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Abstract. We study the application of reputation as an instigator of
beneficial user behavior in selfish routing and when the network users
rely on the network operator for information on the network traffic. In-
stead of the use of tolls or artificial delays, the network operator takes
advantage of the users’ insufficient information, in order to manipulate
them through the information he himself provides. The issue that arises
then is what can the operator’s gain be, without compromising by too
much the trust users put on the information provided, i.e., by maintaining
a reputation for (at least some) trustworthiness. Our main contribution
is the modeling of such a system as a repeated game of incomplete infor-
mation in the case of single-commodity general networks. This allows us
to apply known folk-like theorems to get bounds on the price of anarchy
that are better in the worst-case (if that is possible at all) than the well-
known price of anarchy bounds in selfish routing without information
manipulation.

1 Introduction

It is well known [17, 5] that the price of anarchy (as defined by [10]) of non-
atomic selfish routing may be bounded from above (by, for example, 4/3 in case
of linear latency functions), but, nevertheless, still away from the optimal 1 [15].
A way of ‘forcing’ the infinitesimal users to a traffic equilibrium with optimal
social cost (total latency) is by imposing (monetary) tolls on the edges of the
network; then tolls behave as a coordination mechanism, and the utility function
for every user has the general form uP := lP (f) + τP for every path P , where
f is the flow pattern, lP (f) is the actual path latency, and τP is the tolls paid
on P , possibly weighted by a different factor by each user (heterogeneous users)
or the same (homogeneous users). For homogeneous users it has been known for
many years that marginal tolls achieve this goal. For heterogeneous users the
existence of such optimal tolls (and their computation) were shown relatively
recently [21],[8],[6].

The natural question that arises is whether tolls is the only mechanism em-
ployed by a network designer in order to achieve the same effect. One objection
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to tolls, for example, is the form of the utility function: is it always acceptable
to add delay times (latency) to money (tolls)? An obvious answer to such issues
could be that the designer can indeed achieve the same results by implementing
the tolls part as artificial delays, say, by decreasing the available bandwidth on
the network edges. This approach has been taken in the design of Coordination
Mechanisms [3], especially in the work of Christodoulou et al. [4] for networks
of parallel links and linear latency functions. But, apart from the possible ob-
jections raised by the users of such an engineered network, the obvious result of
such a decision is that these delays now become part of the social cost, which
is defined as the total delay experienced in the network. As a result, the price
of anarchy may be reduced (to 5/4 instead of 4/3 for linear latencies [9]) but
it is not optimal anymore. It would be optimal, though, if, somehow, this ar-
tificial delay didn’t count towards the actual delay. For example, suppose that
the network operator is also providing the path delay data to the users; then he
could take advantage of the users’ incomplete information to lie about the edge
delays by an amount equal to the optimal tolls. In this case, a new challenge
arises that didn’t exist in the usual (one-shot) selfish routing game: if the game
is infinitely repeated, how much lying (if any at all) can be tolerated by the users
without their rendering the information they get from the network operator as
completely bogus? Can the network operator manipulate the users in order to
achieve a price of anarchy that may not be optimal but is still better than the
known upper bounds? These are the issues addressed by this work.

We model the repeated interaction between the network operator and the in-
finitesimal users as a repeated game between a long-term player (the network op-
erator) with a long-term objective of improving the average price of anarchy in a
single-commodity network with linear latency functions, and a sequence of short-
term players (the aggregation of the infinitesimal users) with the short-term
objective of minimizing the individual path latencies as dictated by Wardrop’s
principle. This game is an infinite repetition of an one-shot stage game, where the
long-term player knows everything about the game (and the network), includ-
ing the payoff function of the short-term players, while the short-term players
not only aren’t aware of the network operator’s payoff, but they rely crucially
on information about the network provided by that player. The latter can then
take advantage of short-term players’ incomplete information to manipulate the
information he provides. The only problem is that the short-term players keep a
record of what has happened in the previous rounds (all of them or a finite recent
past, depending on whether we assume unbounded or bounded memory for the
infinitesimal users respectively). This means that the network operator acquires
a reputation with the users: (i) he may be a consistent player, i.e., even when he
lies, his lies are the same, as happens, for example, when latency measurements
of a computer network may be off their real values by the same constant, or (ii)
he may be a truly untrustworthy source of information. This reputation is cru-
cial, since it may lead the users to play something different than their usual best
response, and therefore leading the price of anarchy to values that are higher
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than even the worst-case value achieved by a truthful network operator, thus
negating the short-term gains that the latter achieved in the first few rounds.

Our main contribution is the modeling of the repeated game. We use a ver-
sion of the well-known product-choice (P-C) game (see, e.g., [12]) to model the
stage game: just as the P-C game is playing the product quality promised by
a manufacturer against the price a customer is willing to pay, our game plays
the quality of information supplied by the network provider against the trust
the users put on that information. If the users are adamant about not using
any corrupted data, then, obviously, the network provider must always provide
the correct information to avoid further degradation, and the worst-case price
of anarchy achieved is equal to the well-known bounds (e.g., 4/3 for linear la-
tencies). The interesting case appears when the users are willing to somehow
use that information even when they know that it may be corrupted, since, at
the end of the day, this is the only data they get. Then we use known results in
economics to get bounds on the price of anarchy achieved by the network oper-
ator; namely, we use known folk theorem-like results by Fudenberg and Levine
[7] and Liu and Skrzypacz [11] to get bounds for the case of users with unlim-
ited or limited memory respectively. It is very interesting that in the latter case
[11] can also characterize exactly the moves of the players for every round at
equilibrium. Our results work for a single origin-destination pair in a general
topology network with linear latencies, and, under certain assumptions, with
more general functions, both deterministic and stochastic. We believe that such
bounded-rationality users better capture automated (i.e., algorithmic) players,
and are more relevant in a computer science context; we see our work as only a
first step towards applying well-known lessons learned by economists (see, e.g.,
[2] and [12]) to selfish routing problems.

2 Preliminaries

A directed network G = (V,E), with parallel edges allowed, is given on which a
set of identical users want to route each an infinitesimal amount of flow (traffic)
from a specified origin to a destination node in G. Users are divided into k
classes (commodities). The demand of class i = 1, . . . , k, is di > 0 and the
corresponding origin–destination pair is (si, ti). A feasible vector x is a valid
flow vector (defined on the path or edge space as appropriate) that satisfies
the standard multicommodity flow conventions and routes demands di for every
commodity i. Each edge e is assigned a latency function le(fe) ≥ 0 that gives
the delay experienced by any user on e due to congestion caused by the total
flow fe that passes through e. For a path P, lP (f) =

∑
e∈P le(fe). We define

the cost of a flow f that satisfies all demands as the total latency experienced
by all users, i.e., C(f) :=

∑
e∈E fele(fe). In the standard selfish routing setting,

the infinitesimal users try to minimize their travel time, resulting in a traffic
equilibrium that obeys Wordrop’s principle [20]: all used flow paths have the
same latency, which is no greater than the latency of the unused paths. If f∗, fopt

are a traffic equilibrium flow of maximum total cost and the optimal (minimum
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total cost) flow respectively, then the price of anarchy ρ (PoA) for the network

is defined [10] as ρ := C(f∗)
C(fopt) . Assuming that the latency functions are strictly

increasing, then the edge flow pattern for traffic equilibria is unique (see, e.g.,
[1]).

It is well known that by imposing marginal tolls τe := fopte
∂le
∂x (fopte ) on the

network edges, i.e., if the latency functions are modified to be lnewe (fe) := le(fe)+
fopte

∂le
∂x (fopte ), the traffic equilibrium edge flows f∗e ,∀e ∈ E coincide with the

optimal flow fopt, and therefore C(f∗) = C(fopt). In this work we deviate from
the traditional view of tolls as monetary compensation (possibly returned to the
society); we will try to achieve the same effect by manipulating the information
the infinitesimal users (whose aggregation is Player 2 below) receive from the
network operator (who is Player 1 below) about the flow in the network. Player 2
has some internal estimate about the actual flow, but the success of this deception
cannot lie only on this internal uncertainty, since we are more ambitious than
playing the routing game just once; it is repeated indefinitely with the same
players. Therefore, the players in this repeated game know of the past history
(and past deceptions) every time they play a new round of the routing game (the
stage game). Nevertheless, we will show that, under certain assumptions, Player 1
can build up his reputation in the eyes of Player 2, so that the latter’s (believed)
best response increases the former’s overall payoff. Unfortunately, our results
currently hold only for a single origin-destination pair (commodity) (s, t); this
case already covers some non-trivial applications, such as the scheduling of jobs
arriving at a single queue to different servers, but we leave the multicommodity
case to future work.

3 The stage game

In what follows, the players try to minimize their cost, but since payoffs are
understood to be maximized, we will set the payoffs to be the negative of cost
functions.

The stage game played in every round is played by two players, Player 1 and
Player 2, and is a version of the classic product-choice game (cf. [12]). The pure
strategies space is the continuum [0, 1], i.e., the two players pick simultaneously
numbers x, y respectively in that range. Intuitively, Player 1’s x indicates how
much truthful that player is willing to be towards Player 2 (e.g., x = 1 means
no deception whatsoever, and x = 0 means Player 1 is as deceitful as possible);
Player 2’s y indicates how trustful this player is of Player 1 (e.g., y = 1 means
that Player 2 completely trusts Player 1’s transmitted information, and y = 0
means that Player 2 completely mistrusts Player 1). Actions x, y control the
extra flow fextra (beyond the known to both players flow f of total demand d)
that Player 2 perceives as being injected into the selfish routing game. In this
work we study a specific simple tactic of deception for Player 1:

Definition 1. The SCALE tactic by Player 1, is the announcement of extra
flow fextra = (1− x)fopt.
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Note that, for simplicity, we assume that the maximum possible extra flow Player
1 can announce is d.

Let fopt(x, y), f∗(x, y) be the optimal and equilibrium (actual) flows routed
in the network.1 The payoff functions of the two players are as follows:
Player 1’s payoff: It is the negation of the PoA ρx,y(G, l, d) of the selfish
routing game played on the network by the infinitesimal users after x and y
have been chosen:

Γ1(x, y) := − C(f∗(x, y))

C(fopt(x, y))

(
= −

∑
e∈E f

∗
e le(f

∗
e )∑

e∈E f
opt
e le(f

opt
e )

)
. (1)

Player 2’s payoff: Recall that Player 2 is a fictitious player that is the aggre-
gation of homogeneous infinitesimal users of the network. Before defining her
payoff, we define the perceived latency l̂(f) of the users, as follows:

l̂P (f) := lP (f + (1− x)yfopt) + (1− y)m, ∀P ∈ P. (2)

The perceived latency is different to the actual latency l(f) in two important
aspects: (i) The perceived total flow is comprised of the normal flow f and the
extra flow (1 − x)yfopt, which is the extra flow announced by Player 1, but
weighted by Player 2’s trust y. (ii) There is an additive internal estimate m ≥ 0,
by the infinitesimal users, of how much bigger the latency of every path is due
to extra flow. In essence, Player 2 pits her own extra latency estimate m against
Player 1’s claimed extra flow, weighing the former by (1 − y) and the latter by
y. The fact that m is the same for all paths seems too restrictive, but, in view
of Wardrop’s principle used to define Player 2’s payoff below, it is actually as
general as the single commodity setting we study here.

The payoff for Player 2 is the (common) path latency of the used paths at
equilibrium, when the path latency is the perceived latency. I.e., if f∗ is the
traffic equilibrium flow with perceived latencies and extra flow (1 − x)yfopt,
then

Γ2(x, y) := −L∗(x, y) (3)

where L∗(x, y) = lP (f∗ + (1 − x)yfopt) + (1 − y)m, ∀P ∈ P s.t. f∗P > 0 is
the common latency on the paths used by f∗. Note that after the extra flow
(1− x)yfopt has been announced, the only variable for the selfish routing game
is normal flow f . Since the infinitesimal users know everything Player 1 knows
about the network (including Player 1’s claim to extra flow for every edge (1−
x)fopt) except the fact that there isn’t really any extra flow at all, Player 2 can
always calculate Γ2.

We emphasize that when the two players play their simultaneous strategies
(x, y), the resulting selfish routing game will be played with edge latencies l̂.
Afterwards the actual latency for each infinitesimal user is revealed (since the
infinitesimal user actually travelled the chosen route), but by then it is too late
for Player 2 to use this information in order to determine y; the stage game has
already been played.

1We will drop the parameters x, y from the notation when their presence is clear
from the context.
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3.1 Stackelberg strategy2

If the two players play actions (x, y) = (0, 0), then the stage game becomes the
classic selfish routing game with just an additional path latency m. It is well-
known [15] that, in this case, there are networks for which the PoA is the worst
possible. The question we are trying to answer here is whether Player 1 can
be guaranteed a PoA strictly better than the worst case, independently of the
network topology, and when the selfish routing is done repeatedly. We address
the last issue in the next section. Here we study the Stackelberg strategy of Player
1, i.e., the strategy that ensures the biggest payoff for Player 1, provided Player
2 chooses a best response.

Definition 2 (Stackelberg strategy [19]). Let y∗(x) be the best response3 of
Player 2 to Player 1’s playing x. Player 1’s Stackelberg strategy xs is

xs := arg max
x∈[0,1]

Γ1(x, y∗(x))

Player 1’s Stackelberg payoff Γ s1 satisfies

Γ s1 = Γ1(xs, y
∗(xs)) ≥ Γ1(x, y∗(x)), ∀x ∈ [0, 1]

It is important to notice that (xs, y
∗(xs)) does not have to be a Nash equilib-

rium, so it doesn’t need to be the final outcome of the game. E.g., if (0, 0) is
the only equilibrium of the stage game, then the worst-case PoA will be the
only outcome. In fact, in our results we don’t even require the existence of a
Stackelberg strategy; the next section shows that Player 1 can drive the Nash
equilibrium (extended to the definition of repeated games) arbitrarily close to
the Stackelberg payoff (if it exists), or at least come up with a strategy that
guarantees strictly better payoff than the payoff at (0, 0), under certain assump-
tions. Still, it may be possible that Γ s1 is equal to the worst-case Γ1(0, 0), and in
this case nothing can be done. We show that this is not the case for non-trivial
latency functions (e.g. linear).

3.2 Linear latencies

For linear latency functions le(fe) = aefe+be, ae, be ≥ 0,∀e ∈ E, it is well known
[17] that the worst-case Γ1(0, 0) is −4/3. We show the following

Lemma 1. For any m > 0, Γ1(xs, y
∗(xs)) > − 4

3 .

The proof of Lemma 1 is in Appendix A. It implies that, as long as the infinites-
imal users have any inclination (m > 0) to believe that there may be extra flow
in the system, the Stackelberg payoff for Player 1 is guaranteed to be better than
the worst-case PoA bound.

2What follows should not be confused with Stackelberg routing (e.g., [16]), where
there is a central coordinator that controls a fraction of the actual flow. Here there is
no such coordinator.

3If the set B(x) of Player 2’s best responses to x is not a singleton, we assume that
Player 2 picks the best response that is the worst possible for Player 1.
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3.3 General latencies

Before we tackle the general latency functions case, we recall a couple of well-
known definitions.

Definition 3 ([5]). If L is a family of latency functions, we define

β(l) := sup
0<y<x

y[l(x)− l(y)]

xl(x)
, ∀l ∈ L,

and
β(L) := sup

l∈L
β(l).

For simplicity, we will use β := β(L) below.
We will also use the notion of Jacobian similarity as used in [14]. Namely, if

∇l(f) =
[
∂le
∂fe′

]
(e,e′)∈E2

is the Jacobian matrix of function l(f), then there exists

a constant J satisfying

1

J
wT∇l(f)w ≤ wT∇l(f ′)w ≤ JwT∇l(f)w (4)

for all feasible flows f, f ′, and for all w ∈ R|E|. The smallest J satisfying the
property is referred to as the Jacobian similarity factor.

In the case of general latency functions, the worst-case PoA upper bound is
1

1−β [5]. We are able to guarantee a Stackelberg payoff that is greater than this
bound, in case the following assumptions hold:

Assumption 1 Functions le(x) are convex and non-decreasing continuous func-
tion of x, with the first and second derivative existing everywhere.

Assumption 1 is not very restrictive in practice, since it captures the fact that
the latency deterioration rate increases as the congestion on an edge increases.
But the next two assumptions are quite technical, and are due to our proof
methods; we leave lifting them as an open problem.

Assumption 2 We assume that β(L) < 1
2 (i.e., L is a family of not too “non-

linear” functions).

Assumption 3 The Jacobian similarity property holds for the instance (G, l, d),
and the Jacobian similarity factor J satisfies

J <
1

1− β
Note that linear functions satisfy all three assumptions.

Lemma 2. When m > 0, and under Assumptions 1-3, Γ s1 > − 1
1−β .

The proof of Lemma 2 is in Appendix A.
In what follows we denote by X,Y (both equal to [0, 1]) the sets of pure

strategies for Players 1 and 2 in the stage game, and by Σ1, Σ2 the sets of mixed
strategies for Players 1 and 2 (note that the two sets are the same, i.e., the set
of distributions over [0, 1]).
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4 The repeated game

If the stage game is played repeatedly without a memory of the past history
to influence the players’ decision, then there is no reason for them to deviate
from playing a stage game Nash equilibrium; if this equilibrium happens to be
(x, y) = (0, 0) every time, then it is impossible for Player 1 to induce Player 2
into deviating from playing y = 0. It is exactly the fact that the players have
a record of the past history of the game that allows Player 1 to achieve a PoA
strictly better than the worst-case Γ1(0, 0), by exploiting a reputation that he
can built in his interaction with Player 2. We formulate this new setting using
the standard notions of repeated games, as they are used in game theory and
economics.

A repeated game between two players 1 and 2 is an infinite repetition of the
playing of a game (called the stage game) in rounds or times t = 0, 1, 2, . . . ,∞.
In our case the stage game is the one defined in Section 3. Player 1 is a long-run
player, i.e., his total payoff is a summation of his stage payoff over all periods
discounted by a discount factor δ ∈ [0, 1), which is

(1− δ)
∞∑
t=0

δtgt1(xt, yt)

(the factor (1 − δ) in front is a normalization factor that brings the repeated
game payoff to the same units as the stage payoff). The closer δ is to 1, the more
equivalent (in terms of importance) stage payoffs in the distant future are to the
ones closer to the present. In our case, the network operator Player 1 is almost
equally interested to the payoffs of all periods, i.e., δ → 1. On the other hand,
Player 2 acts as a short-run player in every period, since in each period she acts
to maximize myopically that period’s payoff.

Of central importance in order to escape the stage game Nash equilibrium is
the notion of history ht = {(x0, y0), (x1, y1), . . . , (xt−1, yt−1)}, defined for every
time length t as the sequence of pure strategies played by the two players in
the first t periods or h0 = ∅ at the beginning of the game. Each player always
records all his past actions (has perfect recall), but we will later distinguish
between a Player 2 with unlimited memory who has a perfect record of Player
1’s actions, and a Player 2 that has a limited memory and can only record the
last K actions of Player 1. Let Ht = (X ×Y )t be the set of all possible histories
of length t ≥ 0 (H0 = ∅), and H = ∪∞t=0Ht the set of all possible histories.
Then the behavioral strategy of (long-run) Player 1 is defined as σ1 : H → Σ1.
Things are a little bit more complicated for Player 2, since she acts as a short-run
player in every period. She can be replaced by an infinite sequence of players
i0, i1, i2, . . ., each with a behavioral strategy of σit2 : Ht → Σ2 and payoff Γ2;
each such player enters the game in only one specific round, but has available
the whole history available to Player 2 in that round. A Nash equilibrium then
is defined in the usual way, as a behavioral strategy profile σ = (σ1, σ

i0
2 , σ

i1
2 , . . .)

with the property that no deviation by any player will improve his payoff if the
other players’ strategies remain the same.
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In order to exploit reputation phenomena in repeated games, we define two
types for Player 1’s strategy profile:

– committed type ωc: If Player 1 is of this type, he always plays c ∈ (0, 1],
independently of the history of the repeated game. The strategy c will be
chosen to be the Stackelberg strategy s.

– rational type ω0: Player 1 is not restricted in playing any strategy in every
round (he is opportunistic), and the payoff for the moves of this type of
Player 1 is given by Γ1(x, y) defined above.

Player 2’s perception of the type of Player 1 is captured by Player 2 assigning
a probability (initial belief) µ∗ to Player 1 being of commitment type ωc (and,
hence, probability 1− µ∗ of being of rational type ω0).

Let V 1(δ, µ∗) be the least payoff achievable by Player 1 in the repeated game
with discount factor δ and prior belief µ∗ for the type of Player 1 held by Player
2. If the latency functions l are continuous, and since it is well-known that the
equilibrium flow feq is also continuous on (x, y) as the solution of a parametric
mathematical program with a closed and bounded feasibility region, the following
holds:

Lemma 3. If latency functions l are continuous, then functions Γ1, Γ2 are con-
tinuous on (x, y).

Then Theorem 4 in [7] (folk theorem) holds in our case:

Theorem 1 ([7]). If 0 < µ∗ < 1, then for all ε > 0 there exists a δ < 1 such
that for all δ ∈ (δ, 1)

V 1(δ, µ∗) ≥ (1− ε)Γ s1 − εΓmin1 .

where Γmin1 ≥ − 1
1−β is the minimum possible payoff for Player 1.

This version of the folk theorem implies that Player 1 can almost achieve Γ s1
when δ → 1. We also emphasize that the theorem provides an improvement on
the worst-case behavior of PoA over all possible instances, but it may be the
case that for a particular instance, this worst case never happens. The study
of particular instances, other than worst case ones, (e.g., networks of parallel
links), is not the subject of this work.

4.1 Weak payoffs

A stronger version of Theorem 1 can be shown, in case Player 1 compromises over
his payoff function in the following way: Although the payoff function Γ1(x, y)
captures exactly the PoA, the fact that we are studying only worst-case instances
allows Player 1 to relax his payoff function to be directly the upper bound rather,
than the actual PoA:

Γ̄1(x, y) = −1 + (J − 1)(1− x)y

1− β + β(1− x)y
, (5)
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where the right-hand side comes from the general bound of Lemma 4 (and be-
comes 4

3+y(1−x) in the case of linear latency functions). We continue to assume

Assumptions 1-3 apply. Then the following holds:

Fact 1

1. (myopic incentive of Player 1) Γ̄1(x, y) is strictly decreasing in x if y > 0,
and constant if y = 0.

2. (Player 1 wants to be trusted) Γ̄1(x, y) is strictly increasing in y, unless
x = 1, in which case it is constant.

3. (sub-modularity of Player 1) Γ̄1(x, y) − Γ̄1(x′, y) is strictly increasing in y,
for any x < x′.

In addition, one can show (using (24)) that

Fact 2 (valuable reputation for Player 1) If m > β
1−β

S(fopt)
d ,4 then Γ̄ s1 > − 1

1−β .

Facts 1 and 2 will help us to use a more powerful result by Liu and Skrzy-
pacz [11] in case Player 2 is of bounded rationality in the sense that Player 2’s
record keeping is limited (e.g., by memory limitations) to recording only the K
most recent actions of Player 1, for some parameter K (Player 2 has still per-
fect recall of her actions in all past history). Unlike the folk theorem of [7], this
limitation allows [11] to describe exactly the equilibrium strategies for the two
players, and prove a payoff bound for Player 1’s payoff similar to the bound in
Theorem 1 at any point of the game (and not just at the beginning as the bound
in Theorem 1 does). This is important for the study of games that have already
been played for a number of periods which we don’t know (or don’t care about),
and we want to evaluate the quality of Player 1’s payoff at the moment we start
our observation.

Let P (t), µ(ω|h) be Player 2’s prior belief of whether the current round is t
(i.e., she doesn’t keep track of time, so she must have a prior belief on which is
the current round), and her posterior belief over Player 1’s type being ω given a
history h (truncated to the most recent K rounds for Player 1’s actions). Note
that if h contains an action x 6= c, then µ(ωc|h) = 1− µ(ω0|h) = 0. In this case,
the notion of equilibrium used is that of stationary Perfect Bayesian Equilibrium
(PBE) that is more sophisticated than the simple Nash equilibrium considered
above since it takes into account Player 2’s beliefs, when the latter are updated
using Bayes’ rule5. To simplify their analysis, [11] assume the following

Assumption 4 For any (mixed) action x (ν) by Player 1, Player 2 has a unique
pure best response y∗(x) (y∗(ν)), and y∗(ν) increases if ν increases in the first-
order stochastic dominance sense.

Then Theorem 3 in [11] holds in our case:

4We need this bound, because (25) breaks for Γ̄1.
5See [11] for a formal definition.
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Theorem 2 ([11]). Assume that Assumptions 1-4 hold and m > β
1−β

S(fopt)
d .

Then for any ε > 0, µ∗ ∈ (0, 1) , there exists integer K(ε, µ∗) independent of the
equilibrium and δ, such that if record keeping length K > K(ε, µ∗), we have

V 1(δ, µ∗) ≥ δK Γ̄ s1 − (1− δK)
1

1− β
− ε

which converges to Γ̄ s1 − ε as δ goes to 1.

In fact, the theorem in [11] gives also a description of the strategies the players
play at every round in order for Player 1 to achieve the payoff bound; these
strategies are pure for Player 2, and mixed with a support of 2 for Player 1.
Note that for this stronger result, it’s not enough for the infinitesimal users to
have any inclination (m > 0) to believe that there may be extra flow in the

system, but they must have significant inclination (m > β
1−β

S(fopt)
d ).

5 Stochastic User Equilibria

In the previous sections, we assumed that the perceived latency of the users is
always deterministic, since even their internal estimate for delay due to extra
flow m is fixed; the resulting traffic equilibria are User Equilibria (UE). In this
section we generalize this framework to the stochastic case. i.e., the case where
the users are uncertain for the exact latency of a path, and, therefore, their
perceived latency contains a random component. Hence the perceived latency
becomes

l̂P (f) := lP (f + (1− x)yfopt) + (1− y)εP , ∀P ∈ P. (6)

where εP is a random variable. Due to these random variables, the equilibrium
notion we use is not the User Equilibrium (UE) one, but its generalization, the
Stochastic User Equilibrium (SUE). Without going into too many details for
this abstract, we mention only that an SUE flow feq will be feqP = dπP , P ∈ P,

where πP := Pr[l̂P (feqP ) ≤ l̂P ′(feqP ′), ∀P ′ 6= P ], P ∈ P. An excellent introduction
to SUE can be found in [18].

In the case of SUE, the definition of PoA can be extended by using expected
costs, and, therefore, the definition of Player 1’s payoff can still be the same
as (1). For the payoff of Player 2, we use the average perceived utility by an

individual traveler W (x, y) = −E[minP∈P{l̂P (feq)}]:

Γ2(x, y) := W (x, y) = −E[min
P∈P
{l̂P (feq)}].

A concrete simple example for this setting can be found in Appendix B.
We get a better-known stochastic model, if we follow the standard practice in

the traffic bibliography and restrict ourselves to the logit model: we assume that
(1−y)εP = (1−y)m+(1−y)ε0 are i.i.d., where the error term (1−y)ε0 follows the
Gumbel distribution with parameter θ = θ0

1−y , where θ0 > 0 is a constant. Then

we have E[(1 − y)ε0] = 0, and V ar[(1 − y)ε0] = π2

6θ2 = π2(1−y)2
6θ20

. Note that, in
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this model, the more unsure the users are about Player 1’s information (y → 0),
the larger the variance of the random error is, reflecting a greater uncertainty
about the accuracy of the extra latency estimate. Therefore, we have

Γ2(x, y) := W (x, y) =
1

θ
ln
∑
P∈P

e−θ(lP (feq+(1−x)yfopt)+(1−y)m).

In addition to Assumptions 1-3, we assume that m > ln |P|
θ0

holds, in order to
prove Lemma 2 for the stochastic case. With these assumptions, Theorem 1 goes
through. Theorem 2 also goes through, if, in addition to Assumptions 1-4, we
make the following two assumptions:

Assumption 5 We assume that

[β + (J − 1)(1− β)](1− 2β)

β
>

dk

θ0S(fopt)
, (7)

where k solves xex = 1
e (|P| − 1).

Assumption 6

m >
β

1− β
S(fopt)

d
+

ln |P|
θ0

. (8)

The details are left out of this extended abstract.

6 Conclusions

Our main goal was to make a first step towards modeling incentives for self-
ish routing that are based on reputation built by repeated rounds of the basic
selfish routing game. Bounded rationality plays a very important role in prov-
ing a uniform payoff bound in [11] that goes beyond the folk theorem of [7].
As this is mainly a result of properties (1) and (2) in Fact 1, and Assumption
4 is introduced for technical reasons, an immediate open problem is to get rid
of the latter; this can be done either for general functions Γ2(x, y), or by pin-
pointing further the exact payoff considerations for Player 2. Actually, there
are three main modeling challenges that can lead to (i) better bounds and (ii)
better characterization of equilibria actions by the players (the two are, in fact,
interconnected):

– Different issues of bounded rationality will lead to different repeated games;
we only give an example where bounded rationality means memory limita-
tions.

– Different models of incomplete information arise with different signaling pro-
tocols between the players; the model depends on the particular application
(e.g., signals announcing the waiting-time for different bank tellers).

12



– Related to the previous item, different specific applications imply different
payoff functions for the players; we specified Player 2’s payoff exactly for a
specific perceived latency model, but such a specification really depends on
the application and the nature of information available to her. We leave the
study of other models and/or the removal of the assumptions made above
as an open problem.

– Unfortunately we don’t currently know how to tackle the multicommodity
case of our model; this extension would generalize nicely our results, since
we already have a general network topology.
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A Stackelberg strategy bounds

We can prove the following general PoA bound for the selfish routing game
(G, l̂, d) with perceived latency functions defined in (2):

Lemma 4. Let fα be the equilibrium flow for (G, l̂, d). If the latency functions
l are differentiable, convex, non-decreasing, and the Jacobian similarity property
holds with similarity factor J , then

ρ(α) = −Γ1(x, y) =
S(fα)

S(fopt)
≤ 1 + (J − 1)y(1− x)

1− β + βy(1− x)
. (9)

Proof: We define α := y(1− x). Using Definition 3, we have∑
e∈E

fopte le(f
α
e ) ≤

∑
e∈E

[βfαe le(f
α
e ) + fopte le(f

opt
e )]

= β
∑
e∈E

fαe le(f
α
e ) +

∑
e∈E

fopte le(f
opt
e )

= βS(fα) + S(fopt) (10)

Since le(fe) is differentiable, if l′e(fe) denotes the first derivative of le(fe) over
fe, then the Mean Value Theorem (cf. [13]) implies that there exists t ∈ [0, 1]
such that

le(f
α
e + αfopte ) = le(f

α
e ) + αfopte l′e(fe

α + tαfe
opt)

Similarly, there exists t̂ ∈ [0, 1] such that

le(f
α
e ) = le(0) + fαe l

′
e(t̂fe

α)

We have that l′e(fe
α+tαfe

opt) ≥ l′(t̂feα), due to the convexity of l, and, therefore,∑
e∈E

le(f
α
e + αfopte )fαe ≥

∑
e∈E

le(f
α
e )fαe + α

∑
e∈E

fopte le(f
α
e )− α

∑
e∈E

fopte le(0)

≥ S(fα) + α
∑
e∈E

fopte le(f
α
e )− α

∑
e∈E

fopte le(0) (11)

Since fα is the equilibrium flow for the instance (G, l̂, d), the following variational
inequality holds:

〈l̂P , f − fα〉 ≥ 0, for all flows f,

which, in our case, and for f := fopt, translates into∑
e∈E

fαe le(f
α
e + αfopte ) ≤

∑
e∈E

fopte le(f
α
e + αfopte ) (12)

Combining (11) with (12) gives

S(fα) ≤
∑
e∈E

fopte le(f
α
e + αfopte )− α

∑
e∈E

fopte le(f
α
e ) + α

∑
e∈E

fopte le(0). (13)
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The Mean Value Theorem implies that there exists t ∈ [0, 1] such that∑
e∈E

fopte le(f
α
e + αfopte ) =

∑
e∈E

fopte le(f
α
e ) + α(fopt)T∇l(fα + tαfopt)fopt, (14)

and that there exists t̂ ∈ [0, 1] such that if f̂ = t̂fopt, then

(fopt)T (l(fopt)− l(0)) = (fopt)T∇l(t̂fopt)fopt. (15)

On the other hand, the similarity property implies that

(fopt)T∇l(fα + tαfopt)fopt ≤ J(fopt)T∇l(t̂fopt)fopt. (16)

Using equations (14), (15), and (16) we get∑
e∈E

fopte le(f
α
e + αfopte ) ≤

∑
e∈E

fopte le(f
α
e ) + αJS(fopt)− αJ

∑
e∈E

fopte le(0) (17)

which, combined with (12), implies that

S(fα) ≤ β(1− α)S(fα) + (αJ + 1− α)S(fopt)

or

ρ(α) =
S(fα)

S(fopt)
≤ 1 + (J − 1)α

1− β(1− α)
.

2

A.1 Proof of Lemma 1

In this case, the latency functions are linear: le(fe) = aefe+be, ae, be ≥ 0,∀e ∈ E.
If y∗(x) is Player 2’s best response to Player 1’s x, we have

Γ2(x, y∗(x)) ≥ Γ2(x, y),∀x, y ∈ [0, 1],

and, therefore, for y = 1 we get

−1

d

∑
e∈E

f∗e le(f
∗
e +(1−x)y∗(x)fopte )−(1−y∗(x))m ≥ −1

d

∑
e∈E

f1e le(f
1
e +(1−x)fopte )

(18)
where f∗, f1 are the traffic equilibrium flows when the players’ actions are
(x, y∗(x)) and (x, 1) respectively.

Claim. Let α := (1−x)y and fα be the equilibrium flow for the instance (G, l̂, d).
Then ∑

e∈E
fαle(f

α
e + αfopte ) ≤ 4

3− α
S(fopt). (19)

16



Proof: Since the latency functions le(x) are linear, we have∑
e∈E

fopte le(f
α
e + αfopte ) ≤

∑
e∈E

fopte le(f
opt
e ) +

1

4

∑
e∈E

(fαe + αfopte )le(f
α
e + αfopte )

≤ S(fopt) +
1

4

∑
e∈E

fαe le(f
α
e + αfopte ) +

1

4
α
∑
e∈E

fopte le(f
α
e + αfopte )

(12)

≤ S(fopt) +
1

4
(1 + α)

∑
e∈E

fopte le(f
α
e + αfopte )

or, equivalently, ∑
e∈E

fopte le(f
α
e + αfopte ) ≤ 4

3− α
S(fopt),

and (12) implies the claim. 2

For y = 1, or α = 1− x, the claim implies that∑
e∈E

f1e le(f
1
e + (1− x)fopte ) ≤ 4

2 + x
S(fopt). (20)

Combining (18), (20) with∑
e∈E

f∗e le(f
∗
e + (1− x)y∗(x)fopte ) ≥

∑
e∈E

f∗e le(f
∗
e ) = S(f∗),

and the fact that m > 0, we get

y∗(x) ≥ 1− 4

2 + x

S(fopt)

md
+
S(f∗)

md
, ∀x ∈ [0, 1]. (21)

Let ε be any constant 0 < ε < 1. We distinguish two cases:

1. There exists x ∈ [0, 1) such that ε ≤ y∗(x) ≤ 1: In this case, Lemma 4
applies to linear functions with J = 1, β = 1/4, and therefore

Γ s1 ≥ Γ1(x, y∗(x)) ≥ − 4

3 + (1− x)y∗(x)
≥ − 4

3 + (1− x)ε
> −4

3
.

2. For all x ∈ [0, 1) we have 0 ≤ y∗(x) < ε: In this case, if we denote
k := md

S(fopt) , then (21) implies for all x ∈ [0, 1)

Γ1(x, y∗(x)) = − S(f∗)

S(fopt)
≥ − 4

2 + x
+[1−y∗(x)]k > − 4

2 + x
+(1−ε)k. (22)

If we pick x0 ∈
[
4/3−2k(1−ε)
4/3+k(1−ε) , 1

)
, (22) implies

Γ s1 ≥ Γ1(x0, y
∗(x0)) > − 4

2 + x0
+ (1− ε)k ≥ −4

3
.

Therefore, Γ s1 > − 4
3 in both cases, and the lemma follows.
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A.2 Proof of Lemma 2

The proof is very similar to the proof of Lemma 1 in Section A.1. Using the
same arguments we used to prove the claim in Lemma 1, we can show

Claim. Let α := (1−x)y and fα be the equilibrium flow for the instance (G, l̂, d),

where l̂ satisfies Assumption 2. Then∑
e∈E

fαe l̃e(f
α
e ) ≤ 1

1− (α+ 1)β
S(fopt). (23)

Using the claim we get∑
e∈E

f1e le[f
1
e + (1− x)fopte ] ≤ 1

1− (2− x)β
S(fopt),

where f∗, f1 are the traffic equilibrium flows when the players’ actions are
(x, y∗(x)) and (x, 1) respectively. Eventually we get

y∗(x) ≥ 1− 1

1− (2− x)β

S(fopt)

md
+
S(f∗)

md
(24)

Let ε be any constant 0 < ε < 1. We distinguish two cases:

1. There exists x ∈ [0, 1) such that ε ≤ y∗(x) ≤ 1: In this case,

Γ s1 ≥ Γ1(x, y∗(x))
(9)

≥ −1 + (J − 1)y∗(x)(1− x)

1− β + βy∗(x)(1− x)
≥ −1 + (J − 1)ε(1− x)

1− β + βε(1− x)
> − 1

1− β
,

where the last inequality is due to Assumption 3.
2. For all x ∈ [0, 1) we have 0 ≤ y∗(x) < ε: In this case, if we denote
k := md

S(fopt) , then inequality (24) implies, for all x ∈ [0, 1),

Γ1(x, y∗(x)) = − S(f∗)

S(fopt)
> − 1

1− (2− x)β
+ (1− ε)k. (25)

We can pick x0 ∈
[
β−(1−2β)(1−β)(1−ε)k
β+β(1−β)(1−ε)k , 1

)
, because

β − (1− 2β)(1− β)(1− ε)k
β + β(1− β)(1− ε)k

< 1

due to Assumption 2. Then (25) implies

Γ s1 ≥ Γ1(x, y∗(x)) ≥ − 1

1− (2− x)β
+ (1− ε)k > − 1

1− β
.

Therefore, Γ s1 > − 1
1−β in both cases, and the lemma follows.
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B A concrete example

In this section we give a concrete example of Theorem 1 above. We will slightly
modify the definition of the payoff functions, but this doesn’t change the gist
of the ideas presented. We study the simple network of two nodes connected
by two parallel edges and parameters a1 = 2, a2 = 1, b1 = 1, b2 = 2, i.e., with
latencies l1(f1) = 2f1 + 1, l2(f2) = f2 + 2, where f1, f2 are the portions of total
known flow d = f1 + f2 = 2 on edges e1, e2 respectively. It is easy to see that the
optimal flow is fopt1 = 5

6 , f
opt
2 = 7

6 . In this example we use Γ1(x, y) = −ρ(x, y) as
Player 1’s payoff. In fact, and since C(fopt) is a constant, we will set Γ1(x, y) =
−C(feq) = −

∑
e∈E f

eq
e le(f

eq
e ), to simplify the calculations.

Player 1 informs Player 2 of the existence of extra (not part of d) flow (1−
x)fopte for every edge e. Recall that Player 2 decides to put a fraction y of her
trust on Player 1’s estimate, i.e., Player 2 believes that Player 1’s estimate should
be y(1−x)fopte , and she puts the rest (1−y) fraction of her trust on an arbitrary
estimate she makes (maybe out of her past experiences on the network). For this
example, we model the latter as a quantity βaif

opt
i for edge i, where β is a

random variable uniformly distributed in [0, U ], for some parameter U . Here we
choose U = 2. Therefore the perceived latency for edge ei, i = 1, 2 for Player 2
infinitesimal users is

l̂i(f
eq) := aif

eq
i + bi + (1− x)yaif

opt
i + (1− y)βaif

opt
i .

At equilibrium, the traffic users will experience a common average perceived
latency that isW = E[mine∈E l̂e(f

eq
e )]. Hence we define Player 2’s payoff function

as

Γ2(x, y) = −W = − (x− 1)2y3 + (x− 1)(21− x)y2 + (152− 68x)y − 372

8(7− y)2
+

7

6
xy−31

6
.

Player 1’s payoff is

Γ1(x, y) = −3x2y2 − xy2 + 6y2 + xy − 83y + 290

(7− y)2
.

Since x = 0 is the dominant strategy for Player 1, and y = 0 is Player 2’s best
response to it, it is not hard to see that (x = 0, y = 0) is the unique Nash
equilibrium, and Player 1’s payoff is Γ1(0, 0) = −5.9183. But if Player 1 plays
x = 0.09, Player 2’s best response will be y = 1, and Player 1’s payoff will
be Γ ∗ = Γ1(0.09, 1) = −5.9173 > Γ1(0, 0).6 Theorem 1 implies that Player 1
can (almost) achieve this better payoff in the repeated game by exploiting his
reputation.

6Note that the Stackelberg payoff is Γ s
1 ≥ Γ ∗

1 .
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