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Abstract—This paper considers Preemptive Mobile Compu-
tation Offloading when concurrent local execution (CLE) is
used to guarantee task execution time constraints. By allowing
simultaneous local and remote execution, CLE ensures that job
deadlines are always satisfied in the face of unforeseen wireless
channel conditions. In the preemptive offloading case, at the
start of each time slot, a decision is made to either continue
or temporarily interrupt the offload. This mechanism allows the
system to adapt when channel conditions change. The paper
considers the case for homogeneous Markovian wireless channels.
Using Markovian decision process stopping theory, an online
energy-optimal computation offloading algorithm is formulated
for preemptive offloading, referred to as Optimal Preemptive
Offloading (OPO). Since the computational complexity of OPO
can be prohibitive, the paper introduces three computationally
efficient techniques motivated by OPO: Water-Filling, Water-
Filling with Scheduling, and Generalized Water-Filling. For each
method, two variations are considered. The first (Equ) uses the
equilibrium channel state probabilities in offloading decision
calculations, and the second (Exp) uses Markovian transition
matrix exponentiation. This results in six algorithms with a wide
variety of energy performance and computational complexity.
Performance of the algorithms is compared that shows the trade-
offs between complexity and mobile energy saving performance.

Index Terms—Cloud computing, mobile computation offload-
ing, energy efficiency, mobile task execution performance, hard
job deadline constraints.

I. INTRODUCTION

Mobile computation offloading (MCO) can be used to
improve application performance and reduce mobile energy
use. This is done by having the mobile device offload local task
execution to a remote cloud server, rather than running the task
on the device itself. Wireless communications is typically used
by the mobile device to upload the task/data so that remote
execution is possible. There is a large literature that has studied
various issues dealing with mobile computation offloading [1]
[2] [3] [4] [5].

In computation offloading, mobile execution energy can be
decreased, but is offset by an increase in the communication
energy needed to interact with the cloud server. Offloading will

also incur additional latency that would not exist otherwise due
to the time needed to exchange application data with the server.
This latency may be partially compensated for by a faster
task execution time at the cloud server. The basic tradeoffs
involving these attributes and how they relate to the decision
to offload task execution have been studied extensively, for
example cf. [6] [7] [8], and the references therein.

The decision to offload task execution is more compli-
cated when the mobile device interacts with the cloud over
stochastic transmission channels. This issue was studied in
[9], where an energy model was proposed that considers both
computation and energy components, using the statistics of the
wireless channel. The channel was assumed to remain constant
throughout the computation offload, at the state encountered
by the mobile device at the start of the offload. In more
general situations, the wireless channel may randomly evolve
during the computation offload, which further complicates the
decision to offload or to execute a given task locally. This is
the environment that is considered in this paper.

When task execution times must satisfy hard time constraint
deadlines, computation offloading over time-varying stochastic
channels is particularly difficult. The requirement for execution
time constraints was discussed in [10], which identified this
as an important criterion for many interactive applications.
This paper also discussed the difficulty of achieving this under
random wireless channel conditions. Computation offloading
was addressed in [11] assuming random wireless channels, but
without considering hard task execution deadlines. Dynamic
programming was used to optimize computation offloading
decisions in [12], but task execution time deadlines were
not considered. Reference [13] used mobile CPU frequency
scheduling and transmit power control to compensate for
random wireless channel effects, so that remote task offload
latencies can be controlled. This approach cannot always
ensure that task execution deadlines are met, but a parameter
was introduced that controls the probability that task deadlines
can be violated.

Reference [14] proposed an on-line mobile computation
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offloading algorithm, OnOPT, which was shown to be en-
ergy optimal and satisfies hard deadline constraints. Deadline
constraints are satisfied by using Concurrent Local Execution
(CLE), where local task execution may be initiated even if
remote offloading is in progress. This is to ensure that task
deadlines are guaranteed in the face of any unforeseen channel
conditions. References [15], [16] proposed an on-line mobile
computation offloading algorithm, MultiOPT, that was shown
to be energy optimal and satisfies hard deadline constraints for
the case of splitting the offloading data into two or more parts
of known bit-sizes.

Our paper uses concurrent local execution (CLE) and con-
siders Preemptive Mobile Computation Offloading, referred to
as preemptive offloading for short. In the preemptive case, the
algorithm makes separate upload initiation time decisions at
the start of every time slot. Based on its inputs, it decides
whether to use the current time slot to continue the upload
or defer uploading to future time slots. Preemptive offloading
can be used to reduce mobile energy use when wireless
channel conditions change during the computation offload.
These decisions are made such that the system always satisfies
the given hard task execution time constraint using concurrent
local execution offloading. The objective is to minimize mobile
device energy consumption, subject to this constraint. It is
very easy to illustrate the value of preemption in computation
offloading. For example, consider a mobile device that has
a large job offload over a 2-state Markovian channel (i.e.,
a Gilbert-Elliot channel), and toggles between good and bad
channel states with the same mean time in each state, and at
a rate much smaller than the upload time. Then the offload
energy needed for the non-preemptive case would be roughly
twice that of using preemption. The statistics of the channel
can easily be such that the advantage to the preemptive case
is far greater.

The paper considers the homogeneous Markovian channel
case, which is commonly used to model random wireless
channel conditions. Under this assumption, computation of-
floading algorithms are introduced for preemptive offloading.
The paper shows that the proposed algorithm is energy optimal
and is referred to as Optimal Preemptive Offloading (OPO).
This algorithm is optimal in the sense that no other online
computation offloading algorithm can achieve a lower mean
mobile device energy consumption. The energy optimality of
this algorithm is shown by creating a time-dilated absorbing
Markov processes and using optimal Markovian stopping the-
ory. More specifically, it is shown that a dynamic programming
approach can be used to compute the expected energy cost in
case offloading occurs or not in the current time slot, and the
algorithm bases its (optimal) decision on these costs.

Since the computational complexity of OPO can be sig-
nificant, the paper introduces three computationally efficient
techniques, motivated by OPO, namely, Water-Filling, Water-
Filling with Scheduling, and Generalized Water-Filling. These
methods operate by first identifying a target set of future
time slot types to use for the offload. This set is defined
based on predicted bit rates using the Markovian channel
statistics. Time slots are then assigned using “water-filling”,
which prioritizes those with higher expected bit rates. The

algorithms vary based on how the computations are performed.
For each method, two variations are considered. The first
(Equ) uses the equilibrium channel state probabilities in its
offloading decision calculations. The second variant (Exp),
while more accurate, uses Markovian transition matrix ex-
ponentiation, which is more computationally expensive. This
results in six algorithms, namely, Water-Filling with Equilib-
rium (WF-Equ), Water-Filling with Exponentiation (WF-Exp),
Water-Filling with Equilibrium and Scheduling (WF-Equ-Sch),
Water-Filling with Exponentiation and Scheduling (WF-Exp-
Sch), Generalized Water-Filling with Equilibrium (Gen-WF-
Equ) and Generalized Water-Filling with Exponentiation (Gen-
WF-Exp). The performance of the proposed algorithms is com-
pared on Markovian channels with different characteristics, in
order to show the tradeoffs between complexity and mobile
energy saving performance.

The main contributions of the paper are summarized as
follows:

• Preemption is introduced to concurrent local execution,
used in mobile computation offloading in order to ensure
that hard job execution deadlines are satisfied. Compared
to previous work where offloading occurs using known
job offload parts [14],[15],[16], allowing preemption re-
sults in a much more complex problem formulation.
This happens because the number and size of the job
pieces offloaded are not known in advance and must be
determined by the online offloading algorithm. Due to
this complexity, it is not feasible to run the optimal online
decision algorithm in real time, and this motivates the use
of the proposed computationally efficient techniques.

• An online offloading decision algorithm, i.e., Optimal
Preemptive Offloading (OPO), is introduced. It is shown
that OPO satisfies hard deadline application constraints,
and also achieves the minimum mean mobile device
energy possible for homogeneous Markovian wireless
channels.

• An integer program (IP) is formulated that provides a
lower bound on mobile device energy. This calculation is
used for comparisons with online algorithms in the results
section.

• The paper introduces three computationally efficient tech-
niques based on OPO: Water-Filling, Water-Filling with
Scheduling, and Generalized Water-Filling. The algo-
rithms vary based on how the reduced offloading de-
cision computations are performed. For each method,
two variations are introduced. The first (Equ) uses the
equilibrium channel state probabilities in its offloading
decision calculations and the second (Exp) uses Marko-
vian transition matrix exponentiation. This gives six algo-
rithms: Water-Filling with Equilibrium (WF-Equ), Water-
Filling with Exponentiation (WF-Exp), Water-Filling with
Equilibrium and Scheduling (WF-Equ-Sch), Water-Filling
with Exponentiation and Scheduling (WF-Exp-Sch), Gen-
eralized Water-Filling with Equilibrium (Gen-WF-Equ)
and Generalized Water-Filling with Exponentiation (Gen-
WF-Exp). The algorithms all employ concurrent local
execution so that task execution time constraints are
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always satisfied.
• Performance results are presented that show the various

complexity and energy performance tradeoffs for the
proposed algorithms.

The rest of this paper is organized as follows. In Section
II, system modelling assumptions are presented that include
both remote and local execution where hard task execution
deadlines are ensured using CLE. In Section III, an offline
lower bound on energy consumption is derived, which is
compared to the proposed computation offloading algorithms
in the results section. Following this, in Section IV the
Markovian channel model is discussed and how it is used
to define an absorbing Markov chain that permits us to
show the energy optimality of the proposed algorithm OPO,
introduced in Section IV. Section V then introduces the online
algorithms motivated by OPO, but with varying degrees of
running time reduction. In Section VI, results are presented
that compare the various algorithms and show the tradeoffs
between computational complexity and mobile energy savings.
Finally, our conclusions are presented in Section VII.

II. SYSTEM MODEL

We consider the execution of single computational tasks
(jobs) generated by a mobile device, either locally (by the
device itself), or by offloading them on a remote cloud server,
through a wireless transmission channel. We allow a job to be
uploaded preemptively to the server in instalments, i.e. a piece
of the job can be uploaded at each time slot, if the upload
scheduler decides to do so, i.e., preemption is allowed. We
propose a model of concurrent local execution (CLE), i.e., we
allow for the overlapping of offloading and local execution,
so that the hard job deadline is always met by at least the
local execution. In case offloading results become available
before local execution finishes (or even starts), the latter is
automatically aborted. Similarly, if the deadline is reached
while remote execution is not finished, the latter is aborted.
The objective of the proposed algorithms is to minimize the
mean energy consumption of the mobile device.

Note that time is taken to be discrete, i.e., quantized into
equal length time slots. The time slot duration is defined so
as to accommodate the channel propagation model discussed
in Section IV, and may contain multiple packet transmission
times on the channel. Each job to be executed is characterized
by the following:
tR: Release time of the job, i.e., the time when the

job is ready to start execution, either locally or via
offloading. This is marked on the left side of Figure
1. For convenience, we will assume that tR = 1.

tD: Hard deadline of the job, i.e., the job execution
results must be available at the mobile device by time
tD. This is shown on the right side of Figure 1, where
TD = tD − tR + 1 is the maximum number of time
slots available for completing the job.

Sup: Number of bits transmitted through the uplink chan-
nel when uploading the job to the cloud

Preemptive offloading is shown in Figure 1. Uploading
happens at time slots to1 , to2 , . . . , ton , and TWi

is the time

period between toi and toi+1 . Texec, Tdown, TL are the remote
execution, result downloading, and local execution times,
respectively.

As in many of the references, we assume that the current
state of the channel can always be determined. This informa-
tion can be learned in a variety of ways, such as via a short
handshake with the basestation at the start of the time slot.

A. Local Execution
As in [14], it is assumed that the energy cost EL and

time TL needed to execute a job locally is known at the
job release time tR. While this may not always be the case,
this assumption is often true and has been made in many
computational offloading studies, e.g., [6], [17], [18].

If the computation offloading algorithm elects to execute
the job locally, we must ensure that the job deadline is always
satisfied. Therefore, local execution must start no later than

tL = tD − TL + 1,

i.e., local execution must start TL time slots prior to the
job deadline, if remote execution results have not arrived
by then (see Figure 1). Note that the satisfaction of hard
job execution deadline constraints would be problematic if
there were uncontrolled preemption in the mobile device itself.
For this reason, we have assumed that the features normally
associated with a real-time operating system are in place so
that the job execution is assigned a known fraction of the
local processor. In this way, TL can be calculated when the
task is released. Hence, according to the CLE model we are
proposing, there may be overlapping of the local and remote
executions of the task, but the hard job deadline is always
respected, even if there is channel contention or extended
channel outages. We assume that a fraction of the local CPU is
dedicated for processing the task so that the local processing
speed is fixed and known, and TL can be calculated when the
task is released.

In the mobile energy consumption formulations described
above and in the next section, we have chosen not to include
the local energy requirements needed to execute the online
scheduling algorithms. This is consistent with the common
assumption that the energy needed for offloading the job data
is large, by comparison. However, in Section VI, graphs of the
relative running times of the algorithms have been included so
that this component can be accounted for, if required.

B. Remote Execution
In the case of offloading a job, we will assume that, upon

its release, the job is assigned an execution time Texec by the
cloud server, which is communicated to the mobile device (or
is prescribed by, say, the contractual agreement between the
user of the device and the cloud server operator). In addition,
we assume that the user has been allocated capacity (such
as recurring time slots) until the offload has completed. These
assumptions are common in previous work on offloading, e.g.,
[6] [17] [18]. Following Figure 1, the total offloading time
Toff is given by

Toff = ton − to1 + 1 + Texec + Tdown.
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Fig. 1: Preemptive offloading.

In what follows, we define

Trest = Texec + Tdown

It is assumed that the channel uses bit rate adaptation to
accommodate random variations in channel conditions. As a
result, Toff is a random variable, dependent on the evolution
of the uplink channel state as a given upload occurs. In what
follows, it is assumed that the channel state can be modelled
as a homogeneous discrete-time Markov process.

III. OFFLINE BOUND

In this section, an offline lower bound on mobile device
energy is derived. This bound is used in Section VI for
performance comparisons with various online computation
offloading algorithms. Since the bound is offline, we assume
that the wireless channel states are known beforehand, i.e., we
know the bit rate (in bits per time slot) at all times 1 ≤ t ≤ tD
(recall that we have set tR = 1). When a job is released, the
bound chooses the job offload times so that its deadline is met
and total energy is minimized.

Let xi be the decision of offloading at time slot ti, i.e.,
xi = 0 when we decide to offload at time slot i, and xi = 1
otherwise. Let tf be the upload finishing time. Bi is the bit
rate at time slot i, and Etr is the energy cost per time slot
for channel transmitting. The optimal xi’s are found by first
solving the following set of IPs (one for each possible finishing
time tf ), and then output the minimum amongst them and EL
(if EL is the minimum, then the optimal solution is to not
offload at all).
• tf < tL − Trest

min
x1,··· ,xtf

Etr

tf∑
i=1

xi + TdownErc (1)

s.t.
tf∑
i=1

Bixi ≥ Sup (2)

xti ∈ {0, 1} for i = 1, 2, · · · , tf − 1 (3)
xtf = 1 (4)

• tL − Trest ≤ tf ≤ tD

min
x1,··· ,xtf

Etr

tf∑
i=1

xi +
tf + Trest − tL + 1

TL
EL + TdownErc

(5)

s.t.
tf∑
i=1

Bixi ≥ Sup (6)

xti ∈ {0, 1} for i = 1, 2, · · · , tf − 1 (7)
xtf = 1 (8)

The first case corresponds to finishing offloading before local
execution begins, and the second to finishing offloading after
local execution begins. The first term in (1) and (5) is the
uploading energy cost. The second term in (5) is the portion
of the local energy cost we incur if offloading finishes at
tf . Constraints (2) and (6) ensure all job bits are offloaded.
Constraints (4) and (8) ensure that uploading finishes at tf .

IV. OPTIMAL ALGORITHM FOR PREEMPTIVE OFFLOADING

In this section, we develop the online algorithm OPO
(Optimal Preemptive Offloading), and prove its optimality. In
order to simplify our exposition of the algorithm, we will
assume that all offloading deadlines, job sizes (in bits), and
energy costs are related only to job uploading, i.e., we assume
that Texec, Tdown are known and already incorporated in the
energy costs and the job deadline. Given the ensuing results,
adding the effects of Texec and Tdown is straightforward.

As mentioned above, we assume that there is a known
channel state Markov chain (CSMC), i.e., the channel con-
ditions evolve from one time slot to the next according to
a homogeneous finite state Markov chain. Each state in the
CSMC has an associated bit rate that gives the number of
bits per time slot that can be uploaded in that state. The
CSMC transition matrix is defined as P = [Pi,j ], where Pi,j
is the probability of transitioning to channel state j in the
next time slot, given that the channel is currently in state
i. As defined, CSMC is memoryless, but in what follows
we will need to incorporate time in it, the already offloaded
bits, and the decision of uploading or not at every time slot.
Therefore, we construct a new Markov decision process, the
time-dilated Markov process (TDMP) as follows: For every
time 1 ≤ t ≤ tD +1, we define a set of states (Xt, St), where
Xt is a channel state and 0 ≤ St ≤ Sup. We can think of
the states as arranged in layers for t = 1, 2, . . . , tD + 1. The
set of actions contains two actions, a0, a1, corresponding to
not offloading, or offloading, respectively. Figure 2 shows the
initial layers for a TDMP for a Gilbert-Elliot channel with
two states, G and B, with bitrates Bg, Bb, respectively. A
state (Xt, St) branches to a0 and a1, and then a0 branches to
states (Xt+1, St) with probabilities PXt,Xt+1

, and a1 to states
(Xt+1, St+min{BXt , Sup−St}) with the same probabilities,
where BXt is the bit rate of channel state Xt. States of the
form (Xt, Sup) lead only to action a0 (no offloading). At layer
t = 1 there is only one state (X1, 0), where X1 is the initial
channel state, while all states at layer tD + 1 are absorbing.
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Fig. 2: Time dilated absorbing Markov process (TDMP) for a two-state (G,B) channel.

The energy cost when offloading in time slot t is given by:

Eoff (t) =

{
Etr, tR ≤ t ≤ tD
0, t < tR or t > tD

(9)

The energy cost for the local execution between the previous
offloading time slot tprev and the current time slot t (note that
t > tprev) is given by:

EL(tprev, t) =

{
0, t < tL or tprev ≥ tD
min{t,tD}−max{tprev+1,tL}+1

TL
EL, o/w

(10)
The expected energy cost of offloading, when offloading

occurs at time t in TDMP state Xt, the last offloading time
slot is tprev, and St bits have already uploaded, is

g(Xt, St) = Eoff (t) + EL(tprev, t) + (11)∑
Xt+1∈M

Pr[Xt+1|Xt]V (t,Xt+1, St +BXt).

Note that the definition of g includes energy costs due to local
execution that were accumulated in the time slots between the
last offloading at tprev and the current one at t.

For every time slot t and state Xt, and with the last
uploading time slot being tprev , we define the expected cost
V (tprev, Xt, St) recursively in (12). In (12), we have

E[V (tprev, Xt+1, St)|Xt] =∑
Xt+1∈T

Pr[Xt+1|Xt]V (tprev, Xt+1, St),

and T is the set of states reachable after running the channel

for t+ 1 time slots. The first case has an expected cost of 0,
since there is no more offloading. The second case incurs only
local energy consumption, because the time t is beyond the
deadline tD, and, therefore, offloading doesn’t happen. The
third case assigns as the expected cost the minimum between
the expected cost of offloading at t, and the expected cost of
postponing that decision to time slot t+ 1.

The formal definition of algorithm OPO is Algorithm 1.
Recall that, for simplicity, we have set tR = 1. A high-

Algorithm 1 OPO (Optimal Preemptive Offloading)

Input: Local execution starting time tL, local execution en-
ergy EL, job deadline tD.

1: for all t = 1, . . . , tD do
2: if uploading the whole job is finished then
3: Break
4: end if
5: if min in (12) is g then
6: upload at time slot t
7: end if
8: end for

level description of the algorithm is as follows: At time slot
t = 1 the job is released. At each time slot t, and with St bits
already offloaded in past offloading time slots, the algorithm
considers the TDMP, in order to determine the expected cost of
the whole remaining offloading process, if uploading happens
at time slot t. If that cost is less than the expected offloading
cost when the algorithm waits one more time slot, then t∗ = t
(t becomes an offloading time slot, with bit rate BXt

, and
St+1 = St + BXt

); otherwise, the algorithm postpones its
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V (tprev, Xt, St) =


0, t > tprev ≥ tD or St ≥ Sup
tD−max{tprev+1,tL}+1

TL
EL, t > tD > tprev and St < Sup

min{g(Xt, St), E[V (tprev, Xt+1, St)|Xt]}, tD ≥ t > tprev and St < Sup

(12)

decision to time slot t + 1, and St+1 = St. The algorithm
repeats the same decision process at every time slot (using the
TDMP corresponding to the bits offloaded so far, to compute
expected costs), in order to determine the sequence of optimal
offloading time slots {t∗1, t∗2, t∗3, . . .}. V (tprev, Xt, St) in Line
5 can be computed using Dynamic Programming (DP).

We use the theory of optimal stopping for Markov decision
processes [19], in order to show that it achieves the optimal
expected energy for the mobile device, i.e., no other online
computation offloading algorithm can achieve a lower mean
mobile device energy consumption. This is done by proving
that at any time slot t, the algorithm makes exactly the same
decision as an algorithm that has the ability, starting from
t, to decide all future offloading decisions that minimize
the expected energy cost. The high level idea of the proof
of optimality is as follows: Algorithm OPO is an on-line
algorithm that runs at each time slot t. At this time slot t, an
expected energy consumption minimization problem can be
defined, which computes all optimal offloading time slots in
the time period from t to deadline tD, given the last offloading
time slot tprev and the number of job bits St that have
already been offloaded. This minimization problem is defined
recursively, by calculating the expected energy cost of future
optimal offloading decisions for each possible next offloading
time t, t+1, t+2, . . . , tD+1; let t∗ ≥ t be the next offloading
time which achieves the minimum expected energy. We will
prove that if t∗ > t, algorithm OPO also decides to not offload
at t, and if t∗ = t algorithm OPO also decides to offload at t.
Note that t∗ is the first of a series of optimal offloading time
slot decisions that minimize the expected energy cost given
our current knowledge of the channel. At every time slot, the
latter changes (the new channel state is revealed), algorithm
OPO has to make a new decision, and a new minimization
problem is defined.

The minimization problem is formulated recursively as in
(13), where S is the set of states reachable after running the
channel for t∗ time slots,M is the set of states the channel can
transit to from Xt∗ , BXt∗ is the bit rate of the state Xt∗ , and
v(t∗, Xt∗+1, St + BXt∗ ) is the optimal expected energy cost
for the rest of the offloading, when the algorithm decides to
upload BXt∗ bits at time t∗. We set S0 = 0. Note that problem
(13) is defined only for t > tprev , i.e., after the last offloading
time slot. In order to prove the optimality of on-line algorithm
OPO, we prove that, for all i = 1, 2, . . ., when algorithm OPO
offloads for the i-th time, i.e., V (ti−1, Xt, St) = g(Xt, St)
in Line 5, the maximization problem optimal solution also
offloads, i.e., t∗i = t.

Theorem 1. The sequence of optimal times {t∗0 =
0, t∗1, t

∗
2, . . .} for uploading satisfies

t∗i = arg min
t∗i−1<t≤tD

{V (t∗i−1, Xt, St) = g(Xt, St)},

i = 1, 2, . . . , last

Proof: We prove the theorem by induction on i. The base
case of i = 0 is trivially true. We assume that it is true up to
i = k − 1, i.e., the k − 1 previous offloading decision times
of OPO coincide with the first offloads t∗0, t

∗
1, . . . , t

∗
k−1 of the

maximization problems defined at time slots t∗0, t
∗
1, . . . , t

∗
k−1.

We prove the case of t∗k. In what follows, whenever definitions
(11), (12) are used, tprev := t∗k−1 (since the immediately
previous offloading time for OPO is t∗k−1, by the inductive
hypothesis).

First, using (reverse) induction on t, St, and given t∗k−1, Sup,
we show the following:

∀t > t∗k−1, St ≤ Sup : v(t∗k−1, Xt, St) = V (t∗k−1, Xt, St).

The base case of t > tD and St ≤ Sup is obviously true.
Assuming that the equation holds for all time values t+1, t+
2, . . . and all size values 0 ≤ St+1, St+2, . . . ≤ Sup, we can
show that it is also true for time t and all 0 ≤ St ≤ Sup, by
applying Theorem 1.7 in [19].

Then v(t∗k, Xt∗k+1, St + BXt∗
k
) in the RHS of (13) can be

replaced by V (t∗k, Xt∗k+1, St+BXt∗
k
), to get the RHS of (14).

By this substitution, the original maximization problem (13)
is no longer recursive (i.e., dependent on the future v values),
but is transformed to an equivalent minimization problem (14),
that is a function of (computable, using DP) V . Then, the
definition (11) of g(Xt, St) implies that the optimal solution
of (14) (which is also the optimal solution for problem (13))
can be obtained at any time slot t by performing the test of
Line 5 in OPO, which is the property in the theorem statement.

Compared to the previous work of [14],[15],[16], which
studied the same problem when offloading is done in a
predetermined number of job pieces, each with known bit size,
preemption changes the nature of the problem significantly,
since the number and sizes of the offloaded job pieces are
initially unknown (note that the upper bound last for i in
the statement of Theorem 1 is unknown). This means that,
in preemption, the number of offloads is implicitly a decision
variable, together with the exact offloading times. The crucial
idea of the analysis above is that by allowing the DP to store
some extra information (the number of bits that have already
been offloaded), the recursive definition of the minimization
problem (13) and expected cost (12) do not need to know the
number of offloads. Therefore, although the optimal algorithm
and its analysis look similar to those in [14] and [15], preemp-
tion requires a more complicated (and computationally costly)
treatment, both in its computations and its analysis (e.g., note
the double induction needed in the proof of Theorem 1).
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v(tprev, Xt, St) =



0, t > tprev ≥ tD or St ≥ Sup

min
t≤t∗≤tD+1

{ ∑
Xt∗∈S

Pr[Xt∗ |Xt]
(
Eoff (t∗) + EL(tprev, t

∗)+

∑
Xt∗+1∈M

Pr[Xt∗+1|Xt∗ ]v(t∗, Xt∗+1, St +BXt∗ ))
)} tprev < t ≤ tD and St < Sup

(13)

v(tprev, Xt, St) =



0, t > tprev ≥ tD or St ≥ Sup

min
t≤t∗≤tD+1

{ ∑
Xt∗∈S

Pr[Xt∗ |Xt]
(
Eoff (t∗) + EL(tprev, t

∗)+

∑
Xt∗+1∈M

Pr[Xt∗+1|Xt∗ ]V (t∗, Xt∗+1, St +BXt∗ )
)} tprev < t ≤ tD and St < Sup

(14)

V. PRACTICAL HEURISTICS

Although algorithm OPO is provably optimal, its running
time is of order Θ(S

f(Sup)
up ), for some polynomial function

f . Even when we consider the simple two-state Gilbert-
Elliot Markovian channel, TD is not much larger than Sup

Bmin

(otherwise the optimal algorithms always offload when at high
bit-rate states), and even when Sup is relatively small. Hence,
good heuristics that may be suboptimal, but run fast enough
to be used on-line, have to be developed.

We present three such heuristics, motivated by the optimal
OPO algorithm. We observe that the prohibitively slow step
in Algorithm 1 is line 5, where the DP calculation of g is
performed at every time slot, in order to compute the exact
expected energy consumption for offloading the remaining
task bits. Our heuristics will maintain the flexibility allowed
by preemption, by also running at every time slot. But they
replace the costly calculation of line 5 in OPO with an
approximation of the expected energy cost, using either the
equilibrium or invariant probabilities π, i.e., the solution to
equation πP = π, where P is the transition matrix of the MC
(e.g., see lines 27-30 in Algorithm 2), or transition matrix
exponentiation (e.g., see lines 32-33 in Algorithm 3). Hence,
for each heuristic, there are two variations: the first (Equ)
uses equilibrium probabilities, and the second (Exp), which is
more accurate but also more computationally-intensive, uses
transition matrix exponentiation.

A. Water-Filling

The basic idea of this algorithm is the computation of a
“most efficient” set F of channel states in a greedy “water-
filling” fashion, and offloading only when the current channel
state is in this set, provided that offloading is beneficial at all.
In accordance with the variations discussed above, there are
two water-filling variants, as follows.
• Water-Filling with Equilibrium (WF-Equ) (Algorithm

2): In this variation, the algorithm is given the equilibrium
probabilities π (e.g., computed in preprocessing). As
described above, these probabilities are used in order
to compute a “most efficient” set F of channel states.

This set is used in a greedy “water-filling” fashion, i.e.,
offloading only when the algorithm finds itself in this
set (if it decides to offload at all). More specifically, the
channel states are ordered from the highest to the lowest
bit rate. Let m be the state with the highest bit rate from
the state space M . If there is nothing remaining to offload,
the algorithm terminates (lines 2-4). Initially F = {m}
(line 5). Lines 7-20 calculate the expected finishing time
to offload the remaining job, if only states in the current F
are used, with an average bit rate Bavg =

∑
i∈F π[i]Br[i]

(Br[i] is the state i bitrate). As long as the states in F
are not sufficient to meet the deadline, the next highest
bit-rate state is added to F , until either there are no
more states to add, and the offloading is aborted (lines
21-23), or the algorithm proceeds with the offloading
decision. Namely, if the current state doesn’t belong to
F , no offloading happens at the current t (lines 24-
26); otherwise, the offloading of Br(Xt) occurs, if the
expected offloading energy is still less than that using
local execution (lines 27-39).

• Water-Filling with Exponentiation (WF-Exp) (Algo-
rithm 3): This variation uses exponentiation of the MC
transition matrix in order to calculate the expected finish-
ing time and the number of offloading time slots to of-
fload the remaining job. Obviously, this is a more accurate
approximation than the one performed by Algorithm 2,
since it takes into account the current state and the exact
number of steps needed in order to reach another state.
More specifically, Algorithm 3 replaces lines 8-10, 16-
18, 27-29 of Algorithm 2 with lines 14-16, 21-23, 32,
respectively.

B. Water-Filling with Scheduling

This algorithm is a more sophisticated version of the previ-
ous Water-Filling algorithm. Again, there are two variations,
one that uses equilibrium probabilities for its computation, and
one that uses transition probabilities matrix exponentiation.
• Water-Filling with Equilibrium and Scheduling (WF-

Equ-Sch) (Algorithm 4): The algorithm works similarly
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Algorithm 2 Water-Filling with Equilibrium (WF-Equ)

Input: Local execution starting time tL, local execution en-
ergy EL, job deadline tD, equilibrium probabilities π,
state space of the Markov chain M = {1, 2. . . . ,m},
current state Xt, remaining size Sr = S.

1: for all t = 1, . . . , tD do
2: if Sr = 0 then
3: break
4: end if
5: F = {m} . m is the highest bit-rate state
6: Bavg =

∑
i∈F π[i]Br[i]

7: if Xt 6∈ F then
8: tf = t+ Sr

Bavg
+ Trest

9: else
10: tf = t+ Sr−Br(Xt)

Bavg
+ Trest

11: end if
12: while (tf > tD) and (M 6= F) do
13: add the state with the highest bit rate from the set
M−F to F

14: Bavg =
∑
i∈F π[i]Br[i]

15: if Xt 6∈ F then
16: tf = t+ Sr

Bavg
+ Trest

17: else
18: tf = t+ Sr−Br(Xt)

Bavg
+ Trest

19: end if
20: end while
21: if tf > tD then
22: break
23: end if
24: if Xt 6∈ F then
25: continue . Move to time t+ 1
26: end if
27: BF =

∑
i∈F π[i]Br[i]∑

i∈F π[i]

28: Eup = (1 + max{0,Sr−Br(Xt)}
BF

)Etr

29: tf = t+ max{0,Sr−Br(Xt)}
Bavg

+ Trest
30: El = (max(tf + 1, tL)−max(t, tL))EL/TL
31: if tf ≤ tD then
32: Eoff = Eup + El + TdownErc
33: else
34: Eoff = tD−max{t,tL}+1

TL
EL

35: end if
36: if Eoff < tD−max{t,tL}+1

TL
EL then

37: Offload at t
38: Sr = max{0, Sr −Br(Xt)}
39: end if
40: end for

to WF-Equ, with the important difference that it tries to
figure out the best offloading finishing time tf . In order
to do that, the algorithm goes over all possible values for
tf from t to tD. For each tf , it applies the calculations
of Algorithm 2, but on time range tf − t (instead of
tD − t), in order to calculate the expected offloading
energy cost. Note that sets F may differ for different
tf . Then, the algorithm picks the minimum offloading
energy consumption calculated over all finishing times

Algorithm 3 Water-Filling with Exponentiation (WF-Exp)

Input: Local execution starting time tL, local execution en-
ergy EL, job deadline tD, transition probability matrix
P , state space of the Markov chain M = {1, 2. . . . ,m},
current state Xt, remaining size Sr = S.

1: for all t = 1, . . . , tD do
2: if Sr = 0 then
3: break
4: end if
5: for all i = 1, . . . ,m do
6: if i == Xt then
7: α[i] = 1
8: else
9: α[i] = 0

10: end if
11: end for
12: F = {m} . m is the highest bit-rate state
13: if Xt 6∈ F then
14: Find minimum tf s.t. Sr −∑tf

k=t+1

∑
i∈F

(
αP k−t

)
[i] ·Br[i] ≤ 0

15: else
16: Find minimum tf s.t. Sr − Br(Xt) −∑tf

k=t+1

∑
i∈F

(
αP k−t

)
[i] ·Br[i] ≤ 0

17: end if
18: while (tf > tD) and (M 6= F) do
19: add the state with the highest bit rate from the set
M−F to F

20: if Xt 6∈ F then
21: Find minimum tf s.t. Sr −∑tf

k=t+1

∑
i∈F

(
αP k−t

)
[i] ·Br[i] ≤ 0

22: else
23: Find minimum tf s.t. Sr − Br(Xt) −∑tf

k=t+1

∑
i∈F

(
αP k−t

)
[i] ·Br[i] ≤ 0

24: end if
25: end while
26: if tf > tD then
27: break
28: end if
29: if Xt 6∈ F then
30: continue . Move to time t+ 1
31: end if
32: Eup =

∑tf
k=t+1

∑
i∈F

(
αP k−t

)
[i] · Etr

33: El = (max(tf + 1, tL)−max(t, tL))EL/TL
34: if tf ≤ tD then
35: Eoff = Eup + El + TdownErc
36: else
37: Eoff = tD−max{t,tL}+1

TL
EL

38: end if
39: if Eoff < tD−max{t,tL}+1

TL
EL then

40: Offload at t
41: Sr = max{0, Sr −Br(Xt)}
42: end if
43: end for

and compares this minimum value to the energy required
to process the rest of job locally and offloads at t if
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the former is smaller than the latter. Algorithm 4 is the
equilibrium variation of Water-Filling with Scheduling.

Algorithm 4 Water-Filling with Equilibrium and Scheduling
(WF-Equ-Sch)

Input: Local execution starting time tL, local execution en-
ergy EL, job deadline tD, equilibrium probabilities π ,
total number of states M , current state Xt, remaining size
Sr.

1: for all t = 1, . . . , tD do
2: for all tf = t, . . . , tD do
3: Calculate the expected offloading cost E(tf )

off for
period [t, . . . , tf ] using Algorithm 2

4: end for
5: Eoff = mint≤tf≤TD

E
(tf )
off

6: if Eoff < tD−max{t,tL}+1
TL

EL then
7: Offload at t
8: end if
9: end for

• Water-Filling with Exponentiation and Scheduling
(WF-Exp-Sch): This variation of WF-Equ-Sch uses tran-
sition matrix exponentiation instead of equilibrium prob-
abilities in its calculations, exactly as WF-Exp does.

C. Generalized Water-Filling

This algorithm is a generalization of the first Water-Filling
algorithm, and its two variations are as follows:
• Generalized Water-Filling with Equilibrium (Gen-

WF-Equ): This algorithm is a generalization of WF-
Equ. Instead of defining a single set F (when it exists)
as the minimal prefix of the state ordering according
to bitrates that allow offloading before the deadline, it
considers all possible such prefixes, and keeps the best.
More specifically, if the states S1, S2, . . . , SM are ordered
in decreasing bitrates, and F1 as defined by Algorithm 2
is F1 = {S1, S2, . . . , Sl}, then the algorithm repeats the
same computations for sets F1 = {S1, S2, . . . , Sl},F2 =
{S1, S2, . . . , Sl+1}, . . . ,FM+1−l = {S1, S2, . . . , SM},
and keeps the set of minimum expected offloading energy
cost; then it proceeds exactly as in WF-Equ.

• Generalized Water-Filling with Exponentiation (Gen-
WF-Exp): This algorithm is the same as Gen-WF-Equ,
except that it uses transition matrix exponentiation instead
of equilibrium probabilities in its calculations.

As will become apparent by the simulation results in Section
VI, the use of exponentiation by our heuristics dramatically
increases their running times, and, therefore, their use is
mostly as benchmarks for their versions that use equilibrium
calculations.

VI. SIMULATION RESULTS

In this section, computer simulation is used to study the per-
formance of the proposed preemptive offloading algorithms. In
accordance with concurrent local execution, in all algorithms,
local execution starts at time slot tL if offloading (includes

uploading to, remote execution at, and downloading from the
server) is not completed at time slot tL− 1. This ensures that
the job deadline is satisfied either locally or remotely. In order
to investigate the performance of the preemptive offloading
algorithms in different wireless transmission conditions, we
use four different Markov chains to model the communication
channel. Two channels are modelled by a 9-state Markov chain
shown in Figure 3 and two are modelled by a 5-state Markov
chain shown in Figure 4. In both cases, state 1 represents
the channel outage that may occur because of shadowing or
other similar phenomena; and for the other states, higher states
have higher bit rates. In the 9-state channels, the assigned bit
rates to states 1 to 9 are 0, 6, 9, 12, 18, 24, 36, 48, 54 K bits per
time slot, respectively, which are the data rates of the IEEE
802.11g standard. In the 5-state channels, the assigned bit rates
to states 1 to 5 are 0, 12.5, 25, 37.5 and 50 K bits per time
slot, respectively. For each of the Markovian channel models,
we consider two state transition probability matrices, as given
in (15)-(18), where P1 and P2 are for the 9-state model, and
P3 and P4 are for the 5-state model. The channels with P1 and
P3 have equal steady state probability at all the states and are
referred to as “uniform channels”, and that with P2 and P4

have higher steady state probabilities at the lowest (outage)
and the highest states and are referred to as “non-uniform
channels”. The intent behind the channel model selections
is to create channels with varying degrees of channel state
predictability, so that differences between the algorithms can
be properly assessed. All these channels have approximately
the same average channel bit rate.

P1 =



0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

0.10 0.55 0.35 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.30 0.30 0.30 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.30 0.30 0.30 0.00 0.00 0.00 0.00

0.10 0.00 0.00 0.30 0.30 0.30 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.30 0.30 0.30 0.00 0.00

0.10 0.00 0.00 0.00 0.00 0.30 0.30 0.30 0.00

0.10 0.00 0.00 0.00 0.00 0.00 0.30 0.30 0.30

0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.60


(15)

P2 =



0.84 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.10 0.05 0.85 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.25 0.05 0.60 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.25 0.05 0.60 0.00 0.00 0.00 0.00

0.10 0.00 0.00 0.25 0.05 0.60 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.25 0.05 0.60 0.00 0.00

0.10 0.00 0.00 0.00 0.00 0.25 0.05 0.60 0.00

0.10 0.00 0.00 0.00 0.00 0.00 0.25 0.05 0.60

0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.85


(16)
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P3 =



0.40 0.15 0.15 0.15 0.15

0.15 0.55 0.30 0.00 0.00

0.15 0.30 0.25 0.30 0.00

0.15 0.00 0.30 0.25 0.30

0.15 0.00 0.00 0.30 0.55

 (17)

P4 =



0.88 0.03 0.03 0.03 0.03

0.10 0.05 0.85 0.00 0.00

0.10 0.30 0.05 0.55 0.00

0.10 0.00 0.30 0.05 0.55

0.10 0.00 0.00 0.05 0.85

 (18)

Fig. 3: Markov Chain for P = P1 and P2

The default parameters used in the experiments are given
as follows. Each time slot is taken to be 1 msec, which is
also used to normalize all system time values. The transmit
and receive power is 1 W and 0.5 W, respectively, which
corresponds to the transmission and receive energy during each
time slot as Etr = 1 mJ and Erc = 0.5 mJ, respectively. A job
with computational load D = 10M CPU cycles is considered.
The job completion deadline TD is set to 60 time slots. The
local execution energy per CPU cycle is vl = 2 × 10−6 mJ
and the local computation speed is fl = 1M CPU cycles per
time slot [20], [21]. Therefore, the local execution time is
TL = D/fl = 10 time slots, and the local energy consumption
EL = vlD = 20 mJ. We consider that the remote execution
time is Texec = 1 time slot, i.e., the remote processing speed
is 10 times that of local processing. The download time Tdown
is assumed to be 1 time slot. In all the simulations, we collect
both average energy consumption of the mobile device and
the running time of the algorithms, where the running time is
the average amount of time needed to make the offloading

Fig. 4: Markov Chain for P = P3 and P4

decision at one time slot. Each value of average energy
consumption and running time is obtained after repeating the
simulation for 1,000 runs. In addition, for the exponentiation-
based algorithms, namely, WF-Exp, Gen-WF-Exp, and WF-
Exp-Sch, the calculation of the channel matrix exponentiation
is not counted in the running time because this work can be
done in the background before the mobile device initiates an
offload.

For comparison, we also plot the offline bound (Pre Off)
given in Section III and Local Execution that executes the
entire job locally without doing any offloading. When collect-
ing the simulation results, the energy consumption for running
the online algorithm at the mobile device was assumed to be
negligible compared to that for transmitting to the cloud server.
This is a common assumption when the amount of data for
uploading the task is large. Despite this, we have included
graphs of the relative running times of the algorithms so that
this component could be included if required.

Figure 5 shows simulation results of the offloading algo-
rithms over the 9-state wireless channel with state transition
probability matrix P1. Figure 5a shows the average energy
consumption of the mobile device as the job deadline TD
changes. When TD is small, offloading cannot meet the tight
delay budget even when the channel is always at the best
state. In this case, all the offloading algorithms decide to
not offload, resulting in the same energy consumption as
Local Execution. As TD increases, the heuristic algorithms
may decide to offload at some time slots but offloading most
likely cannot be completed before tL due to the small time
budget. This triggers local execution, and results in overall
energy consumption that is higher than Local Execution. For
a certain range of TD, the energy consumption may increase
with TD and then decrease. This is because as TD increases,
the offloading algorithms all attempt to upload at more time
slots, while TD is still insufficient to allow offloading to be
completed in time. As TD further increases, offloading may
be completed before TD, which reduces the concurrent local
execution energy consumption; and as TD further increases,
offloading is more likely completed before tL, in which case,
concurrent local execution is not needed, and the average
energy consumption of the mobile device using the offloading
algorithms further decreases with TD.

By comparing the different offloading algorithms, we find
that in general, using “Exponentiation” (i.e., the Exp algo-
rithms) helps reduce the average energy consumption, com-
pared with using “Equilibrium” computations (i.e., the Equ
algoritms) only. Using the “Generalization” approach helps re-
duce the average energy consumption; and using “Scheduling”
can further reduce the average energy consumption, compared
with using “Generalization”. Overall, the WF-Equ-Sch and
WF-Exp-Sch algorithms achieve the lowest average energy
consumption among all the offloading algorithms.

Comparing with the offline bound, the average energy
consumption of using the heuristic offloading algorithms is the
same as the bound when TD is very small as all the algorithms
decide to not offload. As TD increases, the gap between the
offline bound and the heuristic offloading algorithms increases
first, then decreases. When TD is sufficiently large, the heuris-
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Fig. 5: 9-states uniform distribution: P = P1

tic offloading algorithms may decide to upload only when the
channel is in the best state, and the average energy consump-
tion of the offloading algorithms asymptotically approaches
the offline bound.

Figure 5b shows the average energy consumption of the
mobile device as the job size Sup changes. When Sup is small,
the offloading algorithms may decide to upload only when the
channel condition is sufficiently good, and offloading most
likely can be completed before tL. In this case, the average
energy consumption of the offloading algorithms is close to
the offline bound. As Sup increases, it becomes less likely
that the task can be completed before tL or even before TD
by offloading to the server. In this case, more concurrent local
execution is needed that increases the energy consumption
of the mobile device. When Sup is sufficiently large, all the
offloading algorithms decide to not offload, resulting in the
same energy consumption as in Local Execution.

Figure 5c shows the running time versus job size for the
offloading algorithms. As can be seen from this figure, the
WF-Exp, WF-Exp-Sch and Gen-WF-Exp algorithms are much
more time consuming than WF-Equ, WF-Equ-Sch and Gen-
WF-Equ. This is mainly due to a more complicated process
to find the “most efficient” set F that considers the number of
steps needed from the current channel state to other states in
order to finish uploading the task. As a result, the running time
of the exponentiation-based algorithms increases quickly with
the task size, because more channel transition steps should
be checked. In contrast, the equilibrium-based algorithms are
much less sensitive to task size increase in terms of running
time. Although the longer running time of the exponentiation-
based algorithms makes them less practical in online situa-
tions, they do make more accurate offloading decisions than
the equilibrium-based algorithms. Meanwhile we also notice
that, the equilibrium-based algorithms (e.g., WF-Equ-Sch)
achieve the average energy consumption very much close to
the corresponding exponentiation-based algorithms (e.g., WF-
Exp-Sch). Furthermore, doing generalization and scheduling
increases the running time, and the running time of WF-
Equ-Sch is slightly larger than that of Gen-WF-Equ, which
is slightly larger than that of WF-Equ, although the running
time of all the three equilibrium-based algorithms is very much

close to each other.

Figure 6 shows simulation results of the offloading algo-
rithms over the 9-state wireless channel with state transi-
tion probability matrix P2, which represents a non-uniform
channel. Comparing Figures 6a and 5a we find that the non-
uniform channel results in lower average energy consumption
than the uniform channel when TD is small; and as TD
increases, the curves in Figure 6a drop and approach the
offline bound much faster than in Figure 5a. The non-uniform
property of the channel helps the online algorithms make better
offloading decisions and save energy consumption, compared
to the uniform channel. For this reason, the performance
difference between different offloading algorithms is much
smaller than in the uniform-channel case. Similar observations
can be obtained by comparing Figures 6b and 5b, from which
we can see that the curves in Figure 6b rise slower with
Sup than in Figure 5b. All the offloading algorithms have
almost the same energy consumption performance except for
a small range of Sup where the average energy consumption
is above the Local Execution energy. Figure 6c further shows
that the running time of WF-Exp, WF-Exp-Sch and Gen-WF-
Exp is much more than WF-Equ, WF-Equ-Sch and Gen-WF-
Equ, which is consistent with Figure 5c, and the non-uniform
property of the channel does not affect the running time of the
algorithms in an obvious way.

Figure 7 shows simulation results of the offloading algo-
rithms over the 5-state wireless channel with state transition
probability matrix P3, which represents a uniform channel.
Comparing Figures 7a and 5a we find that the 5-state channel
results in approximately the same average energy consumption
as the 9-state uniform channel when TD is small; and as TD
increases, the curves in Figure 7a drop and approach the offline
bound much faster than in Figure 5a. The smaller number
of channel states makes it easier for the online algorithms
to make better offloading decisions that helps improve the
energy consumption performance. Similar observations can
be obtained by comparing Figures 7b and 5b, which shows
that the average energy in Figure 7b increases slightly faster
with Sup than in Figure 5b. Figure 7c further shows that the
running time of the equilibrium-based algorithms (i.e., WF-
Equ, WF-Equ-Sch and Gen-WF-Equ) is much less than that
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Fig. 6: 9-states non-uniform distribution: P = P2
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Fig. 7: 5-states uniform distribution: P = P3

of the exponentiation-based ones (i.e., WF-Exp, WF-Exp-Sch
and Gen-WF-Exp) and not much affected by the task size
increase. In addition, by comparing Figures 5c and 7c, we find
that the running time of the algorithms in the 9-state uniform
channel is higher than that in the 5-state channel case for
all the algorithms, since more calculations are needed for the
channel with more states.

Figure 8 shows simulation results of the offloading algo-
rithms over the 5-state wireless channel with state transition
probability matrix P4, which represents a non-uniform chan-
nel. Comparing with Figure 7, in terms of energy consump-
tion, there is only a slight difference between the different
offloading algorithms, and the performance of these heuristic
offloading algorithms is very close to the offline optimum. The
running time of the algorithms in this case is not obviously
different from that in the 5-state uniform channel case.

In summary, among all the heuristic algorithms, WF-Exp-
Sch achieves the lowest mobile device energy consumption
and WF-Equ consumes the shortest running time, while WF-
Equ-Sch is the best choice because its energy consumption is
very much close to WF-Exp-Sch and its running time is almost
the same as WF-Equ. The difference between the heuristic
algorithms is relatively small for very large size tasks with
tight completion time or very small size tasks with loose
completion time, because the decision is most likely to always

execute the task locally (for the former) or always offload
(for the latter). In terms of running time (complexity), the
exponentiation-based algorithms are sensitive to the number
of channel states and the task size, while the equilibrium-
based algorithms are not as much affected by these parameters.
In terms of energy consumption of the mobile device, the
difference among the heuristic algorithms is more obvious in
the uniform channel than in the non-uniform channel case.

All the above results are generated based on the parameter
setting that has the cloud server CPU processing speed 10
times of the local CPU speed. Given the local processing
speed, if the processing speed at the cloud server is higher,
the probability that offloading can meet the delay constraint
of the task is higher, and more energy consumption of the
mobile device may be saved by offloading. However, this
benefit is eventually limited by the quality of the wireless
channel, i.e., the amount of time and energy needed for
uploading/downloading the task.

VII. CONCLUSIONS

This paper has studied preemptive mobile computation
offloading, when concurrent local execution (CLE) is used
to guarantee task execution time constraints. In CLE, local
task execution is permitted even if a remote offload decision
has been initiated. This mechanism ensures that hard task
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Fig. 8: 5-states non-uniform distribution: P = P4

deadlines are always satisfied. In preemptive offloading, a
decision is made to either continue offloading or to temporarily
interrupt the offload at the start of each time slot. This gives
the system the ability to adapt to changes in wireless channel
conditions during the offload. The homogeneous Markovian
wireless channel case was considered. An online computation
offloading algorithm, referred to as Optimal Preemptive Of-
floading (OPO), was formulated for preemptive offloading, and
was shown to be energy-optimal. The computational complex-
ity of OPO is prohibitive, even for simple Markovian channels,
and, therefore, the paper introduced three computationally effi-
cient techniques: Water-Filling, Water-Filling with Scheduling,
and Generalized Water-Filling. For each, two variations were
considered. The first (Equ) uses the equilibrium channel state
probabilities to determine its offloading decisions, and the
second (Exp) uses Markovian transition matrix exponentiation.
The six resulting algorithms have a wide variety of energy per-
formance and computational complexity. The performance of
the proposed algorithms was compared on Markovian channels
with different characteristics, in order to show the tradeoffs
between complexity and mobile energy saving performance.

Future directions: There are several possible directions
for future extensions of our work. The high computational
complexity incurred by the exact DP solutions lead us to
the development of approximate heuristics; rollout techniques
(cf. [22], and the references therein) can be studied as an
efficient mechanism to tradeoff complexity and optimality.
Reinforcement learning, which has already been used for
designing offloading policies (e.g., [23], [24] can be used
to effectively learn parameters of the system (e.g., channel
transition probabilities).1
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