network
flow demands in the network: source node s wants
to send an amount of flow ds,t to its target node t.
Each node might be a designated source (and there-
fore would like to send flow to specific destinations),
or a destination (and therefore would like to receive
flow from predetermined source nodes), or, in most
cases, it is both a source and a destination. Nodes
receive utility from all flow successfully delivered or
received. All nodes need to pay a cost which is pro-
portional to the amount of traffic they need to trans-
mit. If a source node can communicate directly with
its target then of course it is to the benefit of both
to have this communication. If however there is no
direct connection, then an intermediate node, or sev-
eral intermediate nodes must be used as relays, or for-
warding nodes. These nodes can decide to relay traf-
fic and therefore pay the cost of transmission them-
selves for someone else’s traffic. Although this seems
counterintuitive, it has been established very recently
that there exist cases where it is the node’s overall
benefit to relay someone else’s traffic, although not
necessarily all of the traffic requests. Therefore, as-
suming that each node plays strategically, there exist
cases where it is the benefit of every node in the net-
work to relay traffic for others, even though everyone
is selfish (tries to maximize its own utility) and there

are no payments allocated.
The recent work of Karakostas et al. [4] establishes

theoretically that these solutions exist in instances of
this network traffic problem, however those results do
not give any insight of whether such solutions exist
often, or whether they are realistic. For example, it
is possible that only an infinitesimal fraction of the
network instances actually have such solutions. Or
it might be the case, that in the only such solutions,
only an infinitesimal amount of the original flow finds
its way to its destination.

In this paper we provide an experimental investi-
gation of this model. We show that these solutions
are realistic, in the sense that random network in-
stances have non-trivial solutions with high probabil-
ity, and those flow solutions carry a significant frac-
tion of the total flow. We also establish how these
equilibrium solutions depend on various network pa-
rameters. Our work includes minor modifications and
simplifications to the model used in previous work [4].
Furthermore, our main results involve the analysis of
the price of having an incentive based routing in this
forwarding model. In general, the price of anarchy
refers to the ratio of the cost achieved at the equilib-
rium solution divided by the cost of the optimal so-
lution. In our model, the cost is the energy required
for relaying and all transmission. Therefore this cost
is directly related to the length of the chosen rout-
ing paths. The optimal solution would route all flow
along the shortest path connecting the origin to the
destination node. However, at equilibrium, flow may
be routed along longer paths that include nodes that
have the right incentives. Therefore, quantifying the
price of anarchy involves lookings at path dilation,
i.e., the length of the equilibrium routing paths com-
pared to the shortest paths. Our experiments show
that path dilation at equilibrium is, in most cases,
less than 2, i.e. the eqiulibrium paths are no more
than twice the length of the shortest path, and often
the dilation is about 1.4, i.e., the equilibrium flows
are about 40% longer than the shortest paths.

The main contributions of this work include estab-
lishing the fact that the equilibrium strategies exist
very often in practice, carry a significant amount of
flow, and lead to a moderate path price of anarchy.
Our experimental results show how the strategies are
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affected by different parameters of the network: (1)
the average degree, (2) the demand density, and (3)
the type or structure of network connectivity.

The paper is organized as follows. We start with
an overview of related work and background required
in section 2. We proceed in section 3 with a formal
definition of the network flow problem. We present a
simplified version of the model and describe the the
theoretical results derives for this simplified model in
section 4. Then we give an experimental evaluation
of this model in section 5, concluding in section 6.

2 Background and related work

In multi-hop networks, selfish behaviour is a fre-
quent and reasonable assumption that captures the
behaviour of self-interested entities that need to coex-
ist and possibly cooperate in a common environment.
A selfish node in a network will choose an action
that maximizes its own utility (or payoff) without
any concern about the result of its decisions to the
rest of the nodes. Selfish behaviour has been stud-
ied using game theoretic techniques in many different
areas and problem settings, including wireless ad-hoc
multi-hop networks [1]. For a wireless sensor network
for example, every node needs to preserve its battery
life, as it is usually a scarce resource. However, if
nodes choose to refuse to relay traffic, the network
will cease to function. This will lead to no flow be-
ing delivered to its destination and all utilities being
equal to zero for all nodes. Note that here we ignore
flow demands between source-destination pairs that
can communicate directly. These flows will always
be successful in our model, and form what we will
refer to as a trivial solution, or trivial equilibrium.
If nodes decide not to relay any flow, the network is
in a worst-case equilibrium (a standstill) in the net-
work. The strategy of a node not relaying for anyone,
also results in their own flow not being relayed. Nat-
urally the following question arises: do there exist
strategies, where nodes do relay flow for others (and
therefore do pay the cost for someone else’s flow)
which relieve the network from the trivial, no-flow
standstill situation mentioned above? Several recent
papers [4, 9, 8, 6] show that indeed these strategic

solutions do exist for relatively natural network relay
models. There are cases where it is to the benefit of
everyone involved to relay traffic, because this will
lead to a better utility outcome for themselves [4].
There are many ways to avoid the trivial solution
of zero-relaying, which is a form of the well-known
“tragedy of the commons”. Payment schemes is a
common way to provide incentives to intermediate
nodes to relay packets. Reputation-based protocols
are based on keeping records of the past actions of
neighbors: each node keeps track of the amount of
traffic its neighbors has forwarded in the past and
follows a specific protocol to decide the amount of
traffic it will route in each round. The decisions can
be local [1, 3, 5] (each node decides according to its
own private information about the past actions of its
neighbors) or centralized (a central authority collects
all information as a central repository, and decisions
are based on the statistics from the entire network)
[7, 8].

We focus on the work related to connectivity in
such networks based on reputation systems, follow-
ing the analysis of [4]. The main result we focus
on, shows that equilibrium forwarding strategies do
exist, without any payment or actual explicit rep-
utation system. In fact the main theoretical results
shows that such equilibrium forwarding strategies ex-
ist that route a non-zero fraction from every source-
destination pair. This is a surprising and interesting
result that raises many immediate questions about
the practical properties of such equilibrium strate-
gies. Note that the result does not guarantee that
such equilibrium strategies exist for every network
instance. Far from that, there are several simple net-
works that certainly do not have any such equilibrium
strategies except trivial ones (the ones that connect
only neighboring source-destination pairs and there-
fore there is no relaying involved). The natural ques-
tion to ask is how often do these networks have such
equilibrium flows, and how significant these solutions
are. The theoretical results guarantee that if an equi-
librium exists, a non-zero amount of flow is routed for
every source-destination pair, however it may be pos-
sible that the fraction of the flow routed is insignif-
icant. In this work we answer both these questions,
giving positive answers that show the practical im-
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portance of this model as well as the already estab-
lished theoretical one.

Similar Nash equilibrium solutions for relay games
are also explored experimentally in by Félegyhźi et
al. [2]. The relay game in that work is not using
payments or any other explicit incentive for relaying
nodes, but it is based on reputation. The game is
modelled as a repeated game and conditions for the
existence of equilibrium solutions are established the-
oretically. The authors also present experiments to
establish the probability that a random network will
indeed allow an equilibrium relay solution. However
the experimental results are used mainly to explore
particular strategies for the repeated game, or check
whether specific conditions hold.

3 Definitions

We describe a model that is significantly simplified
compared to that presented previously in [4] but still
captures an important sub-class of the forwarding
game, where only successful flows are routed in the
network. We will explain this distinction in more de-
tail further on.

Let G = (V,E) be a directed graph, represent-
ing a connected network that consists of nodes that
are elements of the set V . If node u ∈ V can com-
municate directly by sending data to node v ∈ V ,
then there is a directed edge (u, v) ∈ E. The special
case were G is undirected is a reasonable model for
wireless ad-hoc networks, when communication links
are undirected. We are also given a set of source-
destination pairs (si, ti) ∈ V for i = 1..k, and flow
demands di ≥ 0 for each pair. We will call each such
pair a commodity. The i-th commodity, would like
to send its flow demand di from the source si to the
target ti. Each commodity can choose to split the
flow along any number of paths from si to ti. The
set of all paths between si and ti is denoted by Pi.
Note that we describe the model using these sets of
paths as it is more intuitive and easier to formulate
our results. This formulation would be exponential
in size and would not be useful in practice, and it
is often used in related literature. Later on in this
work, we show how to formulate this model in terms

of the graph edges so that all formulations are poly-
nomial in size. The amount of flow that commodity
i assigns on edge e = (u, v) is denoted by f ie or f iuv.
The general model in [4] allows intermediate nodes
to decide to drop a certain amount of flow (decide
not to relay). Therefore on a connection e = (u, v)
the node u might transmit a certain amount of flow
f ie, but node v may decide to only retransmit, say,
half of it on the next edge towards its destination.
In this case there an amount of flow that is not suc-
cessful: it is transmitted by a source node, but it
never reaches its destination. One of the theoretical
results in [4] is that some networks have equilibrium
flow solutions that use only successful flows. That is
a node never transmits more flow that is actually re-
layed to its destination. We focus on this particular
case for our experiments. There are also equilibrium
solutions with unsuccessful flows according to [4] but
those are more complex and less practical to work
with as it is NP-hard to compute them, or to check
whether they exist. Note that the model we define
here is different and significantly simplified compared
to the one in [4]. However there is no loss in general-
ity of the model for the particular case we are inter-
ested in (equilibrium solutions with successful flows
only). For every edge e = (u, v) there are two “strate-
gic” parameters associated with the decision of how
much flow the edge should carry. The receiving node
v needs to decide how much flow from this edge it
will relay further. Note that an edge e = (u, v) will
carry “through flow” (flow that needs to be relayed
by v to some destination) and “arriving flow” (flow
with destination v). The maximum amount of flow
of the edge e = (u, v) that v is going to tolerate is
denoted by βe. This means that v is simply not go-
ing to relay anything more than this limit. The limit
βe needs to be decided by node v and is one of the
strategic variables in the model. On the same edge,
u also has a threshold that shows its own tolerance
of dropped flow from v. If v is dropping a lot of flow
(βe is too low) then u might decide not to forward
any flow to v, by cutting off the edge e. Note that
this is an important decision that can hurt v because
the edge e also carries flow with destination v. In
other words, u will send two kinds of flow to v, flow
to relay further, and flow with destination v. If v
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does not relay enough then u can cut off the edge,
and v will lose the flow with destination v it received
through that edge. For every edge e = (u, v), the
node u has a strategic variable αe that denotes the
minimum amount of through-flow that v is expected
to relay. If v relays less, then the edge e is automati-
cally cutoff. So, whenever βe < αe the edge e will be
cut off. Therefore ae plays the role of the threshold
referred to before. Cutting off an edge this way is
part of the model definition. An edge e = (u, v) can
be cut off either by u, by increasing its expectation
αe above v’s limit, or it can be cut off by v lowering
the flow it relays (reducing βe below u’s threshold).
This completes the description of the parameters and
decision variables of the network.

Now we need to define the utility function for the
players (network nodes). The utility function we in-
troduce here is a simple generalization of the one in
[4]. A natural way to measure the utility of a node
in this model is the following. A node u gets util-
ity from receiving flow with destination the node u,
and by the fact that flow with origin u actually ar-
rives to its destination. On the other hand, a node u
will incur cost (negative utility) whenever it needs to
transmit flow (its own or relayed traffic). We do not
explicitly associate cost with receiving flow because
this can be easily modelled in the utility function by
choosing the weights appropriately. We define the
utility of a node y in the following equation.

U(v) = ws

∑
e∈out(v)

x∈V

fvxe +

wr

∑
e∈in(v)
x∈V

fxve −

∑
e∈out(v)
x,y∈V

fxye

(1)

The parameters ws ≥ 2 and wr ≥ 1 can be used
to model the utility of successful flow, and also the
trade-off between successful flow utility and cost of
transmission. The parameter ws is used for the flow
that is sent from a node, and wr is used for the util-
ity of arriving flow. We assume that ws ≥ 2 since

we need to have some utility from sending flow to a
destination after subtracting the cost of transmission
(if ws = 1 then it does not make any sense to trans-
mit any flow). The paramters ws, wr depend on the
application and other details of the model. Deter-
mining values for these parameters can be a difficult
task.

We have now defined all the ingredients of the this
game theoretic model. There is a player for each
node, with the utility function defined in equation
(1). Each player (node v) needs to decide on its own
strategy, which incudes the following variables:

• αe: The tolerance values for each outgoing edge
e = (v, x). If the target neighbor x on the edge
e is not relaying at least αe then the edge is cut
off

• βe: The drop thresholds for each incoming edge
e = (x, v). v will relay at most βe of flow coming
from e.

• fvxe : The flow assignment that v will route to-
wards all of its assigned targets x.

The strategy profile of a node σv contains all of the
above parameters: all values αe for outgoing edges,
all βe for incoming edges and all flow assignments fvxe

for all edges in the graph and all destination nodes
x.

Each node will choose to relay traffic in a way that
maximizes it own utility as defined by equation (1).
In order to maximize its utility it needs to pick a
strategy profile σ wisely. A Nash equilibrium in this
network game, is a complete strategy profile for all
nodes σ = (σv1 , σv2 , . . . , σvn) such that no node has
a unilateral incentive to change its own strategy. In
other words, assuming that the nodes are using the
strategies in σ, no node v can increase its own utility
by changing only its own parameters σv in the strat-
egy profile σ. This is the standard definition of Nash
equilibrium, adapted for the network game we have
defined here. We will refer to such a strategy profile
as the Nash equilibrium or the equilibrium solution.

Now recall that the network instance includes
many source-destination pairs, and for each pair there
is some amount of demand (maximum amount of flow
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available to be sent to the destination). In fact every
node will be part of some such pair otherwise there
is no reason for being part of the network in the first
place. It is easy to see that if the source node u of
a source-destination pair u, v is connected directly to
the target v (there is a directed edge (u, v) in the
graph) then it is always beneficial for both nodes for
u to send all of its duv demand to v. Therefore there
is a trivial equilibrium solution, where only neighbor
demands are routed in the network and no other flow
is sent. We will call this the trivial Nash equilibrium
or simply the trivial solution. Obviously we are inter-
ested in non-trivial equilibria and in what follows. We
say that a flow assignment is connected if it routes a
non-zero amount of flow for each commodity. A con-
nected non-trivial Nash equilibrium solution is what
we are interested in. In what follows, whenever we
refer to an equilibrium solution we mean a connected
non-trivial Nash equilibrium solution, unless we ex-
plicitly want to make a reference to trivial solutions
or commodities with zero flow routed.

4 Existence of equilibrium so-
lutions

Looking at the definition of the model we see that the
equilibrium solution depends heavily on the choice of
the α and β parameters. A node would rather relay as
little through-traffic as possible: through traffic only
incurs cost for it. However if the node starts reduc-
ing the amount of flow it is supposed to relay, then
incoming edges will eventually be cut off and this will
stop the node from receiving flow destined for it and
therefore lose utility by that fact. Hence the decision
to relay less traffic needs to be balanced with the traf-
fic a node expects to receive from each edge. This is
precisely the point that is used to characterize the
equilibrium solutions in this network game. Follow-
ing the analysis of [4] we can extend the main theorem
regarding successful flows to our network model that
has a slightly generalized utility function. The main
difference in the utility function we introduce here, is
the use of the scaling parameters ws and wr.

So far we have described the flow assignments in

terms of edges. We now switch to path flows as
this formulation makes the description of the theo-
rem and flow splits more intuitive. Everything can
be described in terms of edges and, in fact, we do use
the edge based formulation in our experiments.

For every source-destination pair (ui, vi) we denote
the set of all possible paths connecting ui to vi by Pi.
We also denote by P the set of all relevant paths in
the network, P = ∪iPi.

Recall that each node is essentially trying to opti-
mize the amount of flow it will get to its destination,
but it will also need to make sure the assignment it
proposes is tolerable by the nodes it needs to use as
relays. We can indeed write this joint optimization
problem as a linear program, and for ws = 2 we get
the following.

maximize
∑
P∈P

fP (2)

subject to : ∑
P3e

through
edge

fP − wr ·
∑
P3e
final
edge

fP ≤ 0 ∀e ∈ E

∑
P∈Pi

fP ≤ duivi ∀i

fP ≥ 0 ∀P ∈ P

Note that the size of this linear program is expo-
nential in the number of nodes since it is formulated
using paths. However we can easily convert it to a
linear program written on the network edges that has
size polynomial in the size of the network.

Let D be the total demand in the network between
neighboring nodes. A trivial equilibrium solution will
route a total flow equal to D. The following theorem
describes the non-trivial equilibrium solutions [4]:

Theorem 1 A network game has non-trivial equilib-
rium solutions with only successful flows if and only
if the linear program described in (2) has a solution
f∗P with objective value

∑
P∈P f

∗
P > D.

The complete proof of this theorem is analogous to
the proof of Theorem 2 in [4].

6



5 Evaluation

In this section, we present an extensive set of exper-
iments to evaluate the forwarding model presented
above. Our main goals are the following:

1. The theoretical results state that equilibria solu-
tions may exist for some networks. How often do
these network games actually have such equilib-
rium solutions? Are these solutions practically
significant?

2. These equilibrium solutions route a non-zero
fraction of the available flow potentially for ev-
ery commodity. But is this routed fraction sig-
nificant or very close to zero?

3. How good are the equilibrium solutions com-
pared to the optimal routing solution?

We answer all these basic questions by analysing
random families of graphs with randomly chosen
source-destination pairs and demands. For these ran-
dom graphs we solve the linear program (2) and find
the equilibrium flow assignments.

Graphs are generated according to the Erdös-Renýi
model (Gnm), and the Barabasi-Albert powerlaw
model. Various edge densities are used. Self loops
and multi-edges are not allowed. Commodity pairs
are chosen uniformly at random. Flow demands are
chosen uniformly at random between 1 and a prede-
termined maximum value. All demands are integers.
We choose wr = 1 for our experiments. As discussed
above, the parameter should be greater or equal to 1
in general. The boundary case of wr = 1 means that
arriving flow is worth as much as the cost to transmit
it.

Given a randomly generated instance (graph plus
commodities) we solve the linear program (2) and
compare the total routed flow at equilibrium with
the best possible solution. In the optimal solution all
flow is routed (complete cooperation). Note that triv-
ial flow, which is the flow between source-destination
pairs that happen to be neighbors, will always be
routed, so when we compute the ratio of equilibrium
flow versus optimal, we subtract the trivial flow. In
order to understand the efficiency of the equilibrium

Figure 1: Percent of available flow routed at equi-
librium for Erdös-Renýi graphs as a function of edge
density, and commodity density

solution, we define the equilibrium flow ratio to be
(equilibrium flow - trivial flow) divided by (optimal
flow - trivial flow). This ratio will always be between
0 and 1. Our experiments explore the equilibrium
flow ratio for varying values of edge density, com-
modity density, and graph type. The experiments are
done on a 16-processor Intel Xeon 2.27GHz machine
with 24GB of memory. The linear program is solved
by the CPLEX solver, using IBM’s OPL Studio.

5.1 Amount of successful flow at equi-
librium

Figure 1 shows two series of histograms. On the left
we include a series of histograms that plot the re-
sulting equilibrium flow ratio distribution for 100 dif-
ferent experiments with increasing edge density. On
the right we have a similar series of histograms with
increasing commodity density. Each histogram also
shows the average and standard deviation of the plot-
ted values. We see that for a relatively sparse net-
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work with average degree 4 (top left histogram), the
equilibrium solution will route just below 14% of the
available flow. For a network with average degree
10 however, the equilibrium solution is expected to
route close to 70% of the available flow. For average
degree 12 the equilibrium flow is over 85% of the total
available (bottom left histogram). We see a similar
but slightly more modest increase as the commod-
ity density increases. Figure 1 shows that equilib-
rium flows carry non-negligible flow in the network
and they increase significantly when the network be-
comes more dense, or when the flow demands in the
network become more dense. This is an interesting,
typically game theoretic result: the more overloaded
the network becomes, the more efficient are the equi-
librium flows. In other words, the incentives become
stronger for nodes to relay when the network is more
dense with flow demands, or with possible flow paths.
Going back to the description of the equilibrium con-
straints of this game, we see that essentially an equi-
librium flow solution is looking for cases where a node
has an incentive to relay flow in order to keep edges
open, that carry flow towards that node. In a sense,
these open edges are a deal between nodes across an
edge e = (u, v): u will continue to send v flow with
destination v (and therefore flow that v wants to re-
ceive) provided that v relays enough flow further in
the network. Increasing the edge density by adding
more edges in the network, increases the probability
that there are such deals to be made across edges for
each flow demand. If the network is sparse then the
existing paths may not bring together nodes whose
interests are aligned. The same holds true for in-
creasing density of commodities. The more source-
destination pairs we add to the network the more
likely it becomes that edges will remain open as the
interests of the two nodes on those edges are aligned.
Figure 1 also shows that edge density has a stronger
impact on the equilibrium flow routed. A dense net-
work is likely to reach a very good level of efficiency,
routing almost all available flow.

For powerlaw graphs we see a different picture. We
generate powerlaw graphs using the Barabasi-Albert
preferential attachment model. Figure 2 shows how
the routed equilibrium flow changes when edge den-
sity increases and when demand density increases.

Figure 2: Percent of available flow routed at equi-
librium for powerlaw graphs as a function of edge
density (left) and demand density (right).

For similar values of edge density and commodity
density, we see that the expected equilibrium flow is
significantly lower than what we see in Erdös-Renýi
graphs. However we still see that increased density
has a positive effect (expected amount of flow routed
is still increasing) but at a more modest rate. We also
observe that increasing edge density has a marginally
more positive effect on the flow routed at equilibrium.
The equilibrium flows are calculated by solving the
linear program (2). The generated linear program
has a size that grows fast with the graph size. For
a graph with n nodes, m edges, c commodities, the
number of constraints is bounded by O(n ·m+m2 ·c).
This is a generous over-estimate as the expected node
degree is smaller than what is used for the calcula-
tion of the upper bound (maximum possible degree
is O(m), the number of edges in the graph). The ex-
pected size of the linear program is O(n · d + d2 · c)
where d is the maximum of the average out-degree
and average in-degree. In practice the solve-time can
vary greatly with different LP instances. The run-
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Figure 3: Solve time for finding the flow routed at
equilibrium for powerlaw graphs as a function of edge
density (left) and demand density (right).

ning time is shown in Figure 3 for powerlaw graphs.
The results show that the variance increases as the
number of edges (edge density) and the number of
commodities increase.

Figure 4 compares the percent of available flow
routed at equilibrium as a function of increasing com-
modity density. The results for Erdös-Renýi (Gnm)
graphs are on the left side and the results for power-
law (Barabasi-Albert) graphs are on the right. We see
clearly that the equilibrium solution has a stronger
dependence on the available commodity flow pairs
for Gnm graphs rather than for powerlaw graphs. A
well-known characteristic of powerlaw graphs is that
there is a small number of strongly connected nodes,
nodes with degree that greatly exceeds the average
degree of the graph. These high-degree nodes are
usually referred to as “hubs”. In terms of connec-
tivity, powerlaw graphs are more fault-tolerant than
Erdös-Renýi graphs, in case of random failures of
nodes or edges. Adding a random edge in the net-
work may connect a hub to another node, or connect
two average-degree nodes. In case the new edge is
added to a hub, the result is minimal in terms of
connectivity and path length, since the hub node is
already very well connected, with a very high degree.

Figure 4: Percent of available flow routed at equilib-
rium for Erdös-Renýi graphs and for Barabasi-Albert
graphs as a function of commodity density

If the new edge connects two average degree nodes,
then the new edge is in a part of the network that
does not affect connectivity as much, as the hubs are
the nodes that make the components of the network
well-connected. Hence adding new edges in a pow-
erlaw graph is expected to have a moderate effect
in terms of connectivity. The structure of powerlaw
graphs makes it more common for connecting paths
to pass through hubs: Nodes with average degree are
usually in components that are connected together
by hubs. This is consistent with the results for sparse
graphs that we have shown above. As the commod-
ity density increases, the graph connectivity is not
affected in any way. Most of the added commodity
pairs will naturally involve average degree nodes, and
therefore will have fewer chances of finding willing re-
laying nodes. As a result, the increasing commodity
density does not have a strong impact on the routed
traffic at equilibrium.
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Figure 5: Path dilation and percent of available flow routed at equilibrium for Erdös-Renýi Gnm graphs and
for Barabasi-Albert powerlaw graphs as a function of demand density

5.2 Path dilation

Given a network instance (network connectivity and
origin-destination demand pairs), the optimal routing
of the flow would be along the shortest path connect-
ing the origin and the destination of each demand
pair. This minimizes the total energy required for
the flow to be transmitted and reach its destination.

However, this routing may not be compatible with
the incentives of the individual nodes: a selfish node
on a shortest path may not have an incentive to
relay flow for others. Hence the chosen paths at
equilibrium may use longer paths. These paths are
less cost-efficient, but invlolve nodes that are will-
ing to keep certain edges open, and therefore relay
flow, since they are receiving flow for themselves from
those edges. The lack of centralized optimal control
is expected to lead to longer routing paths. In this
section we present experimental results to quantify
how much longer we should expect the equilibrium
paths to be, compared to the optimal ones (short-
est paths). We run experiments on randomly gener-
ated graphs as before, on Erdös-Renýi and Barabasi-
Albert (powerlaw) graphs, varying the edge density
(average number of edges per node) and the demand
density (average number of destinations per node).

As mentioned above, powerlaw graphs have a
very different structure to Erdös-Renýi graphs with
a small number of very popular, highly connected
nodes, and a long tail of sparsly connected nodes.

The graphs usually have relatively short paths con-
necting nodes, but many of those paths are expected
to pass through the same, very popular nodes.

Therefore, when we increase the density of the
graphs, we do not expect to see a very strong im-
pact to path dilation or amount of flow routed, since
most of the new edges or demands will involve the
long tail of sparsly connected nodes.

Figure 5 shows the experimental results for increas-
ing number of flow demand pairs. The x-axis is the
average number of destination demands for each node
of the network. For example, demand density of 8
means that, on average, each node in the network
wants to send flow to 8 destinations. The y-axis is the
sum of lengths of all paths used from successful flows,
divided by the sum of all shortest paths that would
be used for all successful flows for an cost-optimal
routing solution

The figure also includes the amount of successful
flow as a percent of the total flow demand that could
actually be routed in the network. As we generate
random graphs and random st-pairs, it is possible
that there are no directed paths between some of
the generated st-pairs and therefore no flow could
be routed through those paths anyway. These origin-
destination pairs are ignored.

Here there is a clear downward trend of path di-
lation, as we increase the demand load on the net-
work for random Erdös-Renýi graphs, while power-
law graphs show very little sensitivity to the demand
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density. The amount of flow routed is also far less sen-
sititve for powerlaw graphs. As we mentioned above,
we do expect this behaviour, as a result of the struc-
ture of powerlaw graphs. When we add new demand
pairs in the network, we are more likely adding origin-
destination nodes in the much larger, less connected
part of the network.

For Erdös-Renýi graphs, increasing demand den-
sity results in better paths. This is a result of more
deamnd for routing flow in the network, which in-
creases the probability of having nodes on the short-
est paths that are willing to relay flow to keep edges
open for themselves. This is less probable in power-
law graphs, as most of the graph is not well connected
and adding more demand pairs will mainly involve
nodes in the less-connected tail nodes.

Figure 6 shows the experimental results for increas-
ing number of edges per node. The x-axis is the av-
erage out-degree for each node of the netowrk. For
example, average degree of 10 means that, on aver-
age, each node in the network has 10 neighbors to
which they can shoose to send flow. The demand
density for these experiments is 8, and the network
has 50 nodes.

Here the results are quite different. Both power-
law and Erdös-Renýi graphs behave in a more sim-
ilar manner, with the path dilation increasing with
the average degree. Again, the effect is marginal for
powerlaw graphs- we do not see any significant change
when we increase the edge density of the graph. For
Erdös-Renýi graphs, path dilation now increases with
edge density. When we increase the number of edges
in the network, the shortest paths are expected to
decrease for Erdös-Renýi, and less so for powerlaw
graphs, for the same reasons as mentioned above (ad-
ditional edges connect the larger, less dense part of
the network and are more likely to have less effect, as
short paths are more likely to involve the very few,
very popular nodes).

For the range of parameters used in the exper-
iments, the variance of the path dilation values is
relatively low in Erdös-Renýi graphs, and higher for
powerlaw graphs.

Figure 7 shows a histogram for path dilation for
powerlaw graphs. The values come from 100 random
graphs with 50 nodes, edge and demand density 8.

Figure 7: Histogram of the path dilation values for
Erdös-Renýi Gnm graphs

Figure 8: Histogram of the path dilation values for
Erdös-Renýi Gnm graphs

The values are clustered around the mean, and are
bounded below 2. Figure 8 shows the corresponding
histogram for Erdos Renyi graphs. Here the values
show higher variance and mean, still bounded below
3.

6 Conclusion

We considered a natural relaying problem modelled
as a game theoretic problem. We focused on a recent
game theoretic model that established the existence
of equilibrium flows that are based on natural incen-
tives for relaying as opposed to payments. We experi-
mentally established that these equilibrium solutions
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Figure 6: Path dilation and percent of available flow routed at equilibrium for Erdös-Renýi Gnm graphs and
for Barabasi-Albert powerlaw graphs as a function of edge density, the average number of out-edges for each
node

can carry a significant fraction of the available flow,
and that the resulting paths are not much longer than
the shortest ones.

For a relatively wide range of densities of both
edges and demands, arguably the powerlaw networks
behave in an efficient and very stable manner at equi-
librium. Path dilation is usually less than 1.4 and we
expect at least 80% of the available flow to be routed
successfully, without the need of any central control,
or any payment scheme.

For Erdös-Renýi graphs, we see a much higher sen-
sitivity to both parameters. High edge density makes
the network more successul, in the sense that more
flow is routed, but this results in longer, more inef-
ficient paths. For demand density, things are very
different. Higher demand density makes the network
more successful (more flow routed) and more efficient
(paths are shorter at equilibrium)
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