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Abstract—This paper considers mobile computation offloading
where task completion times are subject to hard deadline
constraints. Hard deadlines are difficult to meet in conventional
computation offloading due to the stochastic nature of the wireless
channels involved. Rather than using binary offload decisions,
we permit concurrent remote and local job execution when
it is needed to ensure task completion deadlines. The paper
addresses this problem for homogeneous Markovian wireless
channel models. An online energy-optimal computation offload-
ing algorithm, OnOpt, is proposed. Its energy optimality is
shown by constructing a time-dilated absorbing Markov process
and applying dynamic programming. Closed form results are
derived for general Markovian processes, and the Gilbert-Elliott
channel model is used to show how the particular structure of
the Markov chain can be exploited in computing optimal offload
initiation times more efficiently. It is shown that job completion
time probabilities can be computed recursively, which leads to a
significant reduction in the computational complexity of OnOpt.
The performance of the proposed algorithm is compared to three
others, namely, Immediate Offloading, Channel Threshold, and
Local Execution. Performance results show that the proposed
algorithm can significantly improve mobile device energy con-
sumption compared to the other approaches while guaranteeing
hard task execution deadlines.

Index Terms—Cloud computing, mobile computation offload-
ing, energy efficiency, mobile task execution performance, hard
job deadline constraints.

I. INTRODUCTION

Mobile devices are continuing to become more pervasive as
personal computing platforms. This trend is coinciding with
significant increases in mobile application features that benefit
from tight interactions with fixed computation infrastructure.
According to a recent report, Cisco Inc. predicts that by
the year 2021, monthly world-wide mobile data traffic will
approach 28 exabytes [1]. Due to their limited physical size
however, mobile devices are inherently resource-constrained,
especially from an energy and computational viewpoint. The
former constraint limits mobile battery lifetime [2], which
is by far the most common smartphone complaint. This has

motivated a wide variety of recent research on mobile energy
efficiency [3].

Mobile cloud computing has been introduced to help al-
leviate some of these shortcomings, and to support the ever
increasing computation and storage demands for mobile de-
vices [4] [5]. It has been estimated that tens of billions of
cloud-based network edge devices will be deployed in the
future to satisfy mobile demands. This will provide significant
resources for performing computation intensive and latency-
critical mobile-centric tasks [6] [7]. Mobile computation of-
floading has been proposed as a way of decreasing mobile
device energy use by dynamically offloading job execution to
infrastructure based cloud servers [8] [9] [10] [11] [12]. It
has been demonstrated that task offloading can significantly
improve battery lifetime compared to the non-offloading case
[13] [14].

Various architectures have been proposed for mobile com-
putation offloading. Reference [15] originally proposed an
architecture known as MAUI, which controls computation
offloading for runtime .NET applications by formulating the
offloading problem as a linear program. A similar architecture
for Android applications has also been proposed in [8]. For a
single user offloading its entire application to the cloud, the
tradeoff between energy saving and computing performance
was studied in [3] [16] [17]. References [18] [19] [20] [21]
considered multi-user scenarios with a single application or
user task, where the entire application is offloaded to the cloud.
Unlike whole-application offloading. References [8] [15] [22]
[23] and [24] have considered partitioning applications into
multiple offloaded tasks. Mobile computation offloading has
also been studied from a game theoretic viewpoint where
resource contention may occur on the wireless channel or at
the cloud servers [25] [26] [27] [28].

In this paper we study mobile computation offloading where
job completion times are subjected to hard deadline con-
straints, i.e., deadline constraints that should never be violated,
as opposed to deadline constraints that are satisfied with high
probability, or incur a penalty when violated, etc. (cf. Section
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II below). This objective will become increasingly important
as mobile applications become more sophisticated and interact
more closely with cloud job execution [29]. Hard deadlines,
however, are often difficult to achieve in mobile networks
due to the randomness of the wireless channels used for the
mobile/cloud data interactions. In harsh wireless conditions,
for example, complete channel outage can even occur over
extended time periods. In this work, we study the straight-
forward approach of permitting concurrent local and cloud
offload execution when a job completion deadline must be
respected. This is in contrast to the conventional computation
offloading model where job execution is either local or remote
[8] [15]. As is the case in conventional computation offloading,
the objective is to reduce the mobile device energy needed for
job execution.

The paper studies this problem for Markovian wireless
channel models [30] [31]. An online computation offloading
algorithm, referred to as OnOpt (Online Optimum), is pro-
posed. It is shown that OnOpt satisfies job deadlines and is
optimum from a mean energy viewpoint. This is proven by
augmenting the underlying channel model so that it forms
a time-dilated absorbing Markov process. Dynamic program-
ming is then used to establish a test that determines whether
a given job should be offloaded at the current time, or to
wait for some future offload opportunity. The performance
results presented use the Gilbert-Elliott channel model. In this
case, we exploit the structure of the channel Markov chain
to compute the job completion time probabilities recursively,
and this results in a significant reduction in the computational
complexity of the proposed algorithm. The performance of the
proposed algorithm is compared to three simpler heuristics,
namely, offload immediately (Immediate Offloading), wait
until the channel condition improves to above a threshold
(Channel Threshold), and execute the job only locally (Local
Execution). An offline lower bound on energy consumption is
also computed and used for comparisons. Performance results
show that the proposed algorithm can significantly improve
mobile device energy consumption compared to the other
approaches.

The main contributions of the paper are summarized, as
follows.

1) To the best of our knowledge, this is the first work that
uses computation offloading to reduce mobile energy
and provides a mechanism for guaranteeing that hard
job deadlines are always satisfied, even in the presence
of full wireless channel outage conditions.

2) An online offloading decision algorithm, i.e., OnOpt
(Online Optimal), is introduced. It is theoretically proven
that the algorithm not only satisfies hard deadline
constraints of the applications with certainty, but also
achieves the minimum mean mobile device energy pos-
sible for homogeneous Markovian wireless channels.

3) An integer program (IP) is formulated that computes a
strict lower bound on mobile device energy. This bound
is used for comparisons in our performance results.

4) Closed form results are derived for obtaining job com-
pletion time probabilities for the homogeneous Marko-
vian wireless channel case.

5) Although the proposed OnOpt algorithm satisfies hard
deadlines and is proven to be energy optimal, per-
formance results are also presented that compare it
with the computation offloading heuristics: Immediate
Offloading, Channel Threshold and Local Execution.
These algorithms also ensure that hard job deadlines are
preserved.

The rest of this paper is organized as follows. Section II
discusses previous work that is most related to our paper.
In Section III, we describe the system and present a model
for local and remote job execution that satisfies hard job
execution deadline constraints. Then, in Section IV, we derive
an offline lower bound on the energy consumption, which
is plotted in the results section and compared to various
offloading algorithms. In Section V we discuss the Markovian
channel model and how it is used to form a time-dilated
absorbing Markov chain. This construction permits us to
apply dynamic programming and come up with the energy
optimum online algorithm OnOpt, proposed in Section VI.
Then, in Section VII the paper focuses on the Gilbert-Elliot
channel model, where it is shown that calculations can be
performed efficiently, decreasing the complexity of OnOpt. In
Section VIII, performance results are presented that compare
OnOpt with various other computation offloading algorithms
that ensure that hard job deadlines are preserved. Finally, we
present our conclusions in Section IX.

II. RELATED WORK

Many mobile cloud computing issues and challenges have
been addressed in the past few years [32] [33] [34] [35].
A significant part of the literature has considered mobile
computation offloading issues under stochastic transmission
channel and cloud server conditions. Reference [3], for exam-
ple, presents an energy model to analyze offloading, mainly
considering mobile computation and communication energy
components based on statistical inputs and with fixed wireless
channel conditions. This work analyzed the offloading policy
assuming that network conditions remain static throughout
the offloading/execution process. Network prediction was used
as inputs to the decision process. In [36] a method was
proposed for energy-optimal mobile cloud computing under
stochastic wireless channels. The issue of job deadlines was
considered from a statistical viewpoint, rather than enforcing
hard job execution deadlines. Dynamic programming was
used in [37] to optimize offloading decisions from an energy
viewpoint, but the issue of job execution time constraints
was not considered. In Reference [29], job execution time
constraints were flagged as a key issue for many interactive
applications. The difficulties of achieving this under random
channel conditions was highlighted. In [38], a framework was
proposed for executing jobs either locally, by CPU frequency
scheduling, or remotely, by offloading over a stochastic chan-
nel. In the latter case, mobile transmit power control is used
to select bit rates to ensure that job deadlines are met. In
local execution, a violation parameter is defined that permits
the execution to probabilistically exceed the deadline, and,
therefore, the latter is not “hard” in our sense. As in our paper,
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this work uses the well-known Gilbert-Elliot channel model for
its results. Computation offloading for 3D video streaming was
studied in [39], where a cloud-enabled smart camera network
allows smart cameras to continuously offload computationally
intensive tasks to a remote cloud server, which helps the smart
cameras with the video encoding and decoding. Experiments
show that using this system can extend the battery life of the
smart cameras without compromising compression efficiency
or video quality. The system considered in [40] consists of
multiple brokers that coordinate cloud (including a public
cloud and a cloudlet) resource allocations among mobile users.
Each broker minimizes the average price for its users to
use the cloud services, while satisfying predefined quality of
experience constraints of the users. The price for a mobile
user is a monetary cost that is proportional to the amount
of public cloud resources allocated to the user or determined
by the bidding strategy when competing for the cloudlet re-
sources. Reference [41] addressed the problem of computation
offloading on multicore-based mobile devices running multiple
applications, each of which consists of multiple mutually
dependent tasks. In addition to determining whether a task
should be performed locally or offloaded to the cloud, the
work also considers executing local tasks on which CPU
cores in order to optimize the energy consumption of the
mobile devices. A static wireless channel with fixed bitrate
is considered.

III. SYSTEM MODEL

We consider the execution of computational tasks (jobs)
generated by a mobile device, either locally (by the device
itself), or by offloading them on a remote cloud server,
through a wireless transmission channel. Each job could be a
sub-task associated with multiple local/remote job execution
components [4] [5]. We focus on a single task whose
characteristics are known at its release time. Figure 1 defines
the parameters used for job computation timing. Note that
time is taken to be discrete, i.e., quantized into equal length
time slots whose duration is normalized to 1. Time values
are therefore referred to by their time slot indices. Note that
the time slot duration is defined to accommodate the channel
propagation model discussed in Section V and may contain
multiple packet transmission times on the channel. Each job
to be executed is characterized by the following:

tr: Release time of the job, i.e., the time when the
job is ready to start execution, either locally or via
offloading. This is marked on the left side of Figure
1. For convenience, we will assume that tr = 1.

tD: Hard deadline of the job, i.e., the job execution
results must be available at the mobile device by time
tD. This is shown on the right side of Figure 1, where
TD = tD − tr + 1 is the maximum number of time
slots available for completing the job.

Sup: Number of bits transmitted through the uplink chan-
nel when uploading the job to the cloud.

Sdown:Number of bits transmitted through the downlink
channel when downloading job results from the
cloud.

We now discuss the timing and energy use associated with
local and remote offloaded job execution.

A. Local Execution

It is assumed that the energy cost and time needed to execute
a job locally is known at the job release time, tr, and these
are defined by EL and TL, respectively. While this may not
always be the case, this assumption is often true and has been
made in many computational offloading studies [3], [19], [28].

If the computation offloading algorithm elects to execute the
job locally without any remote offloading, we must ensure that
the job deadline is always satisfied. Therefore, local execution
must start no later than

tL = tD − TL + 1, (1)

unless remote offload/execution results are available at the
mobile device before tL, i.e., local execution must start TL
time slots prior to the job deadline, if remote execution results
have not arrived by then. This is shown in Figure 1.

Note that starting the local job execution at time slot tL
ensures the hard delay constraint of the task, if a remote
offloading response is not received in time. Although this
may result in both local and remote executions of the task, it
will always satisfy the hard deadline, even if there is channel
contention or extended channel outages. However, with the
objective of minimizing the mean energy consumption of
the mobile device, the proposed algorithm will reduce the
possibility of both local and remote executions.

B. Remote Execution

In the case of offloading a job, we will assume that, upon
its release, the job is assigned an execution time Texec by the
cloud server, which is communicated to the mobile device (or
is prescribed by, say, the contractual agreement between the
user of the device and the cloud server operator). In addition,
we assume that the user has been allocated capacity (such as
recurring time slots) until the offload has completed. These
assumptions are commonly invoked [3] [19] [28]. Therefore,
if Tup and Tdown are the time periods needed to, upload the
job to the cloud server, and, download its results to the device,
respectively, the total offloading time Toff is given by

Toff = Tup + Texec + Tdown. (2)

These components are shown in Figure 1, where we have
defined to to be the remote offload initiation time. It is assumed
that the channel uses bit rate adaptation to accommodate
random variations in channel conditions. As a result, Tup is
a random variable, dependent on the evolution of the uplink
channel state as a given upload occurs. In what follows,
it is assumed that the channel state can be modelled as a
homogeneous discrete-time Markov process; the same holds
for Tdown.

In order to simplify our exposition, we will initially focus on
the randomness induced by the Markovian uplink channel. In
the following development, we therefore temporarily assume
that all offloading deadlines, job sizes (in bits), and energy
costs are related only to job uploading, i.e., Toff ≡ Tup
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Tup Texec Tdown
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Fig. 1. Job Computation Timing. The job release time is tr and its deadline is tD . The offload begins at to and execution is completed Tup+Texec+Tdown

time slots later. To enforce the job deadline, local execution must begin at tL if the mobile is still awaiting a remote response. At time to+Tup+Texec+Tdown,
local execution is terminated provided that a remote offload response arrives before tD . Note that by definition, when to > tD , then there is only local
execution.

and S ≡ Sup, so that Texec = Tdown = 0. Given the
ensuing results, adding the effects of Texec and Tdown is
straightforward and is deferred to Section VII. At that point we
discuss, for example, how we include the effects of a random
Markovian downlink channel.

Since the job’s hard deadline constraint must always be
satisfied, we propose its simultaneous cloud server offloading
(if possible and beneficial) and its local execution. Given the
stochastic nature of the transmission channel, deciding whether
and when to offload (i.e., to in Figure 1), depends on the
estimation of offloading energy consumption and offloading
time, in order to both minimize energy costs for the mobile
device, and satisfy the job deadline constraint.1 Depending on
these estimates, there are three possibilities for offloading at
time slot to: (i) it certainly finishes before starting the local
execution of the job, and, hence, local execution never starts,
or, (ii) it finishes after starting the local execution of the
job, and, possibly, before deadline tD; then, the fraction of
local execution energy cost incurred is equal to the fraction
of TL overlapping with the offloading (i.e., local execution is
terminated if a remote offload response is received), or (iii) it
certainly finishes after deadline tD, so it does not even start,
and the total energy cost is equal to the local execution energy
cost. Note that in the case of a deterministic channel, one can
calculate exactly in which of these three cases the job falls.
In this work, we analyze the problem of offloading with hard
deadlines over a Markovian stochastic channel, described in
detail in Section V.

As in most of the related work references, we assume that
the current state of the channel can be determined prior to
making the decision to start an offload. This information can
be learned in a variety of ways, such as via a short handshake
with the basestation at the start of the time slot.

IV. OFFLINE BOUND

In this section, an offline lower bound on mobile device
energy is derived. This bound is used in Section VIII for
performance comparisons with various online computation
offloading algorithms. Since the bound is offline, we assume
that the wireless channel states are known for all future time
slots. When a job is released, the bound then chooses the job

1Note that when offloading occurs, then tr ≤ to ≤ tD , and when to > tD ,
then there has been no offloading, i.e., there is only local job execution.

offload time so that its deadline is met and the energy needed
is minimized. Let to be the time to start offloading, given that
we know the bit rate Bt (in bits per time slot) at all times
1 ≤ t ≤ tD (recall that tr is taken to be 1). Let tf (to) be
defined as the offload finishing time when offloading starts at
to. Then to can be found by solving the following IP.

min
to

max(to, tL)− tL
TL

EL +

tf (to)∑
t=to

et (3)

s.t.
max(to, tL)− tL

TL
EL +

tf (to)∑
t=to

et ≤ EL (4)

1 ≤ to ≤ tD. (5)

Objective (3) consists of two terms. The first is the local
execution energy cost incurred before offloading starts. If
to < tL, this term is zero, which means that there has been no
local execution to that point; otherwise, to−tL

TL
EL is the energy

that has been expended by local execution energy before to.
The second term in (3) is the total energy consumption after
offloading starts where et is the energy expended in time slot
t. When to < t < tL, each et includes only the offloading
energy; and when t ≥ tL, both offloading and local execution
are performed at time slot t. Therefore, et is given as

et =

{
Etr, t < tL

Etr + EL

TL
, t ≥ tL

(6)

where Etr is the energy cost per time slot for transmitting
on the channel. Constraint (4) ensures that the energy used in
offloading does not exceed that of executing the job locally.
Note that if the IP is infeasible, then there is no feasible
offloading start time to, i.e., it is best to execute locally without
offloading.

V. MARKOVIAN CHANNEL AND THE TIME-DILATED
ABSORBING MARKOV MODEL

In many studies, homogeneous Markov chains have been
used to model random wireless channel conditions and as is
often assumed, the Markovian transition probabilities are taken
to be known, or have been learned dynamically [30] [31] [36]
[38] [42] [43]. Accordingly, we assume that the computation
offloading occurs over a finite state Markovian channel. In
this case, the OnOpt (Online Optimal) algorithm proposed
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in Section VI is an online computation offloading algorithm
that attains the minimum expected execution energy. As is
commonly assumed, the channel data rate is defined by the
Markovian channel state and the receive signal-to-noise ratio
(SNR) is such that errors due to random noise are negligible.
When this is not the case, then the execution time constraint
will still be satisfied by the OnOpt algorithm [36] [43].

In this section we use the conventional channel state Markov
chain (CSMC) to form a time-dilated absorbing Markov chain
(TDAMC), which models the offloading over the channel.
The resulting Markov process is used by OnOpt in order to
compute its energy and offloading time estimates, and by our
analysis, in order to show its optimality. As mentioned above,
we focus on Tup, ignoring Texec and Tdown (cf. Figure 1);
hence, Toff and S below refer to Tup and Sup, respectively.
Section VII-A below describes the straight-forward inclusion
of Texec and Tdown.

In the CSMC, and starting from the current time slot ts,
the channel conditions will evolve from one time slot to the
next according to a homogeneous finite state Markov chain.
We denote the set of possible channel states by M, where
M = |M| is the number of states in the CSMC. As discussed
previously, the radio transmit power is fixed and bit rate
adaptation is used to adjust to varying channel conditions.
Therefore, each state in the CSMC has an associated bit rate
that gives the number of bits per time slot that can be uploaded
when offloading occurs in that state. In a general Markov chain
model, the CSMC transition matrix is defined as P = [Pi,j ],
where Pij is the probability of transitioning to channel state
j in the next time slot, given that the channel is currently
in state i. Unfortunately, CSMC is memoryless as far as the
state of offloading and channel conditions are concerned; in
order to incorporate them into our model, we form a new
Markov chain, referred to as a time-dilated absorbing Markov
chain (TDAMC). We are again interested in the evolution of the
system starting at the current time slot ts, and running until the
computation has completed, either locally or via offloading.
The state of the channel in each TDAMC state at time t ≥ ts
is represented by Xt where Xt ∈ M. However, unlike the
CSMC, the TDAMC incorporates t and other information into
its structure.

The TDAMC models the job offloading progress if the latter
is initiated at the current time slot ts. It is a rooted tree,
constructed as follows: The root state is the channel state Xts

at current time slot ts; since this is the current time slot, Xts

is known. At each subsequent time slot, the Markov chain
tree branches forward, according to the transitions possible
from the current state (Xts , initially) to other CSMC states.
At each step along a given tree branch, the number of job bits
transmitted is determined by the bit rate associated with the
channel state in question. This construction continues along
each branching tree path until the number of bits offloaded
reaches the job upload size, S = Sup. At that point, the
state reached in the TDAMC is defined as a Markov chain
absorbing state, i.e., it has a self-transition with probability 1.
From this construction it can be seen that the TDAMC includes
all possible paths that lead to a successful job offload, and that
all of the states are either transient or absorbing. Eventually,

all paths terminate in an absorbing state, and the energy cost
of that path is proportional to its length, i.e., the number of
time slots needed.

An example of a TDAMC is shown in Figure 2, for ts = 1.
It is constructed from a two-state Gilbert-Elliot channel, which
is modelled by a CSMC withM = {G,B} (i.e., with “Good”
and “Bad” states, respectively), and transition probabilities
matrix [

PGG PGB

PBG PBB

]
,

i.e., P1,1 = PGG, P1,2 = PGB , P2,1 = PBG and P2,2 = PBB .
In each time slot, the TDAMC transitions to a new state in
accordance with these transition probabilities. For clarity, each
channel state in the figure is subscripted with its level time
and the index of the subtree it belongs to. For example, G3,2

indicates that the channel state at level t = 3 and subtree 2
is Good. The TDAMC shows that at t = 3, the channel can
remain in the G state, i.e., G4,2 or transition to the B state, i.e.,
B4,2 with the given CSMC transition probabilities. Each state
of the TDAMC defines the number of bits that can be offloaded
during a time slot while in that state. In the example of Figure
2, when the channel state is G, the number of payload bits is
defined by the number of bits that can be carried on the channel
during a good (i.e., high bit-rate) channel state. In the general
case, when the channel is in state Xt at time t, the number of
child states at t+1 is given by the number of non-zero values
in the same row of the original CSMC transition matrix. In
Figure 2, each state continues to branch downwards until the
number of offloaded bits for a given branch reaches the total
number needed for the offload. At that point, the branch ends
in a Markov chain absorbing state discussed previously. In
Figure 2, states G3,1, G4,1 and G4,2 are absorbing states.

The non-absorbing states in the TDAMC are clearly all
transient states. We define A to be the number of absorbing
states and T to be the number of transient states in the
TDAMC. For an absorbing Markov chain, by labeling the
transient states first, the resulting transition matrix can be
written in the following form [44]:

PTDAMC =

[
Q R

0 IA

]
. (7)

In PTDAMC, the T ×T sub-matrix Q contains the probabilities
of transitioning between transient states before the job upload
is completed. The T ×A sub-matrix R contains the probabili-
ties of transitioning from a transient state to an absorbing state,
indicating that the job upload is finished. 0 is an A× T zero
matrix and IA is an A×A identity (i.e., absorbing) matrix.
Q contains the entries of the original CSMC transition

matrix that give the transition probabilities of each state k
when it transits to a state in {sk, sk +1, · · · , fk}, and, for our
TDAMC, it has the following form:

Q =


0 P1,s1 · · · P1,f1 0 · · · 0 · · · 0

0 0 · · · 0 P2,s2 · · · P2,f2 · · · 0

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 · · · 0

 .
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Fig. 2. Time Dilated Absorbing Markov Chain Example: This example corresponds to that obtained from an underlying Gilbert-Elliot channel model. In
each time slot, the Markov chain transitions to a new state in accordance with the transition probabilities from the Gilbert-Elliot model.

It can be seen that Q is upper triangular, as expected, since
all states are transient and can be visited at most once. The
(possibly) non-zero transition probabilities shown in row one,
for example, give the probability of transitioning to all possible
t = 2 channel states and so on.

With the above construction and using results from the
theory of absorbing Markov chains, various statistics can be
computed by first forming the fundamental matrix

N = (I −Q)−1. (8)

For example, entry (i, j) of N gives the expected number of
times that the TDAMC is in transient state j if the system is
started in transient state i.

Due to the structure of our TDAMC, the computation
needed in Equation (8) can be greatly simplified. Note that
N−1 is still an upper triangular matrix with all the diagonal
entries equal to one, and can be decomposed as follows:

N−1 = NTNT −1NT −2 · · ·N1,

where

Nk =



1 0 · · · 0 n1,k · · · 0

0 1 · · · 0 n2,k · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · 1 nk−1,k · · · 0

0 0 · · · 0 1 · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · 0 0 · · · 1


.

Nk is an atomic triangular matrix whose inverse is given by

N−1k =



1 0 · · · 0 −n1,k · · · 0

0 1 · · · 0 −n2,k · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · 1 −nk−1,k · · · 0

0 0 · · · 0 1 · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · 0 0 · · · 1


Then

N = (NTNT −1NT −2 · · ·N1)−1 = N−11 N−12 N−13 · · ·N−1T
Note that each column of the Q matrix has only one nonzero
element. Therefore, N−1 will have only two nonzero ele-
ments in each column. Similarly, in Nk only one of the
n1,k, n2,k, . . . , nk−1,k is non-zero. Therefore, the multiplica-
tion can be done efficiently.

The absorption probabilities for all absorbing states can be
obtained by

W = NR, (9)

where W is a T ×A matrix and W [i, j] gives the probability
that a particular absorbing state j will be reached if the
system starts in transient state i. Using this procedure, we
can thus compute the various probabilities of absorption for
each absorbing state, given knowledge of the starting state.
Therefore, we can obtain the probability of finishing the
offload for every possible offloading time Toff by summing
all of the absorbing state probabilities that have the same
TDAMC path length. We define Pt(T, x) to be the probability
of offloading in exactly T time slots, when offloading starts
at time t with the channel in state Xt = x. Then
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Pt(Toff , x) =
∑
j∈S

W [x, j] (10)

where S are all of the entries of the matrix where the
offloading time is equal to Toff . Note that Pt(T, x) = 0 when
it is impossible to offload in a period of exactly T time slots
when offloading at t with the channel in state Xt = x, i.e, T
is shorter (longer) than the shortest (longest) time needed to
offload, under the best (worst) channel conditions. Pt(T, x) is
critical for computing the expected cost of offloading used by
the algorithm OnOpt (cf. Section VI).

The ability to compute the Pt(T, x) values allows for the
computation of the energy costs for both offloading and local
execution. If offloading the job (of bit size S) starts at time
slot t, its expected transmission energy is calculated as follows,
depending on whether
• offloading is certainly completed (1 ≤ t < tD− S

Bmin
+1),

in which case the energy spent is proportional to Toff .
• offloading may or may not be completed within the

deadline (tD − S
Bmin

+ 1 ≤ t ≤ tD), in which case the
energy cost is Toff or tD − t + 1, respectively (clearly
the deadline tD is the last time slot where offloading can
be done).

Noting that Pt(Toff , x) = 0 when Toff <
S

Bmax
or Toff >

S
Bmin

,2 the expected offloading energy cost when offloading
starts at time slot t with the channel in state x, is given by
(11).

Recall that local execution is postponed until the very last
moment, i.e., time slot tL = tD − TL + 1, where TL is the
number of time slots needed by the task to execute locally.
A central idea of this paper is that, although local execution
is always initiated (if offloading has not completed earlier) at
time tL, in order to guarantee completion within the deadline,
offloading will be decided in such a way so that it will
(hopefully) terminate before tD, thus saving us the energy
cost of the remaining local execution. The overlap time (when
such exists) between offloading at time t and local execution is
min{tD +1, t+Toff}−tL. By recalling that EL is the energy
cost of complete local execution of the task, the local execution
energy cost will be 0 if there is no overlap, or a fraction
min{tD+1,t+Toff}−tL

TL
of EL if there is. Hence, we obtain that

the expected local execution cost when offloading starts at time
t with the channel in state x, is given by (12). In the first case,
there will be overlap only for Toff ≥ tL− t+ 1, while in the
second there is always overlap, since t− tL + Toff > 0.

VI. OPTIMAL OFFLOADING STARTING TIME AND THE
ONOPT (ONLINE OPTIMAL) ALGORITHM

In this section we use the time-dilated absorbing Markov
model construction of Section V and the theory of optimal
stopping for Markov decision processes [45] to define the
OnOpt algorithm, and show that it achieves the optimal mean
energy for the mobile device. A high-level description of the
algorithm is as follows: At each time slot t (starting from the

2We will assume that S
Bmax

and S
Bmin

are integers, to avoid burdening

our formulas with ceilings
⌈

S
Bmax

⌉
and

⌈
S

Bmin

⌉
.

job release time slot), the algorithm considers the TDAMC
model for starting offloading at current time ts = t. It com-
putes (based on the TDAMC) the optimal offloading starting
time τ∗tD ≥ t, by formulating the problem as a Markovian
optimal stopping problem. If τ∗tD = t, then offloading is started
immediately at time t. Otherwise, the algorithm waits till time
slot t+ 1, to repeat the above process.

Suppose that the current time slot is ts, and consider the cor-
responding TDAMC rooted at state Xts . In order to compute
the optimal time slot for starting offloading (if offloading turns
out to be more beneficial, in expectation, than executing the
task solely locally), we need to compute the offloading starting
time τ∗tD that satisfies the following optimization problem:

vtD (y) = min
t:ts≤t≤tD+1

E[gt(Xt)|Xts = y] (13)

= min
t:ts≤t≤tD+1

∑
z∈M

Pr[Xt = z|Xts = y]gt(z), (14)

where Xts is the current channel state, and gt(x) is the
expected total energy cost if offloading starts at time slot t
with channel state Xt = x. The choice of t = tD + 1 in (13)
corresponds to no offloading, in which case (11) and (12)
imply a total cost of EL. Then, for ts ≤ t ≤ tD,

gt(x) = Eoff (t, x) + EL(t, x), (15)

where Eoff (t, x), EL(t, x) are the expected offloading and
local execution costs, respectively, as defined in (11) and (12),
when offloading starts at time t with the channel in state
Xt = x.

The optimization problem (13) is inherently an off-line
problem, while the algorithm we would like to use is inherently
an on-line one, in the sense that at every time slot it has
to decide whether to offload or not, given the history of
channel states it has encountered so far. Such an algorithm
is defined by the following recursion, which can be solved
using Dynamic Programming (DP), i.e.,

Vt(x) =

{
EL, t ≥ tD
min{gt(x), E[Vt+1|Xt = x]}, t = ts, · · · , tD − 1

(16)
Note that Vt(x) is the minimum between the expected total
cost of offloading at the current time slot t, and the expected
cost of postponing that decision to time slot t+ 1, given that
the channel state at time t is x, and E[Vt+1|Xt = x] is the
expectation of Vt+1(Xt+1) over all possible Xt+1, under the
condition that Xt = x, i.e.,

E[Vt+1|Xt = x] =
∑
y∈M

Pr[Xt+1 = y|Xt = x]Vt+1(y).

Note that (16) implies a policy, that dictates whether at any
time t and state Xt the algorithm should start uploading (if
the min is attained by gt), or should otherwise wait.

It is well known (e.g., Theorem 1.7 in [45]) that policy Vt in
(16) is optimal, i.e., it solves the original problem (13), since

vtD (y) = Vts(y), ∀y. (17)

Therefore, the following lemma holds:
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Eoff (t, x) =



Etr

S
Bmin∑

Toff=
S

Bmax

Pt(Toff , x)Toff , 1 ≤ t < tD − S
Bmin

+ 1

Etr

 tD−t∑
Toff=

S
Bmax

Pt(Toff , x)Toff +

S
Bmin∑

Toff=tD−t+1

Pt(Toff , x)(tD − t+ 1)

 , tD − S
Bmin

+ 1 ≤ t ≤ tD

0 t > tD

(11)

EL(t, x) =



S
Bmin∑

Toff=tL−t+1

Pt(Toff , x)
(

min{tD+1,t+Toff}−tL
TL

EL

)
, 1 ≤ t < tL

S
Bmin∑

Toff=
S

Bmax

Pt(Toff , x)
(

min{tD+1,t+Toff}−tL
TL

EL

)
, tL ≤ t ≤ tD

EL t > tD

(12)

Lemma 1. [45] The optimal offloading starting time for (13)
is τ∗tD = arg mints≤t≤tD+1{Vt(x) = gt(x)}.

Lemma 1 implies that the on-line algorithm OnOpt, given in
Algorithm 1, is optimal. Note that this result is true for any
Markovian channel. The algorithm is given the local execution
starting time tL, local execution energy EL, job deadline tD,
and job size S. It then arranges for the job to be executed
either locally or by remote offloading (or both, if needed).
Initially, the remote offload is disabled by setting to to a
value greater than tD in Line 1. At each time slot ts with
the channel at state Xts = x, we test if ts < to, i.e., no
offload has been initiated for the job. Then both gts(x) and
E[Vts+1|Xts = x] are computed (using (15) and using DP
to solve (16), respectively). If gts(x) ≤ E[Vts+1|Xts = x],
then the offload begins at time ts, i.e., to = ts, since in this
case τ∗tD = ts from Lemma 1. If offloading finishes before
a local execution finishes, then local execution is terminated
(Line 11). At Line 13 we check to see if local execution should
start so that the job’s deadline can be guaranteed. Similarly,
Line 16 tests if the local job has completed. In that case, any
remote offload in progress will be terminated.

VII. THE GILBERT-ELLIOT CHANNEL CASE

In this section, we consider the well-known Gilbert-Elliot
channel model [30] [31], which has been used in many studies
to model stochastic communication channels, e.g., [36] [38]
[42] [43] [46], and will be used in the results section of this
paper. This channel model is typically used to characterize
the effects of burst noise in wireless channels, i.e., where the
channel can abruptly transition from good to bad conditions
(and vice versa). This type of channels is a difficult one for
computation offloading algorithms to deal with, compared to
one where there is much more correlation in the channel
quality as the offloading progresses. In this section, closed
form results are derived for this channel model that will
be used to generate numerical results in Section VIII. With
the two state channel model, we have Bmax = Bg and
Bmin = Bb, where Bg and Bb are the bit rates of the good
and bad channel states, respectively (in bits per time slot). In

Algorithm 1 OnOpt (Online Optimal) Algorithm
Input: Local execution starting time tL, local execution en-

ergy EL, job deadline tD, and job size S.

1: to :=∞ .
Offloading initially disabled (to is offload start time)

2: for all ts ∈ {1, . . . , tD} do
3: if ts < to then
4: cts := gts(x) .

Expected energy cost of offloading at ts.
5: cts+1 := E[Vts+1|Xts = x] .

Expected energy cost of waiting until ts + 1.
6: if cts ≤ cts+1 then
7: to := ts .

Start offloading.
8: end if
9: else if offloading terminates at ts then

10: Abort local execution (if active). .
Remote offload response has been received.

11: return
12: end if
13: if ts = tD − TL + 1 then
14: Start local execution. .

Ensure that the job deadline is satisfied.
15: end if
16: if ts = tD then
17: Abort remote offload (if active). .

Local execution has completed.
18: return
19: end if
20: end for

order to run Algorithm 1 with the specific energy costs of (11)
and (12), we need to calculate the probabilities Pt(Toff , Xt),
which is the probability of an offload finishing in Toff time
slots, if it starts at time slot t with channel state Xt.

Let b be the number of bad state time slots during the Toff
offloading time slots. Given the data size S to be offloaded, b
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and Toff must satisfy S ≤ bBb + (Toff − b)Bg < S + Bg .
The upper bound is due to the fact that we transmit at most
S + Bg bits (we assume that even when the transmission of
the useful S bits has been completed, paying the transmission
cost continues until the end of the last time slot). This implies
that

(Toff − 1)Bg − S
Bg −Bb

< b ≤ ToffBg − S
Bg −Bb

(18)

Define B as a set of integers b satisfying (18). For any b ∈ B,
the actual transmitted number of bits, Ŝ, is given by

Ŝ = bBb + (Toff − b)Bg. (19)

Define P̂t(Toff , b,Xt) as the probability of an offloading,
that starts at time slot t with state Xt and takes Toff time slots
(among which b time slots are in the bad states). We have that

Pt(Toff , Xt) =
∑
b∈B

P̂t(Toff , b,Xt). (20)

Thus, Pt(Toff , Xt) can be obtained by summing over all
of possible b’s in P̂t(Toff , b,Xt). As a special case, we set
P̂t(Toff , b,Xt) = 0 for all Toff and Xt when b < 0. In order
to derive P̂t(Toff , b,Xt), we need the following lemma.

Lemma 2. If Ŝ − S ≥ Bb, then the final transmission state
must be G.

Proof: Assume, for contradiction, that the final state is
B. Then, the number of bits transmitted in Toff −1 time slots
is ŜToff−1 ≥ ŜToff

−Bb. Given the condition of the lemma,
this implies that ŜToff−1 − S ≥ 0, i.e., offloading finished
within Toff − 1 time slots, a contradiction.

Based on Lemma 2 and Xt, four different cases are consid-
ered when calculating P̂t(Toff , b,Xt), and are obtained from
elementary counting:

• Xt = G and Ŝ − S ≥ Bb: See (21).
• Xt = G and Ŝ − S < Bb: See (22).
• Xt = B and Ŝ − S ≥ Bb: See (23).
• Xt = B and Ŝ − S < Bb: See (24).

Although equations (21)-(24) can be used to calculate
Pt(Toff , Xt) directly, we now show how they can be com-
puted recursively, which leads to a significant reduction in
computation time (albeit with the use of more memory). We
show this for the case Ŝ−S ≥ Bb and Xt is Good (the other
cases are handled similarly). In that case, (21) applies. We
assume b > 0 (case b = 0 is trivial). Then, (21) for b > 0
implies

P̂t(Toff , b, Good) =

min{b−1,Toff−b−2}∑
k=0

Z(k, Toff ) (25)

where

Z(k, Toff ) =(
b− 1

k

)(
Toff − b− 1

k + 1

)
P k+1
GB P k+1

BG P b−k−1
BB P

Toff−b−k−2
GG

(26)

and

Z(0, Toff ) = (Toff−b−1)PGB PBG P b−1
BB P

Toff−b−2
GG (27)

Then, it is easy to see that

Z(k + 1, Toff ) =

(b− k − 1)(Toff − b− k − 2)

(k + 1)(k + 2)

PGBPBG

PBBPGG
Z(k, Toff ) (28)

for all 0 ≤ k ≤ S
Bb

. By treating Bb and Bg as constant,
precomputing Z(k, Toff ) for all 0 ≤ k ≤ S

Bb
and S

Bg
≤

Toff ≤ S
Bb

takes O(S2) operations when (27) and (28) are
used. Then, for any value of Toff , each P̂t(Toff , b, G) can be
computed with O(S) operations from (25); eventually, O(1)
P̂t values are combined to compute each Pt(Toff , G) from
(20) (note that |B| = O(1), and that P̂t, Pt do not depend
on t, except for defining Xt in their arguments). Hence, we
can precompute (and store) all possible Pt(Toff , Xt) using
O(S2) operations (and memory) overall. After that, (11) and
(12) imply that we can calculate Eoff (t, x) and EL(t, x) for
each 1 ≤ t ≤ tD with O(S) arithmetic operations. This
implies that we can use (15) to precompute (and store) all
gt(x)’s using O(STD) operations (and memory) overall, and,
therefore, all Vt(x)’s using O(STD) operations (and memory),
using the recursive definition (16). After this O(S2 + STD)
preprocessing, Algorithm 1 can run in O(1) time per time
slot. Although TD = Ω(S) in order for the deadline to make
sense, if TD >> S

Bb
then offloading immediately would be the

practical option. Therefore, we can assume that TD = Θ(S),
and the time and memory complexity of the algorithm is
O(S2) in practice. Note that we were able to derive better time
and memory complexity than the one implied in Section V, by
taking advantage of the specific Markovian process structure
of Gilbert-Elliot channels. In order to achieve similar gains for
other Markovian channels, one will need to tailor the Dynamic
Programming approach above to the specific structure of the
channel Markov chain, if at all possible.

A. Cloud Execution and Downloading

As stated in Section III-B, the above development was pre-
sented by taking into account only the random job uploading
process. These results are easily extended to include both the
(deterministic) cloud execution, i.e., Texec and a Markovian
random downlink channel, i.e., Toff = Tup + Texec + Tdown

and S = Sup+Sdown. This is done as follows. The TDAMC of
Figure 2, which models the uploading of Sup bits, is extended
by branching out from each (previously) absorbing state for
Texec transition steps. This is followed by branching out ac-
cording to a process similar to the TDAMC of Figure 2, which
then models the downloading of Sdown bits. The resulting
Markov process therefore tracks the channel throughout all
three offloading periods, i.e., upload, remote execution, and
download, shown in Figure 1. The definitions of Eoff , EL, as
well as the calculations carried out in Sections V-VII are then
extended accordingly.
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P̂t(Toff , b,Xt) =


min(b−1,Toff−b−2)∑

k=0

(
b−1
k

)(
Toff−b−1

k+1

)
P k+1
GB P k+1

BG P b−k−1
BB P

Toff−b−k−2
GG b > 0

P
Toff−1
GG b = 0

(21)

P̂t(Toff , b,Xt) =



min(b−1,Toff−b−2)∑
k=0

(
b−1
k

)(
Toff−b−1

k+1

)
P k+1
GB P k+1

BG P b−k−1
BB P

Toff−b−k−2
GG

+
min(b−1,Toff−b−1)∑

k=0

(
b−1
k

)(
Toff−b−1

k

)
P k+1
GB P k

BGP
b−k−1
BB P

Toff−b−k−1
GG b > 0

P
Toff−1
GG b = 0

(22)

P̂t(Toff , b,Xt) =

min(b−1,Toff−b−2)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k

)
P k
GBP

k+1
BG P b−k−1

BB P
Toff−b−k−1
GG (23)

P̂t(Toff , b,Xt) =

min(b−1,Toff−b−1)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k

)
P k
GBP

k+1
BG P b−k−1

BB P
Toff−b−k−1
GG

+

min(b−1,Toff−b)∑
k=1

(
b− 1

k

)(
Toff − b− 1

k − 1

)
P k
GBP

k
BGP

b−k−1
BB P

Toff−b−k
GG (24)

VIII. SIMULATION RESULTS

In this section, computer simulation is used to study the
performance of the proposed OnOpt Algorithm. As discussed
in Section VII, a Gilbert-Elliot channel is assumed when
offloading. It should be emphasized that based on the described
system model, the optimality of the proposed OnOpt algorithm
has been theoretically proved in terms of minimizing the
mean energy consumption. The Gilbert-Elliott channel model
is commonly used to model the effects of harsh channel
conditions where burst noise can abruptly affect the data rate.
The simulation results based on this channel model are used
to illustrate that, even with its harsh channel conditions, there
is significant gain in using the OnOpt algorithm over other
heuristics. We also assume that transmit power control is
used on the downlink, and therefore, Tdown (and Texec) are
deterministic. Their effects can therefore be accounted for by
modifying the remote offload end-times used in the analysis.
For comparison, we also plot the offline bound given in
Section IV, Local Execution and two other algorithms, referred
to as Immediate Offloading and Channel Threshold. The Local
Execution algorithm executes the entire job locally without
doing any offloading. For the Immediate Offloading algorithm,
offloading starts at the job release time unless S/Bg > tD, i.e.,
if offloading cannot be completed before the job deadline even
with contiguous best wireless channel states, then the job is
only executed locally. For the Channel Threshold algorithm,
offloading starts at the first time slot when the channel con-
dition is above a given threshold unless the remaining time
before the job completion deadline is less than S/Bg . For
the Gilbert-Elliot channel used in our results, any threshold
between the good and bad states can be used, i.e., offloading
starts at the first good channel time slot provided that the
remaining time before the job completion deadline is no less
than S/Bg . In both the Immediate Offloading and Channel
Threshold algorithms, local execution starts at time slot tL if
offloading is not completed at time slot tL−1, i.e., they ensure

that the job deadline is satisfied.
In the results, there are three sets of simulations, which

span a wide range of parameter values. This was done to
assess the relative performance of the offloading algorithms
in widely varying situations. The default parameters used in
the simulations are given as follows. Each time slot is taken to
be 1 msec. The data transmission rates are Bb = 1Mbps and
Bg = 10Mbps, or Bb = 1kb per time slot and Bg = 10kb per
time slot. The transmit power is 1 W, which means that the
transmission energy for each time slot is Etr = 1mJ. The local
execution energy per CPU cycle is vl = 2× 10−6mJ and the
local computation power fl = 1M CPU cycles per time slot
[47], [48]. We consider a job with S = 60Kb, D = 10M CPU
cycles, and tD = 60 time slots, where D is the number of local
CPU cycles needed in order to execute the job. Therefore, the
local execution time is TL = D/fl = 10 time slots, and the
local energy consumption EL = vlD = 20mJ. Based on Bg

and Bg , a minimum of 6 time slots and a maximum of 60
time slots are needed in order to complete job offloading. In
all of the graphs, each value of average energy consumption
is obtained after repeating the simulation for 10,000 runs.

A. Scenario 1

Here we set PBB = 1−PGG for the channel state transition
probabilities. In this case, PGB = PBB , PBG = PGG, and the
equilibrium channel state probabilities are given by Pg = PGG

and Pb = PBB . PGG can therefore be used as a measure
of the average channel quality. In this set we present graphs
by varying parameters such as TD, S, and good/bad state
residency times.

Figure 3 shows the average energy consumption versus TG,
the asymptotic channel residence time in the good state, where
TG = 1

PGB
. The energy used by Local Execution is obviously

constant for all residence times. When the good state residence
time is low, the OnOpt algorithm does not offload because
there is not enough time to complete the offload, or, the
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Fig. 3. Average energy consumption versus channel residence time in good
state
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Fig. 4. Average energy consumption versus channel residence time in bad
state

expected energy is higher than EL. As the residence time
increases, the energy consumption for OnOpt decreases. The
energy consumption for Channel Threshold and Immediate
Offloading decreases as the residence time in the good state
increases. The energy for these algorithms is above EL when
the residence time is low.

Figure 4 shows the average energy consumption versus TB ,
the asymptotic mean channel residence time in the bad state,
where TB = 1

PBG
. Figure 4 shows that as the bad state

residence time increases, the energy consumption for all of
the algorithms initially increases. When TB is above about 10
time slots, both the offline bound and the OnOpt algorithm do
not offload due to the long time needed, eventually resulting
in the same energy consumption as Local Execution. For the
Channel Threshold algorithm, as TB increases, offloading may
still be possible either because the channel is in the good state
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Fig. 5. Average energy consumption versus data size S: PGG = 0.2

at the release time or the first good channel state appears not
long afterwards. However, the probability that the offload can
be completed before tD decreases as TB increases. Therefore,
the energy consumption increases with TB . As TB further
increases, offloading is possible only if the channel is in the
good state at the release time (the probability decreases as TB
increases), and therefore, the energy consumption decreases.
In Immediate Offloading, the energy consumption increases
with TB until TB is so large that the channel is practically
always in the bad state. The energy consumption, in this case,
converges to EL + EtrS/Bb = 80mJ.

Figure 5 shows the average energy consumption of the
mobile device as the data size S increases. When S is small,
offloading can most likely meet the delay constraint without
local execution. The average energy consumption of the Chan-
nel Threshold and OnOpt algorithms is the same, since the two
algorithms offload at the same time slot, while the Immediate
Offloading algorithm consumes higher energy for the same
reason as explained previously. As S increases, a longer
time is needed for wireless transmission, and both the offline
and OnOpt algorithms may decide not to offload, resulting
in the same energy consumption as Local Execution, while
the Immediate Offloading and Channel Threshold algorithms
waste energy by offloading unnecessarily, which results in
much higher energy consumption.

Figure 6 shows the average energy consumption versus the
local execution duration time. Here, we change D from 2 to
15 CPU Mega-cycles. Deadline TD is set to 20 time slots
in order to make the deadline tighter and observe the effects
of increasing TL. When EL is small, the OnOpt algorithm
does not offload because the expected cost is higher than
EL. When EL becomes large enough, the OnOpt algorithm
starts offloading, thus reducing its energy use. Increasing
TL increases the chance that overlap occurs between local
execution and offloading. Therefore, the energy consumption
for OnOpt starts to increase. A similar situation happens for
the other algorithms.
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Fig. 6. Average energy consumption versus local execution time TL: PGG =
0.5
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Fig. 7. Average energy consumption versus PGG: tD = 40 time slots

B. Scenario 2

In the second set, we set PBB = PGG, so that the equilib-
rium channel state probabilities are equal, but by varying these
parameters, we can observe the effects of mean channel state
residency time. The channel state transition probabilities are
assumed to satisfy PBB = PGG. In this case, the equilibrium
channel state probabilities are equal, and therefore, a larger
PGG does not indicate better channel quality on average. In-
stead, it represents how dynamically the channel state changes.
When PGG (and PBB) is large for example, once the channel
enters a particular state, it is more likely to persist in that state,
i.e., more consecutive time slots in the same state are likely.
The opposite is true when PGG (and PBB) are made smaller.
By varying PGG, the average energy consumption of all four
algorithms are given in Figure 7 for tD = 40 time slots and
Figure 8 for tD = 20 time slots.
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Fig. 8. Average energy consumption versus PGG: tD = 20 time slots

The offline solution can foresee future channel states, and
a larger PGG makes it more likely to choose consecutive
time slots with good channel states. Therefore, the average
energy consumption of the offline bound decreases as PGG

increases. When PGG is very close to zero, the channel
state is likely to toggle in the next time slot. In this case,
the Immediate Offloading algorithm consumes about 0.5mJ
extra energy, compared to the Channel Threshold algorithm,
i.e., 0.5mJ is 50% (which is the probability that the channel
state at the job release time is bad) times 1mJ (which is the
transmission energy in the first time slot). As PGG increases,
it is increasingly likely to have consecutive time slots with
the same channel conditions. If the channel is in the good
state when a job is released, the Immediate Offloading and
Channel Threshold algorithms are the same. However, if the
channel is in the bad state when a job is released, it is
likely that the bad channel state persists for a relatively long
time, during which Immediate Offloading may waste energy.
Therefore, with higher PGG, the difference between Immediate
Offloading and the Channel Threshold algorithm increases.
The OnOpt and the Channel Threshold algorithms are very
close when tD = 80 time slots since the time constraint
is loose enough for the OnOpt algorithm to offload at the
first time slot with good channel conditions. When tD = 35
time slots, the difference between the two algorithms starts
increasing as PGG becomes large. This is because OnOpt has
the flexibility to offload at a bad time slot while the Channel
Threshold algorithm does not. As a result, the OnOpt may
finish offloading much sooner than the Channel Threshold
algorithm.

Figure 9 shows the average energy consumption versus TG,
which is the asymptotic average channel residence time in the
good state, where TG = 1/PGB = 1/(1 − PGG). Note that
in this set of results, TB = TG since PGG = PBB . When
TG is below about 10 time slots (i.e., PGG is between 0.1
and 0.9), the observations are the same as seen in Figure 7.
Therefore, the discussion below is only for TG > 10 time
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Fig. 9. Average energy consumption versus residency time in good state:
tD = 40 time slots

slots. The Immediate Offloading algorithm can consume much
higher energy than the others, since it may have to transmit
for a long time if the channel is in the bad state at the job
release time. The OpOpt and Channel Threshold algorithms
are essentially the same, since both decide to offload at the
first time slot with the good channel state.

C. Scenario 3

In this set of results, we use the application parameters
for x264 (H.264) encoding from [49], and consider a job
with S = 80Kb, D = 18M CPU cycles, and tD = 80
time slots. The local execution energy per CPU cycle is
vl = 1.5 × 10−6mJ and the local computation power is
fl = 600 M CPU cycles per second or fl = 0.6 M CPU
cycles per time slot. Therefore, the local execution time is
TL = D/fl = 30 time slots, and the local energy consumption
EL = vlD = 27mJ. Based on Bg and Bg , a minimum of 8
time slots and a maximum of 80 time slots are needed in
order to complete job offloading. In addition to the results
presented below, we have also simulated the algorithms based
on parameters given in [50]. This reference does experiments
of computation offloading for face recognition on mobile
devices. Since the qualitative observations and conclusions are
the same as those presented below, these results have not been
included.

In this case we set PBB = 1 − PGG for the channel
state transition probabilities. As discussed previously, PGG is
a measure of the average channel quality. Figure 10 shows
the average energy consumption of different algorithms as
PGG is varied. The offline bound is the same as the energy
consumption of Local Execution only when PGG is close to
0 and it decreases as PGG increases. When PGG is very low,
the offline optimal solution chooses to process the job locally
without offloading because of the long data transmission time
(and possibly a long overlap time between offloading and
local execution). As a result, there is a high probability that
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Fig. 10. Average energy consumption versus PGG

offloading cannot meet the delay constraint and/or consumes
higher energy than EL. As PGG becomes larger, the good
channel state frequency increases, and a shorter time is needed
to complete the offloading. In this case, it is more likely
that offloading can meet the delay constraint and consume
less energy. The Immediate Offloading algorithm results in
much higher energy consumption when PGG is small. Since
the channel is in the bad state in most time slots, it is less
likely that offloading can meet the deadline, and the deadline
of the job is most likely met by performing local execution.
Therefore, energy is unnecessarily wasted by performing of-
floading. As PGG increases, the possibility that offloading can
meet the deadline increases, so that less local execution is
performed, and the total energy consumption decreases. The
Channel Threshold algorithm consumes slightly lower energy
than Immediate Offloading. By delaying the offloading until
the channel is in the good state, unnecessary transmissions
are avoided. The difference is more obvious when PGG is
smaller, since the probability is higher that the channel is
found in the bad state. For the proposed OnOpt algorithm, it
chooses to not offload when PGG is low, and therefore, results
in the same energy consumption as Local Execution. When
PGG is larger, channel conditions become better and a shorter
time is needed to offload. Given that the offloading decision
is made using only the current channel state and statistical
channel information, if the decision is to offload at a time
slot, it is most likely the first time slot with a good channel
state. Therefore, the OnOpt and Channel Threshold algorithms
consume almost the same energy when PGG is relatively large.
The gap between the OnOpt algorithm and the offline bound is
due to the fact that the online algorithm can only use statistical
channel information, while the offline bound has knowledge
of future channel conditions.

Figure 11 shows the average energy consumption of the al-
gorithms as the job deadline tD changes. For the offline bound,
a loose latency constraint helps it find a better offloading time
so that fewer time slots are needed to complete the required
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Fig. 11. Average energy consumption versus tD : PGG = 0.3

transmissions. Ideally, the minimum energy consumption is
achieved if eight consecutive time slots with good channel
states appear before tL. The probability of this decreases
as the deadline is tightened. However, a larger tD increases
the possibility of finding a shorter time interval to complete
the offloading, thus reducing the energy consumption. When
tD is sufficiently large, it is almost always possible to find
consecutive time slots with good channel states, and therefore,
increasing tD further cannot significantly decrease the average
energy consumption. The Channel Threshold and OnOpt al-
gorithms result in similar average energy consumption, which
is slightly lower than using Immediate Offloading and much
lower than using Local Execution, provided that tD is not
too small. As tD increases, more time is available to offload
before triggering local execution, resulting in lower energy
consumption. When tD is sufficiently large, Channel Thresh-
old and OnOpt all start offloading at the first time slot with
a good channel state, while Immediate Offloading may have
to transmit over an initial bad channel, resulting in slightly
higher energy consumption than the other two algorithms.
When tD is sufficiently large so that offloading can always
be completed before tL regardless of the initial channel state,
further increasing tD does not help in reducing the energy
consumption. This is true for all three online algorithms.

IX. CONCLUSIONS

This paper has considered the mobile computation offload-
ing case where job completion times are subject to hard
deadline constraints. Instead of using conventional offload/no-
offload execution decisions, the paper allows simultaneous
remote offloading and local job execution, which is used to
ensure that job completion deadlines are met in the face of
random channel conditions. The paper considered this problem
when the wireless channels are modelled as homogeneous
Markovian processes. The OnOpt (Online Optimum) algo-
rithm was proposed that achieves the minimum mean energy
consumption possible. This was shown by first constructing

a time-dilated absorbing Markov chain (TDAMC) from the
underlying Markov channel description. Dynamic program-
ming results were then used with the TDAMC to show
OnOpt’s optimality. This resulted in a simple test that can be
performed to determine if the current time is best for initiating
a computation offload. The paper then used the Gilbert-Elliott
channel model and derived closed-form results that are used
to find optimal offload initiation times. The job completion
time probabilities were computed recursively, which leads
to a a large reduction in the computational complexity. The
performance of the proposed algorithm was compared to three
others that also ensure that job deadlines are satisfied, i.e., Im-
mediate Offloading, Channel Threshold, and Local Execution.
An offline lower bound on energy consumption was computed
and used in these comparisons. Performance results show
that the proposed algorithm can significantly improve mobile
device energy consumption compared to the other approaches
while guaranteeing hard task execution deadlines. When the
channel conditions are relatively poor or the time constraint
is relatively tight, the proposed algorithm may decide to not
offload, saving energy by not transmitting unnecessarily. When
the channel conditions are good on average, the proposed
algorithm can choose the earliest transmission time, saving
as much energy for local execution as possible or not trig-
gering local execution at all. Overall, the advantage of the
proposed algorithm has been demonstrated over a wide range
of parameter values.
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