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Abstract—This paper addresses the problem of scheduling
transmission requests in vehicular networks so that long-term
road side unit (RSU) energy costs are minimized. We demonstrate
that knowledge of vehicular routes greatly improves the energy
service costs and request drop ratio of RSU transmission. At the
same time, simple and fast prediction algorithms can recover
a significant portion of the loss incurred by a lack of vehicle
route knowledge. The proposed algorithms use recent historical
traffic data and simple calculations, such as Bayesian estimates,
to predict the next few routing decisions by a vehicle, in order to
load balance the scheduling of its requests over the RSU network.
Our simulation results show that, while the common assumption
in the literature of knowing the vehicle routes is indeed crucial
for achieving good performance, simple algorithms can be used
in cases where vehicle routes are not known ahead of time, in
order to achieve comparable costs and loss ratios.

Index Terms—vehicular networks, energy efficiency, schedul-
ing, unknown vehicle routes, route prediction.

I. INTRODUCTION

A key component of future vehicular systems are road-
side units (RSUs) that provide a local bridge between fixed
infrastructure and the communicating vehicles. Studies have
shown that in large scale deployments, a significant fraction
of the RSUs must be solar powered, due to the unavailability
of power grid connectivity. For this reason, energy efficiency
at the RSUs is an important consideration and must be taken
into account during packet scheduling. This is the focus of
this paper.

In many applications, competing vehicular job requests may
span multiple RSU coverage areas as vehicles travel through
the coverage region [1]. When vehicle routes are known by the
scheduler [2], [3], this information can be incorporated into the
scheduling in a straightforward manner. This may eventually
be possible once self-driving vehicle technology becomes
widespread, since route information may be communicated
directly to the roadside infrastructure [4]. However, when
vehicle routes are unknown, which is currently the case, the
scheduling problem becomes significantly more complicated.

In this paper, we consider the problem of roadside unit job
scheduling when vehicle routes are unknown. The scheduler
is given the topology of an urban road network and historical
traffic traces that are used to extract vehicular motion statistics.
Given this information, the scheduler must process online
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vehicular job requests that are subject to hard deadline con-
straints. The objective is to perform this scheduling such that
the long-term energy service costs of the RSUs are minimized.
Two schedulers are introduced, and referred to as the Route
Coverage Expectation Scheduler (RCES) and the Bayesian
Route Predictor (BRP). RCES and BRP use historical traffic
trace inputs to estimate vehicular motion and the associated
energy communication costs. BRP uses this information to
first predict vehicle routes and then schedules the job requests
across RSUs located on the predicted route. RCES uses this
information to schedule job requests across multiple RSUs
whenever possible.

A wide variety of results are presented that show the perfor-
mance of the proposed schedulers. In particular, we compare
RCES and BRP to optimal offline scheduling, where routes are
assumed to be known in advance. We also compare them with
a simple greedy online scheduler, which also knows vehicle
routes at the time of scheduling. This algorithm greedily
assigns each job request to the energy-minimum time-slots
among the RSUs with available capacity that the vehicle will
encounter. RCES and BRP are also compared to the scheduler
in [5], which assigns requests to the RSUs on the current
street segment using an earlier-deadline-first (EDF) scheduling
policy. The results show that deploying RCES and BRP when
vehicle routes are unknown achieves a drop ratio similar to the
drop ratio achieved when these routes are known, with only a
modest increase in energy cost.

II. RELATED WORK

Previous work has considered the problem of roadside unit
job scheduling when vehicle routes are unknown. Unfortu-
nately, much of this work is not helpful in our case, since
it focuses on improved network capacity rather than on RSU
energy savings with hard packet deadline constraints. The most
relevant references are briefly discussed in what follows.

Reference [6] introduces a motion prediction-based schedul-
ing scheme in which RSUs cooperatively balance their loads
by transferring part of their requests to nearby RSUs. If
a request in the current queue cannot be served before its
deadline, it is transferred to the subsequent RSUs in decreasing
order of its probability to encounter. Reference [5] extends
the model introduced in [6], referred to as the cooperative



load balancing (CLB) scheduler. It prioritizes the current
street RSUs before considering those in the next encountered
intersection. Reference [3] modifies the CLB scheduler in [5]
by changing the assumption to the case that the vehicle routes
are known at the time of scheduling. It can therefore achieve
better load balancing than the CLB scheduler, but at each
request transfer, the scheduler also transfers the request to the
RSU at the next intersection, in case the vehicle deviates from
its route. Note that the above studies do not focus on reducing
RSU energy expenditure, as is the case in our paper.

To the best of our knowledge, our paper is the first that
considers roadside unit schedulers that operate with unknown
routes and with the objective of minimizing long-term energy
operating costs under job deadlines and with small packet loss.

III. SYSTEM MODEL

We study the scheduling of transmission requests made to
a network A of RSUs by a set V of vehicles where their
routes are unknown. Nevertheless, the scheduler can use the
network topology and historical data (e.g., past traffic traces) to
deduce vehicle mobility patterns, such as turning probabilities
of vehicles at intersections, average travel times of streets, etc.

It is assumed that the RSUs use downlink power control
when communicating with the vehicles, i.e., they adapt their
transmit power in order to maintain a constant bit rate [1], [7].
Each vehicle v € V generates a set R, of requests, for a total
of R = U,eyR, requests. Each one of these requests has a
release date, i.e., the time when the request is generated, and
a due date, i.e., the deadline of the associated RSU response.
These dates define a set of time slots during which the request
can be served; if it is not, the request is dropped. We make the
typical quality-of-service assumption, that a vehicle generating
a request, communicates its size, release, and due dates to the
first RSU it encounters, and, therefore, the system is aware
of these parameters for scheduling purposes. Moreover, we
assume that a request with a size of [ time slots is split into
! unit-size requests that can be scheduled on different RSUs.
Note that we assume non-preemptive scheduling of requests,
i.e., the assignment of a request to a specific RSU during a
certain time slot cannot be changed or preempted once it is
made.

Let 7 be the set of time slots; within a time slot, RSU n has
the capacity to transmit to at most u,, vehicles, and a vehicle
can communicate with at most one RSU during a time slot. To
schedule the requests, we use decision variables X4, so that
Xt = 1 if RSU n serves request r of vehicle v during time
slot ¢, and X,,; = 0 otherwise. When vehicle v is within
the coverage area of RSU n during time-slot ¢, the energy
cost for servicing request r (referred to as its energy service
cost) 1S ¢y, Which depends on the RSU-vehicle distance (and
other propagation effects) in time slot ¢. This is done by first
computing the transmit power needed to overcome the path
loss from RSU n to request r at time ¢, such that a target SNR
is achieved that supports the chosen data rate. This power is
added to the quiescent radio power consumption, and the total
energy is computed by multiplying by the time slot duration

[7]. In order to enforce the servicing of all requests, if possible,
we use a decision variable Z, for each request r, so that
Z, = 1if r is dropped, incurring a large cost D,.. As a result,
in the optimization defined below, the scheduler will never
drop a request, unless there is a capacity constraint violation.
Since this part of the objective function is an artifice to ensure
service, it will not be included in the energy service cost we
present in the results obtained.

Given the above assumptions and for a given input traffic
trace, we formulate the optimum cost as an integer linear
program. This provides a lower bound on the energy service
cost. Since the scheduler is given non-causal knowledge of
future vehicular inputs, this bound is not generally achievable
in practice. The optimization is given as follows and discussed
below.
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Constraint (1) guarantees that requests are satisfied. Note that
the requests of size of more than one are split into multiple
requests of unit-size that can be served by different RSUs.
Constraint (2) enforces the capacity constraint for the RSUs
and constraint (3) implies that only one request of vehicle v
can be serviced during time slot ¢.

IV. THE ROUTE COVERAGE EXPECTATION SCHEDULER
(RCES) AND THE BAYESIAN ROUTE PREDICTOR (BRP)

The two algorithms we propose are probably the simplest
ones, in terms of the computations needed for their route
predictions. By studying them, we demonstrate that in settings
where their deployment is practically desirable or unavoidable,
more sophisticated prediction methods (e.g., using Markov
chains as in [8]) are bound to do even better.

Our first proposed algorithm RCES (Algorithm 1) takes as
its input a road network with RSUs installed, vehicular traffic
statistics (mean traveling time of streets and turning proba-
bilities at intersections) based on historical traffic data, and a
communication cost matrix. New vehicular job requests that
need to be scheduled arrive in an on-line fashion. Algorithm
RCES greedily finds the time-slots of minimum communica-
tion cost to serve requests, trying to minimize the total energy
cost of scheduling. Note that the algorithm does not make any
assumptions about the vehicle routes. RCES schedules part
of a request on the RSU which currently covers the vehicle’s
current location (if such an RSU exists), and leaves the rest
to be serviced by RSUs that the vehicle may encounter in
the future. Any portion of the first part that could not be
scheduled before the vehicle leaves an RSU coverage area,



will be postponed along with the second part. The decision on
how requests should be divided is based on the expected value
of free capacity the vehicle will encounter in the next £y ax
streets or before its request expires (whichever happens first),
where &ax 1S a preset algorithm parameter upper-bounding
its lookahead. The expectation is calculated over all possible
routes within these limits, using the probabilities given as an
input. In our experiments we set £yax = 3.

More specifically, set R! contains the requests released
during time-slot ¢, together with all other requests that were
previously postponed (line 2). If any request expires before it
can be served, it will be dropped, otherwise the request will be
added to R when the vehicle announces its arrival to an RSU
coverage area. In lines 4-12, RCES goes through all requests
in R? and either schedules them or postpones them. We use
an earlier-deadline-first policy to pick all requests in R? with
the same earliest deadline that were submitted to the same
RSU by the same vehicle (line 5). In line 6, v, is the overall
available capacity of the RSU currently covering the vehicle,
while in line 7, I'; is the expected overall available capacity
in route ¢ following the current RSU. By ‘overall available
capacity’ we mean the total number of time slots of capacity
available for the request we are currently serving (for example,
if the vehicle will be in an RSU’s coverage area during time
slots 3, 4, 5, and 6, and during these time slots the RSU has
available capacity 2, then the overall available capacity in this
RSU is 8). In line 8, we calculate the ratio ratio,, by which
we partition the set R, into two parts, Py and R%\Py. We
postpone the requests in R%\ P4, and schedule the ones in Py,
if possible (lines 10-11). Ratio ratio, (line 8) is the ratio of
the overall capacity of the current RSU +,, over the expected
overall capacity in all possible routes a vehicle may follow,
including the current RSU. To calculate the denominator, we
enumerate all possible routes of length at most &, or the
request deadline (whichever comes first), and use the given
traffic statistics. The intuition behind this ratio, is the obvious
motivation of assigning to an RSU a portion of total remaining
requests that is proportional to the available capacity of this
RSU over the expected available capacity the vehicle is (or is
going to be) encountering.

Our second algorithm BRP (Algorithm 2) uses a simple
Bayesian estimator to estimate the most probable route for a
vehicle, and schedules its requests accordingly. The Bayesian
estimator consists of a route predictor and a travel time
estimator. Using a vehicle’s immediate traffic history, the
route predictor calculates the most probable street that it
will encounter next. More specifically, given the sequence
S = (s1,82,...,8;—1) of streets already traversed by the
vehicle (with s;_; being the latest and s; the (i—1)-th previous
one), the next street s; is chosen iff ¢ = arg maxy, p(sx|S) =
arg maxg Mgp(s’“). The predictor “’predicts” only the next
few (typically 2 or 3) streets of a vehicle’s future route. In
order to estimate the street travel times, we employ a travel
time estimator, which uses historical traffic data, such as
average travel time of different parts of streets.

Algorithm 1 Route Coverage Expectation Scheduler (RCES)

Input:
« Deployed RSUs N, and their capacities U
o Incoming requests R, time slots 7, and communication
costs for all requests, RSUs and time-slots
o City graph G, street traveling times, intersection turning
probability matrix P
QOutput: Online schedule of all non-dropped requests
1: for all t € T do
R' = set of postponed or released at time ¢ requests
Drop from R' requests whose deadlines cannot be met
4:  while R! # () do
5:

W N

RY := {same vehicle, RSU requests in R* with smallest
deadline}

6: v := overall available capacity in RSU n

7: I'; := expected overall available capacity in route <,
V routes ¢

8: ration = 7%_‘_5{:”[& -

9: Pa := first (ration - |RY]|) requests in R}

10: Schedule requests in P4 in current RSU

11: Postpone requests in R4\ Py

12:  end while

13: end for

Algorithm 2 Bayesian Route Predictor (BRP) Scheduler

Input:
Same as Algorithm 1, plus street travel time estimates
Output: Online schedule of all non-dropped requests
1: Lines 1-6 from Algorithm 1
2: I'max := overall available capacity in the route that is more likely
to be chosen by the vehicle
3: ratio, = —2—
) Yn+Tma: .
4: Lines 9-13 from ATgorlthm 1

(a) Full Grid (b) Reduced Grid
Fig. 1. Grid Road Networks with RSU Candidate Locations.

V. PERFORMANCE RESULTS

In order to compare the performance of scheduling al-
gorithms when the vehicle routes are known against the
performance of such algorithms when the routes are unknown,
we perform simulations on a variety of topologies.

More specifically, for the case of known vehicle routes, we
consider the greedy online scheduler which assigns each job
request to the minimum energy RSU time slots remaining
that meet the request deadline, as well as the solution of
(ILP), which is a lower bound for any causal online scheduling
algorithm, since it is fractional, offline, and non-causal. This
group of schedulers is compared with online schedulers that
are unaware of vehicle routes, namely, our RCES and BRP
algorithms of Section IV, and the algorithm of [5], which
assigns requests to the current RSU and transfers unassigned
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Fig. 2. The Performance of the Scheduling Algorithms at the Full Grid Road Network.

requests only if they cannot be served at the current RSU
using earlier-deadline-first, using a time window of 5 time
slots, 8 = 0.25 for their exponential weighted moving average,
and modified to fit our non-preemptive setting. We will refer
to the latter algorithm as Cooperative Load Balancing (CLB).

The two groups of algorithms are compared on three differ-
ent road network topologies. The first is the Manhattan grid
of bidirectional streets shown in Figure la. The second street
from the top and the third street from the left are 5-lanes with
60 km/h speed limits. The rest are 4-lanes with a 50 km/h
speed limit. All intersections are controlled by traffic lights.
The smallest block has a 1 km? area, which gives a total region
of 11.25 km?. Figure 1 shows the locations where RSUs can
be placed for the two topologies. All deployed RSUs have a
capacity of 4 downlink radio channels and a coverage range
of 250 m on each side. The second topology is the network
in Figure 1b, produced from the full grid by removing streets
(and leaving the rest as before). The last topology is a 10-km
bidirectional highway with multiple entrances and exits and
no traffic lights, 5 lanes, and a 60 km/h speed limit. The RSU
candidate locations are uniformly placed along the highway,
and the distance between two consecutive locations is twice
the RSU coverage range.

The performance evaluation is done using 10 30-min vehic-
ular traffic traces as input. The first trace is used as (known)
historical data used by the algorithms for their estimates,
such as turning probabilities at intersections and mean street
traveling times. The remaining nine traces are used to evaluate
the performance of the algorithms. In each trace, traffic is
generated by using SUMO [9], with each vehicle following
the shortest path between its uniformly at random picked
origin and destination. Vehicular arrivals are generated by a
Poisson process. Each vehicle generates transmission requests
according to a Poisson process, with mean arrival rate uni-
formly selected between 0.01 and 0.02 per time slot, deadlines
chosen uniformly at random between 80 to 160 time slots
from their release time, and sizes generated by an exponential
distribution, with mean value selected uniformly between 2
and 4 time slots.

A distance dependent exponential path-loss model with log-
normal shadowing [10] is used to determine the transmit power
needed over a given link. The transmission power between a

transmitter andaa receiver, P; ., can be expressed by P, =
P, o Py, (Zlf—o) , where d; ¢ is the reference distance, P, g is
the reference power at the reference distance, Pgj, is a random
variable that models the shadowing effect of the channel, « is
the path loss exponent, and d,, is the distance between the
transmitter and the receiver. The shadowing effect of the radio
channel can be modeled as a random variable with log-normal
distribution which has a zero mean (in dB) and a standard
deviation of o45 = 4. This model is used to compute the
energy service cost of each downlink transmission [1], [7].

The algorithms are evaluated with two different RSU place-
ments: The All Candidate Locations (ACL) placement places
an RSU in all candidate locations of the network, while the
ILP placement is done according to the offline Integer Linear
Program of [11]. In all experiments, we run the optimal offline
scheduler, the online greedy scheduler with known routes, and
algorithms RCES, BRP and CLB.

Figure 2 shows results for the full Manhattan grid road
network. Figures 2a and 2c show the energy service cost and
Figures 2b and 2d show the request drop ratio of ACL and ILP,
respectively. In these results, we increase the vehicle arrival
rate from 1 to 5 vehicles per time slot. There are 37 RSU
candidate locations. ACL places RSUs at all these locations,
while ILP places 22, 26, 29, 33, 37, and 37 RSUs for vehicle
arrival rates of 1, 2, 3, 4, 4.5, and 5, respectively.

As shown in Figures 2b and 2d, increasing the vehicle ar-
rival rate increases the request drop ratio for all algorithms, as
expected. As mentioned above, the offline scheduler provides
a lower bound for the drop ratio (as well as the energy service
cost) of any online scheduler, but the greedy scheduler is
almost as good. However, algorithms RCES, BRP, and CLB
(which do not have vehicle route knowledge) have higher drop
ratios than the greedy algorithm (or the bound), due to lack
of capacity. Nevertheless, RCES is seen to have a lower drop
ratio than BRP and CLB for vehicle arrival rates over about
3. This is not surprising for CLB, since it tries to have the
current RSU fulfill as many requests as it can locally, therefore
capacity may be depleted for subsequent arrivals. Note that
BRP performs similarly to CLB, due to its similarly greedy
tactic of relying only on the route with the highest probability,
ignoring the other route choices.

Figures 2a and 2c for energy service cost, show that there



are large differences between the greedy scheduler and those
without vehicle route knowledge, i.e., RCES, BRP, and CLB.
At the higher arrival rates, for example, the energy service
cost is up to about 500% higher for the CLB algorithm. The
use of traffic statistics by RCES and BRP, however, leads to a
much lower service cost in comparison to CLB, i.e., they are
about 50% of that for CLB. This illustrates that while route
uncertainly significantly increases the service cost, the use of
historical statistics greatly improves the energy performance.
Note that the service cost differences slightly decrease with
increases in vehicle arrival rate due to the increase in the drop
ratio.

Finally, the comparison between ACL and ILP results in
Figure 2 shows a slight difference between the energy service
costs in Figures 2a and 2c, since ACL opens all RSUs. This
provides more flexibility for the scheduler to meet the request
deadlines.

Similar results are shown for the reduced grid road network
in Figure 3. In these experiments, we vary the vehicle arrival
rate over a smaller range (0.5 to 2) due to the reduced
RSU capacity of the network. In this case there are 30 RSU
candidate locations, all used by ACL, while ILP opens only
20, 21, 23, 29, and 25 RSUs for vehicle arrival rate of 0.5, 1,
1.5, 1.75, and 2, respectively.

Figure 3 shows that the relative behavior for the different
algorithms is similar to that previously observed, i.e., RCES
and BRP both outperform CLB in terms of energy service
cost. However, it can be seen that the differences in energy
service cost performance have decreased with this topology,
i.e., the energy service cost range is less than about a factor of
3 under heavy vehicle arrival rate. This is attributed to the fact
that in the reduced grid topology, route uncertainty is smaller
than that in the full grid. This tends to somewhat reduce the
value of vehicular route knowledge. Note that the drop ratio
of the RCES and BRP algorithms is higher than that of CLB.
This is due to the traffic congestion on some of the roads,
which degrades the travel time estimation accuracy of RCES
and BRP algorithms.

Figure 4 shows the results of ACL and ILP placement for
the highway network topology. There are 20 RSU candidate
locations that are used by ACL, while ILP opens 14, 17, 20,
20, and 20 RSUs for vehicle arrival rates of 1, 2, 3, 4, and 5,
respectively.

As shown in Figure 4, RCES and BRP both outperform the
CLB algorithm in both energy service cost and drop ratio. The
drop ratio of RCES, BRP, and the greedy algorithm is close
to the lower bound (see Figures 4b and 4d). However, there
is a large difference between these algorithms and CLB. The
reason for this is that CLB transfers requests to RSUs that
should be among those before the next vehicle turning point
or exit. Since there is a possibility of a vehicle leaving the
highway at the next exit, the CLB algorithm does not transfer
a vehicle’s requests to the RSUs beyond the next exit. On other
hand, RCES and BRP consider those RSUs.

As one would expect, the CLB algorithm has a higher
energy service cost than the other schedulers (see Figures 4a

and 4c). However, what is surprising here is that CLB has a
relatively higher service cost than RCES and BRP despite its
higher drop ratio. This is due the its policy to schedule as
many requests as possible at the current RSU and to transfer
requests only when there is no remaining capacity. This often
leads to the higher service costs.

As in the previous results, the ILP placement leads to a
higher energy service cost and drop ratio than ACL placement
in Figure 4 for the vehicle arrival rates of less than about 3,
since ILP opens fewer RSUs. However, when the vehicular
load reaches the point that requires all RSUs to be opened
(i.e., vehicle arrival rate above about 3), we see a slowly
growing trend in both the service cost and the drop ratio. The
greedy scheduler that knows the routes has a slightly larger
drop ratio than RCES for vehicle arrival rates of less than
about 3. This is due to the objective of the former algorithm,
which is the minimization of service cost without regard to
how many requests are dropped.

We show that the trends observed in the previous experi-
ments persist in the more general case of knowing a fraction
of vehicle routes, with an obvious direct dependence on this
fraction. More specifically, we consider knowing 0%, 30%,
50%, 70%, and 100% of all routes. If a vehicle submits a route,
the request is scheduled using the online greedy scheduler;
otherwise, RCES and BRP schedulers are used to schedule
the request. Since RCES and BRP schedulers have a better
performance than CLB, in this section, we do not include
the CLB algorithm in the presented results. In the interests
of brevity, we only consider the reduced grid topology from
Figure 1b with the ILP placement of RSUs.

Figures 5a, and 5b show the energy service costs and drop
ratios for RCES, and Figures 5c, 5d are the corresponding
curves for BRP. As seen in Figure 5, the RSU energy service
cost and the drop ratio both decrease as more information
about vehicle routes becomes available to the proposed sched-
ulers. These results are a strong indication that the proposed
algorithms can accommodate varying levels of route knowl-
edge, and can significantly improve RSU energy and loss rates
when this information is available. Under moderate loading for
example, the service costs drop by about 50% as the route
knowledge goes from zero to 70%. The improvements are
roughly the same for both ILP and ACL RSU placements.

VI. CONCLUSIONS

The purpose of this paper is to demonstrate that, for the
general setting of Section III, (i) prior knowledge of vehicular
routes greatly improves the energy service cost and drop
ratio of RSU transmission, and (ii) simple and fast prediction
algorithms like RCES and BRP (Section IV) can recover
a significant portion of the loss incurred by our lack of
vehicle routing knowledge. The simulations of Section V
show that, while the common assumption in the literature of
knowing the vehicle routes is indeed crucial for achieving good
performance, simple algorithms can be used in cases where
vehicle routes cannot be known ahead of time, in order to
achieve comparable costs and loss ratios. Future research can
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