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Abstract—In this paper we consider the operating and capital
expenditure costs of solar powered additions to infrastructure
that is operated from the power grid. The capital expenditure
(CAPEX) costs are those associated with provisioning the solar
power components, and are selected using an offline design
optimization. Once the solar add-on is designed and deployed,
the node incurs ongoing operating expenditure (OPEX) costs
associated with the purchase of power grid energy. Lower bounds
on cost are derived using a linear programming formulation,
where the solar power components are sized using historical
solar insolation traces and projected loading data. Different node
add-on arrangements are considered, which result in various
solar/battery and grid configurations. Three energy scheduling
algorithms are then introduced to optimize online OPEX costs.
A variety of results are presented that show the extent to which
a solar powered add-on can reduce total cost. These results also
show that the proposed algorithms give performance that is close
to the lower bounds in many situations.

I. INTRODUCTION

Solar power is commonly used in cases where power grid

connections are unavailable or prohibitively expensive. In

these systems, a major equipment cost is that of providing a

suitable combination of solar panels and batteries so that the

node can be operated without outage. The selection of solar

components is referred to as “energy provisioning” and has

been studied extensively in the past [1].

The energy provisioning cost of a solar powered node is

a strong function it’s average power consumption. For this

reason, energy efficient designs will reduce both capital expen-

diture (CAPEX), and ongoing operational expenditure (OPEX)

costs. For example, the goal of the Energy Aware Radio

and Network Technologies (EARTH) project is to achieve a

reduction in the energy consumption of mobile networks by

50% [2]. In [3], the design of a basestation that is powered

by solar and diesel energy is analyzed, and in [4] a hybrid

solar-wind powered basestation is described. A hybrid system

consisting of solar, wind and diesel energy was designed in

[5]. In these projects, the basestation use of solar and wind

power is mainly in scenarios where there is no access to power

grid connections. However, in [6] a hybrid configuration of

grid and solar energy is considered. It is assumed that the

cellular network consists of highly loaded BSs (HBS) that are

powered by grid electricity, and solar powered BSs that are

lightly loaded (LBS). An algorithm is proposed that minimizes

the maximum energy depletion rates of the LBSs, therefore

enabling more users to be served with green energy. The

optimum number of green base stations in a cellular network

is analyzed in [7].

The cost of solar components, will eventually decrease

to the point where solar may be commonly used as an

add-on for grid powered communications infrastructure. In

this paper we consider a methodology that can be used to

assess the costs of installing and operating a hybrid powered

node solar add-on. The offline problem is formulated as a

linear program (LP) which provides lower bounds on the

OPEX and CAPEX costs. A variety of configurations are

considered including conventional solar add-ons which give,

solar panel/battery/grid, battery/grid, and panel/grid systems.

These designs are compared on the basis of total CAPEX

and OPEX costs. Three energy scheduling algorithms are

introduced which operate on the online system and reduce

the costs associated with power grid purchases. A variety of

results are presented that show the conditions under which a

solar powered add-on can reduce total cost. These results also

show that the proposed algorithms give performance that is

close to the lower bounds in many situations.

II. SYSTEM OVERVIEW AND MODELS

We consider a single outdoor communication node which

provides some kind of fixed infrastructure functionality. It is

assumed that the node is connected to the electrical power

grid, but that the energy needed for continuous operation may

be supplemented with a solar powered add-on as shown in

Figure 1. The solar add-on includes solar panels that have been

positioned to absorb the maximum possible solar energy, and

an associated battery bank that can store both solar energy,

and optionally, energy drawn from the power grid connection.

The electrical inputs and outputs are interconnected through

an Energy Controller which, among other things, provides

protection from battery over and under-charging. There will

also be an AC/DC converted block (not shown in the figure)

between the power grid and the energy controller.

The total cost under consideration consists of the sum

of Capital Expenditure (CAPEX) and Operating Expenditure

(OPEX) costs over some defined time period. We assume that

the node is already deployed with a power grid connection,

and the CAPEX cost of interest is that associated with the

provisioning of the solar power add-on to the existing system.
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Fig. 1. Grid Powered Node with Solar Powered Add-on.

Battery Charge Efficiency, η+
b

Battery Discharge Efficiency, η−
b

Residual Battery Energy, B(·)
Deployment Time, T
Battery Capacity, Bmax

Minimum Battery Energy, Bmin

Solar Panel Size, P
Panel Efficiency, ζ
Unit Battery Cost, cb
Unit Panel Cost, cp
Panel-to-Battery Energy,ǫsb(·)

Panel-to-Grid Energy, ǫsg(·)
Panel-to-Load Energy, ǫsl(·)
Grid-to-Battery Energy, ǫgb(·)
Grid-to-Load Energy, ǫgl(·)
Battery-to-Load Energy, ǫbl(·)
Harvested Energy, ǫs(·)
Energy Cost (/kWh), cg(·)
Purchased Energy, ǫg(·)
Solar Energy Input, S(·)
Load Energy, L(·)
Energy Sale Price (/kWh), rg(·)

TABLE I
LIST OF PARAMETERS

Once the solar add-on is designed and installed, the solar

energy used is “free” and does not contribute to on-going

OPEX costs. For this reason, the major OPEX cost considered,

is that of post-installation power grid electricity purchases. Our

objective is to design the solar power add-on and control the

energy flow so that the total costs are minimized over the time

period considered.

Photo-voltaic modeling is normally done in discrete time,

where the system is considered over some contiguous time

period T , [0,K∆t], where K is a large integer. We define

K = [1, 2, . . . ,K], where each k ∈ K corresponds to one ∆t
time epoch. It is also well accepted that for solar provisioning

purposes, excellent accuracy may be obtained using ∆t = 1
hour time increments [1]. For expository purposes, we consider

the solar panel/battery/grid (PBG) configuration shown in

Figure 1. We define B(k) as the residual energy in the battery

at the end of time epoch k. Input energy flow to the battery

during time period k consists of energy harvested from the

solar panels, ǫsb(k), and energy purchased from the power

grid, ǫgb(k). During the same time epoch, energy ǫbl(k) is

drawn from the battery and consumed in the load. Bmin and

Bmax are defined to be the minimum allowed battery level,

and the battery capacity, respectively. Using these definitions,

the energy in the battery at the end of time epoch k can be

written as

B(k) = min{max{B(k − 1) + η+b (ǫsb(k) + ǫgb(k))

−ǫbl(k),Bmin},Bmax} ∀k ∈ K (1)

where η+b is the charging efficiency of the battery. Equation (1)

is a simple recursion that finds the battery energy at time k to

be that at time k− 1, plus the energy received from the solar

panels and the power grid, minus the energy supplied from the

battery to the load over that time period. Equation (1) uses the

well known linear energy flow model that is commonly used

for photovoltaic node energy provisioning [1]. In this model

the load energy required during time epoch k is given by L(k).
This can be supplied, directly from the solar panels without

storage in the battery, from energy purchased from the power

grid, and, from energy drawn from the battery. This gives the

following load equation,

L(k) = ǫsl(k) + ǫgl(k) + η−b ǫbl(k) ∀k ∈ K (2)

where ǫsl(k) and ǫgl(k) are the direct solar energy and power

grid energy consumed in the load, and η−b is the battery

discharge efficiency. Finally, the maximum energy that can

be drawn from the battery in time epoch k must not exceed

that which was available at the start of the interval, that is,

ǫbl(k) ≤ B(k − 1) ∀k ∈ K (3)

Assuming that ǫs(k) and ǫg(k) are the total harvested solar

and purchased power grid energies in time epoch k, we must

have that

ǫs(k) = ǫsb(k) + ǫsl(k) ∀k ∈ K (4)

ǫg(k) = ǫgb(k) + ǫgl(k) ∀k ∈ K. (5)

The term, ǫs(k), can be written as

ǫs(k) = P ζ S(k) ∀k ∈ K (6)

where P , ζ and S(k) are the solar panel size (i.e., area),

efficiency, and the per unit area solar energy availability

for an optimally oriented solar panel during time period

k, respectively. Sample traces of historical values for S(k)
which are used in this paper are available from meteorological

databases. In the USA for example, this data is available

from the U.S. Department of Energy [8]. The optimization

parameters defined above are summarized in Table I.

III. HYBRID NODE TOTAL COST BOUNDS

Our objective is to minimize the total CAPEX and OPEX

cost for the node over the time period T . This can be found

using the linear programs (LPs) formulated in this section.

Different versions are given for various node configurations.

A. Solar Panel/Battery/Grid (PBG) Configuration

This is the basic configuration shown in Figure 1 which

includes a solar panel and battery add-on. The inputs to the

problem are given by the set of n-tuples

I = {(cb, cp, cc, cg(k),L(k), ǫs(k), η
+
b , η

−

b } ∀k ∈ K (7)
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where cp and cb are the per unit solar panel and battery prices,

respectively, and cg(k) is the power grid energy purchase price

during time epoch k. Cost cc is a cost which is included to

accommodate other capital costs which may be incurred. For

example, when considering the sale of energy to the power

grid, cc is used to model the added equipment costs needed

to support this functionality. The LP finds a lower bound on

the minimum total CAPEX and OPEX costs over the set of

optimization variables defined by the n-tuples

V = {(Bmax,P , ǫg(k), ǫgb(k), ǫgl(k), ǫsb(k), ǫsl(k))} (8)

where k ∈ K. The optimization, referred to as LP–PBG, is

first given, and then described below.

min
V

cb Bmax + cp P + cc +
∑

k∈K

cg(k) ǫg(k) (LP–PBG)

subject to

B(k) ≤ B(k − 1) +

η+b (ǫsb(k) + ǫgb(k))− ǫbl(k) ∀k ∈ K (9)

L(k) ≤ ǫsl(k) + ǫgl(k) + η−b ǫbl(k) ∀k ∈ K (10)

ǫsb(k) + ǫsl(k) ≤ ǫs(k) ∀k ∈ K (11)

ǫgb(k) + ǫgl(k) ≤ ǫg(k) ∀k ∈ K (12)

ǫbl(k) ≤ B(k − 1) ∀k ∈ K (13)

Bmin ≤ B(k) ∀k ∈ K (14)

B(k) ≤ Bmax ∀k ∈ K (15)

ǫs(k) = P ζ S(k) ∀k ∈ K (16)

B(0) = Bmax (17)

0 ≤ ǫg(k), ǫs(k), ǫgl(k), ǫgb(k) ∀k ∈ K (18)

0 ≤ ǫsl(k), ǫsb(k), ǫbl(k),P ,B ∀k ∈ K (19)

The first two terms in the objective consist of the solar panel

and battery CAPEX costs, and the third term is the sum of

the OPEX costs of power grid purchases over T . Inequality

(9) expresses Equation (1) as an inequality constraint, as does

(10) for Equation (2). Inequality (11) ensures that the solar

energy stored and expended in the load during interval k
cannot exceed that provided by the solar panel. Similarly,

inequality (12) performs the same function for purchased

power grid energy. Constraints (13) to (19) are the same that

those discussed in results (3) to (6), plus the obvious non-

negativity constraints on the energy and panel/battery sizes.

This includes the constraint that batteries are fully charged at

the beginning of their operation, i.e., Equation (17). Note that

if the battery is chosen too large, one is paying for unused

energy capacity, and if the panel is chosen too large, one

is paying for solar energy production but with no place to

store the energy. The optimum cost solution for PBG therefore

involves adjusting the panel and battery purchases so that an

optimum is obtained.

B. Battery/Grid (BG) Configuration

In a BG configuration, electricity from the power grid can be

purchased and stored for future use. This may be advantageous

when power grid costs are time dependent, e.g., when cg(k)

is not the same for all k. During off-peak hours, when power

grid pricing is reduced, battery storage for future use may lead

to reduced OPEX costs. By setting P = 0 in LP–PBG we can

obtain the offline lower cost bound for the battery/grid case.

C. Solar Panel/Grid (PG) Configuration

In the panel/grid configuration, the capability of storing

electricity in off-hours is eliminated, and all the input energy

from the solar panels is applied directly to the load whenever

possible. Since energy pricing is normally more expensive

during daytime hours, there is a good correlation between solar

energy availability and higher energy pricing. To formulate the

panel/grid problem, LP–PBG can be modified as follows.

minimize
P, ǫg(k)

cp P +
∑

k∈K

cg(k) ǫg(k) (LP–PG)

subject to L(k) ≤ P ζ S(k) + ǫg(k) ∀k ∈ K (20)

0 ≤ ǫg(k) ∀k ∈ K (21)

0 ≤ P (22)

In this case the LP selects the best solar panel size and power

grid energy purchases. This is subject to providing sufficient

load energy during each time epoch.

D. Energy Revenue (ER) Configuration

The ER configuration is a modification to PBG where

unused energy may be returned to the power grid. This type

of situation is currently available in various countries. In

Canada, for example, the purchase price that utilities offer for

excess energy is about four times that which they sell to their

customers [9]. In this case we define ǫr(k) to be the energy

sold to the power grid during time epoch k. The objective

function in LP–PBG will now become

cc+cb Bmax+cp P+
∑

k∈K

cg(k) ǫg(k)−
∑

k∈K

rg(k) ǫr(k) (23)

where rg(k) is the unit price paid by the power grid for surplus

energy at time k. We also introduce two new optimization

variables, ǫbg(k) and ǫsg(k), which are battery-to-grid and

solar-to-grid energy transfers during time interval k. Inequality

(9) now becomes

B(k) ≤ B(k−1)+η+b (ǫsb(k)+ǫgb(k))−ǫbl(k)−ǫbg(k) (24)

for all k ∈ K, and expressions (11) and (13) will change to

ǫsb(k) + ǫsl(k) + ǫsg(k) ≤ ǫs(k) ∀k ∈ K (25)

and

ǫbl(k) + ǫbg(k) ≤ B(k − 1) ∀k ∈ K (26)

We must also have that

ǫr(k) ≤ ǫsg(k) + η−b ǫbg(k) ∀k ∈ K (27)

The LPs formulated above have access to all input data at

once and therefore they provide only lower bounds on cost.

However, these formulations can be used as an excellent basis

for the offline design of the solar power add-on, which is the

approach taken. When the solar add-on is deployed however,
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Algorithm 1 Grid Purchase Last (GPL) Algorithm

1: for all k ∈ [1, 2, · · · ,∞) do
2: if L(k) ≤ ǫs(k) then
3: Supply load, L(k), using solar energy and place any resid-

ual energy in the battery, i.e., ǫsb(k) = ǫs(k)− L(k).
4: else if ǫs(k) < L(k) ≤ ǫs(k) + η−

b B(k − 1) then
5: Supply L(k) using both solar and battery energy, i.e.,

ǫbl(k) = ǫs(k)− L(k).
6: else
7: Supply L(k) using available solar and battery energy plus

a grid power purchase, i.e., ǫgl(k) = ǫs(k)+η−

b B(k−1)−
L(k).

8: end if
9: end for

online energy scheduling algorithms are needed which control

real-time energy flow, purchases and storage decisions. In the

following section, three online algorithms are proposed and

performance results are compared in Section V.

IV. ON-LINE ENERGY SCHEDULING ALGORITHMS

The objective of the online algorithms is to schedule real-

time energy use with minimum OPEX cost. We first consider

the PBG configuration discussed in Section III-A. The algo-

rithms to be discussed are also applicable for the BG and ER

configurations.

A. Grid Purchase Last (GPL) Algorithm

The Grid Purchase Last (GPL) algorithm is motivated by the

fact that if grid energy pricing is fixed, cg(k) = cg for all k,

then a feasible minimum cost solution for LP–PBG can always

be obtained when ǫgb(k) = 0 for all k, i.e., in order to achieve

the optimum offline bound, it is never necessary to store power

grid energy in the battery. This result is proven in a report

which is available upon request from the authors. Accordingly,

the GPL algorithm defers any power grid purchases as long as

possible. The details are shown in Algorithm 1 and described

as follows. In Step 2, if there is sufficient solar energy to power

the load, this is the option taken. In this case any residual

solar energy, ǫs(k) − L(k), is made available for storage in

the battery. If there is insufficient solar energy, then energy

is also drawn from the battery to make up the shortfall, as

shown in Step 5. Finally, only if solar and battery reserves are

insufficient is energy purchased from the power grid (Step 7).

The GPL algorithm is very simple and is likely to be the sort

of default used in many practical situations. However, there

are many scenarios where its performance is not very good.

In the following, two other algorithms are introduced which

take into account solar insolation factors, traffic loading and

grid energy pricing.

B. Solar Load Optimization (SLO) Algorithm

The SLO Algorithm uses predictions of input solar insola-

tion values, S(k), over a future window of duration w∆t as a

basis for its energy scheduling decisions. The predictions that

we use are based on the algorithm first proposed in [10]. This

is used to predict both future solar energy, S(k) and the load,

L(k). Note that predicting the granular details of long term

solar availability is known to be very difficult. However, this

Algorithm 2 Solar Load Optimization (SLO) Algorithm

1: for all k ∈ [1, 2, · · · ,∞) do
2: Use the prediction algorithm from Reference [10] for k+1 ≤

i ≤ k + w with the updated objective (28) to find the target
variables including ǫg(i) for i = k, k + 1, . . . , k + w.

3: Implement the energy flow in accordance with the solution
obtained in Step 2. If L(k) is higher than its prediction, or if
S(k) is lower, then draw the additional energy needed from
the battery, i.e., increase ǫbl(k) above its predicted value. If
this is insufficient, purchase additional energy from the power
grid, i.e., increase ǫgl(k) to make up the shortfall.

4: end for

level of detail is not needed in our case, mainly due to the av-

eraging effects of the battery, and as a result what is important

is that we have reasonable averaged predictions. Using these

predicted values, the algorithm solves a linear program over

the next w discrete time epochs, which gives estimated values

of ǫg(k) to use for power grid energy purchases. More for-

mally, at time k the algorithm estimates the values of S(i) and

L(i) for i = k+1, k+2, . . . , k+w, and uses these estimates

with the known value of B(k) in LP–PBG to determine the

estimated future values of ǫg(j), ǫgb(j), ǫgl(j), ǫsb(j), ǫsl(j),
for k ≤ j ≤ k +w. Note however, that the objective function

in LP–PBG is replaced by

i+w∑

i=k

ǫg(i) cg(i) (28)

since the battery and panel sizes are already determined. The

remaining variables give the amount of power grid energy that

should be purchased in each future time epoch. The above

result gives estimates for the variables indicated, however, the

“next step” values for k + 1 are the only ones used. The LP

solution gives a set of grid energy variables, ǫg(j) for j =
k, k + 1, . . . , k + w, that should be purchased over this time

period. Since the algorithm is run every ∆t, only the result

for the current time period, k, is purchased.

C. Solar Load Simulation (SLS) Algorithm

Instead of solving an LP at each time epoch, when a grid

energy purchase is needed, the SLS Algorithm may purchase

the energy early, provided that there is room in the battery

and the purchase price is lower. As in SLO, predicted values

for solar insolation and load are used for a window of w time

epochs extending into the future. In Step 3 of Algorithm 3,

the predicted values in Step 2 are used to find the battery

energy levels at each time epoch over next w intervals. This

is accomplished by simulating the battery energy recursion (1),

subject to Equations (2) to (6) using the GPL Algorithm. We

then find the first time period, p, where a future power grid

energy purchase is predicted, i.e., Step 4. If the current energy

purchase price (at time k) is less than all other time periods

between k and p, and purchasing energy would not overflow

of the battery for i ∈ {k + 1, . . . , p}, then we move the grid

energy purchase from time p to k. This is shown in Steps 5

and 6, i.e., when grid energy is required the algorithm looks

for a time period between the current time k and time p which

has the lowest energy price. If the energy price at the current

time period is less over all other time periods from k to p, the
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Algorithm 3 Solar Load Simulation (SLS) Algorithm

1: for all k ∈ [1, 2, · · · ,∞) do
2: Obtain the predictions using Reference [10] for i ∈ {k+1, k+

2, . . . , k + w}.
3: Using the predicted values from Step 2, and known values

of available solar energy and battery energy level at time k,
simulate the system over {k, . . . , k + w} using the battery
energy recursion (1), and (2) to (6). When doing this, use the
GPL Algorithm.

4: Find p = min j : 0 < ǫg(j) for all j ∈ {k + 1, . . . , k + w}.
5: if cg(k) < cg(i) AND B(i) < Bmax for all i ∈ {k+1, . . . , p}

then
6: ǫg(k) := ǫg(k) + min(ǫg(p),Bmax − B(k)).
7: end if
8: end for

required energy is purchased, otherwise the algorithm waits.

The variables used in the recursion are then updated.

V. SIMULATION RESULTS

The methodology used for our experiments is as follows.

First, the solar add-on is configured offline, using the bounds

formulated in Section III. This is done using historical solar

insolation traces for the city of Boston MA., for the years

spanning 1967-1978. This result determines the CAPEX cost

of the solar add-on. The configured system is then operated

using the online energy scheduling algorithms proposed in

Section IV. This is done using solar insolation traces and node

energy loading which are different from those which are used

in the offline design phase. For the online experiments we

use solar insolation data from the years 1979-1990 for the

same geographic location. In the presented results, some of the

graphs include separate “Bound” curves. These are obtained

by evaluating the appropriate LP optimization from Section III

using the exact online input data. Since this data is provided

all at once to the optimization, it gives a true lower bound

on the cost for a given online experiment. These bounds are

useful for comparisons, however, they are clearly not realizable

by a causal online algorithm. In our experiments we use a

model obtained from the observations in [11] that show a

24 hour sinusoidal periodicity in averaged basestation power

consumption. Accordingly, we define the average power usage

of the load by PL. In addition, the minimum and maximum

value of energy consumption of the node occurs at 5 a.m. and

5 p.m., respectively. Based on the results presented in [12]

which show a time-correlated daily periodicity in energy use,

we adopt the following node power consumption model where

P (k) is the power consumption at the start of time epoch k

P (k) = PL(1 +
1

3
cos(

π

12
(k∆t+ 7))) + γn ∀k ∈ K (29)

where γn is a normally distributed random variable with a

mean of zero and a standard deviation of 70W, which is used

to model random perturbations in the loading. Note that in

Equation (29), k = 0 corresponds to midnight at the start of the

first day considered in T . The actual node energy requirements

are therefore given by L(k) = P (k)∆t.
A Time of Use pricing model is used which has two modes.

It is assumed that electricity pricing is on-peak from 7 a.m. to 6

p.m., and the price during these hours is 1.5 times the average,

Batteries
Capacity 150 Ah

η+

b , η−

b 0.92
Cost $229 CAN

Solar Panels

Size 1.65× .992 m2

ζ 0.1497
Cost $197 CAN

TABLE II
DEFAULT PARAMETER SETTINGS
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Fig. 2. Energy Flow Time Line Example.

and the off-peak pricing is half the average [13]. Unless

otherwise stated, the unit battery and panel specifications as

well as other parameter values are given in Table II. The

default value for PL is set to 1450 W [14].

A. Solar Panel, Battery and Grid (PBG) Case

An example is first shown which illustrates energy flow

in the node. Figure 2 shows the evolution of the energy

components for a five day period starting at the first day

of January. It can be seen that the first two days provide

only small levels of solar energy input and this leads to

significant grid power purchases in days 2 and 3. This is shown

by the high vertical spikes. The daily solar input increases

significantly at that point and only small grid power purchases

are needed in the last two days. As would be expected, these

occur in the hours just before sunrise as the battery level

bottoms out.
In the second set of results, the performance of the PBG

configuration is compared with the cases where we operate

the system with grid-only (GO) powering and solar-only (SO)

powering. The GO case is the original system without any

addition, and the second is with a solar/battery add-on which

is provisioned to be energy sustainable, i.e., no grid purchases

are needed. Results are evaluated for deployment time periods

ranging from 2 to 12 years. The average energy price varies

over a wide range from 0.1 to 0.5 $/kWh. In the first of these

results shown in Figure 3, the average energy price is set to

0.3 $/kWh, with the daily fluctuation discussed above, and

the performance of the algorithms in terms of the total cost,

i.e., the sum of CAPEX and OPEX costs, is compared for an

add-on deployment time from 2 to 12 years. An interesting

result is that by properly combining the two configurations,

we can obtain a system with significantly less total cost.

From Figure 3, the GO scenario is up to about 100% more

expensive than the PBG configuration even when the Grid

Purchase Last (GPL) algorithm is used. However, the GPL
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Fig. 3. Example Comparison of GO, SO and PBG Configurations.

scheduler has relatively poor performance compared with SLO

and SLS. This is because it does not take into account the

daily grid power pricing differences. In this case, where we

have used practical numbers, the cost of the system using GO

is about 210% higher than that obtained with the SLO and

SLS algorithms. In results that we have not shown, we find

that when the grid pricing is fixed, i.e., cg(k) = cg for all k,

the GPL scheduler performance is about the same as SLO and

SLS.

The proposed models can also be used to assess the physical

requirements of a proposed deployment scenario. For example,

in these results, the numbers of solar panels vary widely. At

.2$/kWh pricing and a two year time period, a 3× 3 standard

panel arrangement is needed. When energy pricing increases to

.5$/kWh and a 10 year time period, a 6×6 panel arrangement

is required.

Results have also been obtained which explore the effects

of errors in load prediction. This was done in two different

ways. In the first we assumed that there are random (Gaussian)

errors in our hourly predictions but that our average power

consumption is known. This would be correspond to the case

where cyclic trends in power consumption are predictable

from one day to the next as is often the case. We found

that the cost results were very insensitive to this type of

error even for a very large error variance. The reason for

this is that the panel/battery heavily integrates the energy

demands, effectively averaging/smoothing out this type of

error. However, results were also obtained when the mean

loading is unknown. Figure 4 shows the total cost versus

energy price with different mean errors. These results include

random Gaussian errors with a standard deviation of 70W. The

figure shows that as the mean error increases, i.e., the ratio

of the mean of the estimated load to the mean of the actual

load, the costs may also increase. Interestingly, the curves

converge at both low and high values of energy cost. This

happens because when energy pricing is low, operating costs

are dominated by power grid purchases, but since the price is

low, costs eventually drop. Conversely, when energy pricing is

high, the system increasingly resorts to solar energy and hence

energy pricing drops again. At these two extremes, the system

is dominated by either power grid or solar energy input, and

therefore the results are less sensitive to the quality of the

energy management algorithm. In the region between these
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Fig. 4. Total Cost with Load Error Prediction.

two extremes however, it can be seen that higher errors may

occur compared with the case where node loading is known.

In the example shown in Figure 4 the worse error is about

20% when the mean error is 50%, which seems reasonable.

B. Solar Panel/Grid (PG) Configuration

Using a PG configuration is an interesting option since

daytime solar energy output correlates well with the times

when node energy consumption and grid energy pricing tends

to be higher. In these experiments, LP–PG has been used to

determine the optimum cost for variable energy pricing and

for different deployment periods.
The total cost bound for PG along with its online results

in comparison with the Grid-Only case are shown in Figure

5. It can be seen that there is very little difference between

the bound and the online results. This is because there is

no intelligent energy scheduling required, i.e., any available

solar energy is immediately used, and the power grid fills in

any shortfall. Similarly, if the solar energy is higher than that

needed, the surplus is lost.
Results have also been obtained which show the fractional

split between total cost and energy usage for the PG configu-

ration. For the system parameters used above, we find that the

contribution to total energy provided by solar power is about

16%, which is not insignificant. The contribution to total cost

is about 24%, but decreases slightly with deployment time

amortization, as would be expected. The intuition that the PG

configuration is able to provide significant amounts of energy

during daytime hours is correct.

C. Battery/Grid (BG) Configuration

The converse case to PG is to use a battery only, i.e.,

BG, node add-on. In this case all consumed energy will be

that from the power grid. This configuration makes no sense

if energy pricing is fixed, i.e., when cg(k) = cg for all k,

and therefore it is somewhat limited in its overall usefulness.

However, when there are temporal energy cost differences,

this can be exploited by storing energy and by shifting energy

purchases to times when the energy costs are lower. This

makes sense since, in practice, elevated pricing tends to occur

over long time periods during peak usage hours.
Figure 6 shows a comparison of total cost versus deploy-

ment time amortization for the BG and PBG configurations.
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Different curves are shown for different Average Energy

Pricing (AEP) energy pricing. At the left of the graph, the

results show that for short deployment times there is little

cost advantage in providing the system with solar panels. The

reason for this is that solar panels are expensive and their cost

cannot be recouped over these short time periods. The same

is true for very low energy pricing. In this case (the lower

curves in Figure 6), expenditure is focused on grid energy

purchases, so again, the system is best to avoid solar energy

use. However, it can be seen that for more typical energy costs

and amortization periods, there is a significant advantage in

including solar energy. At the right of the graph, the BG cost

is over double that of PBG. This improvement over the BG

case is due to the fact that the “energy time shifting” can

occur over large time periods and is not subject to the energy

loss associated with the PG configuration’s inability to store

energy. Clearly, for the parameters that we are considering,

BG provides better cost saving performance than PG. This

scenario could change if, for example, the relative unit costs

of the battery and solar panel were to dramatically change

from their current values.

D. Energy Revenue (ER) Configuration

In this section it is assumed that the node add-on is

configured to sell unused energy back to the power grid.

The LP introduced in Section III-D is used to determine the
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Fig. 7. Energy Revenue Example with PBG Configuration

CAPEX and provisioning costs using the modified version of

LP–PBG as discussed in that section. The online algorithm

therefore schedules grid energy purchases, but also determines

if surplus energy should be sold back to the grid at each time

epoch.

Simulation results when the average energy price for pur-

chasing electricity differs from the selling price are shown in

Figure 7. The average energy purchase price is 0.3 $/kWh, the

add-on amortization time is set to 10 years, and cc = $300
which was taken from Reference [15]. It is clear from this

figure that permitting energy revenue strongly affects the

economics of the node add-on. In this figure, separate curves

have been shown for the add-on CAPEX and selling profit

values. With a revenue capability, the overall cost is seen to

decrease as the energy selling price increases. It can be seen

that if the selling price increases, the optimizer aggressively

increases CAPEX expenditures.

E. Geographic Location

A wide variety of results have been obtained for other

geographic locations, including New York, Atlanta, Phoenix,

and Seattle. An example of total cost versus energy pricing

for the PBG configuration is shown in Figure 8. In this graph

we have used the same parameters as in Section V-A with

our best online algorithm, SLO. As expected, we find that

the availability of solar energy has a strong impact on the

total cost. For example, Seattle has a marine climate with

a relatively high fraction of overcast days that significantly

increase solar CAPEX costs. Atlanta has a temperate climate,

and Phoenix has a subtropical arid climate with a year-round

abundance of solar energy. It can be seen that Boston and New

York give very similar results. When comparing Phoenix to

Seattle there is about a factor of two cost difference at the high

energy price point shown. Note that the total cost differences

decrease with energy pricing (to a ratio of about 1:1.3) since

this leads to a reduction in solar capital expenditures. Clearly

there would be no use for solar power in the limit as power

grid energy become free, and obviously the economics of a

solar add-on are highly location dependent.

Using the same system assumptions, the differences in

location have been considered from a total energy usage

viewpoint. At the one extreme for Phoenix, solar energy

supplies about 92% of the energy needs. At the other extreme,
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for Seattle, we find that power grid energy is providing almost

40% of its energy requirements. The solar energy fractions for

Atlanta, New York City and Boston, are about 20%, 22% and

24%, respectively. This trend of course, is expected due to the

decrease in solar energy availability.

Figure 9 shows an example using the same assumptions

as in Section V-D which illustrates the differences in energy

use in the revenue configuration for the different geographic

locations. The cities appear in decreasing order of energy sold

to the power grid. The graph shows that there are significant

differences in energy use. In more solar rich locations such

as Phoenix, there is much more opportunity for selling energy

than in more temperate locations. For example, we see that

there is about a factor of ten difference between solar energy

sold in Phoenix compared with Boston. At the same time, in

locations where solar insolation is more highly variable, such

as in Seattle, the system must rely more on fulfilling its energy

needs with power grid purchases.

VI. CONCLUSIONS

In this paper, we have considered the operating and capital

costs of providing a solar powered add-on to power grid

operated communications infrastructure nodes. Online energy

scheduling algorithms were also introduced. Lower bounds on

the costs were also derived using linear programming (LP)

formulations, where solar components are sized using solar

insolation and projected loading data.

To compare the performance of the proposed algorithms,

solar insolation traces for the city of Boston, MA. were used.

Simulation results show that when comparing with the grid

energy only case, using the proposed energy management

scheduling algorithms results in a 40% to 78% reduction

in the total cost. This is achieved when a combination of

batteries and panels are used to supplement purchased power

grid energy. The improvements obtained are 21% and 48%

for the panel/grid and battery/grid configuration cases, respec-

tively. Simulation results were also performed for other cities

with different solar insolation profiles. Results show that the

algorithms achieve better cost improvements when solar power

is more plentiful.

REFERENCES

[1] H. A. M. Maghraby, M. H. Shwehdi, and G. Al-Bassam, “Probabilistic
Assessment of Photovoltaic (PV) Generation Systems,” IEEE Transac-
tions on Power Systems, vol. 17, no. 1, pp. 205–208, 2002.

[2] M. Gruber, O. Blume, D. Ferling, D. Zeller, M. Imran, and E. Strinati,
“EARTH: Energy Aware Radio and Network Technologies,” in 20th

IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 2009.

[3] S. Chowdhury and S. Aziz, “Solar-Diesel Hybrid Energy Model for
Base Transceiver Station (BTS) of Mobile Phone Operators,” in 2nd
International Conference on the Developments in Renewable Energy

Technology (ICDRET), 2012.
[4] W. Yu and X. Qian, “Design of 3kW Wind and Solar Hybrid Independent

Power Supply System for 3G Base Station,” in Second International
Symposium on Knowledge Acquisition and Modeling, KAM’09, vol. 3,
2009, pp. 289–292.

[5] P. Nema, S. Rangnekar, and R. Nema, “Pre-feasibility Study Of PV-
Solar/Wind Hybrid Energy System for GSM Type Mobile Telephony
Base Station in Central India,” in The 2nd International Conference

on Computer and Automation Engineering (ICCAE), vol. 5, 2010, pp.
152–156.

[6] T. Han and N. Ansari, “ICE: Intelligent Cell BrEathing to Optimize the
Utilization of Green Energy,” IEEE Communications Letters, vol. 16,
no. 6, pp. 866–869, 2012.

[7] Z. Zheng, S. He, L. Cai, and X. Shen, “Constrained Green Base Station
Deployment with Resource Allocation in Wireless Networks,” Handbook

on Green Information and Communication Systems, John Wiley & Sons,

Inc., 2012.
[8] U.S. Department of Energy, “National Solar Radiation Database

(NSRDB),” Renewable Resource Data Center (RReDC), National
Renewable Energy Laboratory (NREL), 2012. [Online]. Available:
http://www.nrel.gov/rredc/

[9] Ontario Power Authority, “http://fit.powerauthority.on.ca/,” 2013.
[Online]. Available: http://fit.powerauthority.on.ca/

[10] M. Ali, B. Al-Hashimi, J. Recas, and D. Atienza, “Evaluation and
Design Exploration of Solar Harvested-Energy Prediction Algorithm,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2010, pp. 142–147.

[11] L. Correia, D. Zeller, O. Blume, D. Ferling, Y. Jading, I. Godor,
G. Auer, and L. Van Der Perre, “Challenges and Enabling Technologies
for Energy Aware Mobile Radio Networks,” IEEE Communications

Magazine, vol. 48, no. 11, pp. 66–72, 2010.
[12] P. Frenger, P. Moberg, J. Malmodin, Y. Jading, and I. Gódor, “Reducing
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