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Abstract

A robot is located at a point in the plane. A treasure and an exit, both sta-
tionary, are located at unknown (to the robot) positions both at distance one
from the robot. Starting from its initial position, the robot aims to fetch the
treasure to the exit. At any time the robot can move anywhere on the disk
with constant speed. The robot detects an interesting point (treasure or exit)
only if it passes over the exact location of that point. Given that an adversary
controls the locations of both the treasure and the exit on the perimeter, we are
interested in designing algorithms that minimize the treasure-evacuation time,
i.e. the time it takes for the treasure to be discovered and brought to the exit
by the robot. This seemingly simple treasure evacuation problem turns out to
be surprisingly challenging.

In this paper we differentiate how the robot’s knowledge of the distance be-
tween the two interesting points affects the overall evacuation time. We demon-
strate the difference between knowing only a lower bound of the distance versus
knowing its the exact value, and provide search algorithms for both cases. In
the former case we provide an algorithm which is shown to be optimal. In the
latter case we give an algorithm which is off from the optimal algorithm (that
does not know the locations of the treasure and the exit) by no more than
4
√
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≤ 1.019 multiplicatively, or π
2 −
√
2 ≤ 0.157 additively.
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1. Introduction

Search is concerned with finding an object under various conditions within
a search space. In the context of computational problems this usually becomes
more challenging especially when the environment is unknown to the searcher
(see [1, 3, 28]) and efficient algorithms with respect to search time are sought.
For example, in robotics exploration may be taking place within a given geo-
metric domain by a group of autonomous but communicating robots and the
ultimate goal is to design an algorithm so as to accomplish the requirements of
the search (usually locating a target of unknown a priori position) while at the
same time obeying the computational and geographical constraints. Further,
the task must be accomplished in the minimum possible amount of time [8].

There is extensive research and several models have been proposed and in-
vestigated in the mathematical and theoretical computer science literature with
particular emphasis on probabilistic search [28], game theoretic applications [3],
cops and robbers [9], classical pursuit and evasion [27], search problems as re-
lated to group testing [1], searching a graph [25]. A survey of related search
and pursuit evasion problems can be found in [12], whereby pursuers want to
capture evaders trying to avoid capture. Examples include Cops and Robbers
(where the cops try to capture the robbers by moving along the vertices of a
graph), Lion and Man (a geometric version of cops and robbers where a lion
is to capture a man in either continuous or discrete time), etc. Searching for
a stationary point target has some similarities with the lost at sea problem,
[20, 21], the cow-path problem [6, 7], and with the plane searching problem [5].

In this paper, we study a new problem which involves a robot searching for a
treasure and fetching it to an exit. Both treasure and exit are at distance 1 from
the starting position of the robot (i.e., located on the perimeter of a unit radius
disk) at locations unknown to the robot. The robot can move with maximum
speed 1, starts at the centre of a disk and continues by moving to the perimeter.
The adversary has control over the locations of both the exit and the treasure.
The goal is to provide algorithms that minimize the “search time” for the robot
to find the treasure and bring it to the exit. Surprisingly, finding an optimal
algorithm turns out to be a rather difficult problem even when the robot has
some knowledge on the arc-distance between exit and treasure.

There are several problems in the scientific literature relating to evacuation,
although of very different nature than our problem. For grid polygons, evacu-
ation has been studied in [17] from the perspective of constructing centralized
evacuation plans, resulting in the fastest possible evacuation time from the rec-
tilinear environment. Our problem has similarities to the well-known evacuation
problem on an infinite line (see [4] and the more recent [11]) in that the search
is for an unknown target; an important difference is that, in the basic optimal
zig-zag algorithm presented in [4], the search is on an infinite line which lim-
its the possibilities for the adversary. Additional research and variants on this
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problem can be found in [16] (on searching with turn costs), [24] (randomized
algorithm for the cow-path problem), and [23] (hybrid algorithms).

Our model is relevant to the recent works [10, 14, 15, 13, 26] investigat-
ing algorithms in the wireless and non-wireless (or face-to-face) communication
models for the evacuation of a team of robots. Note that in this case, the
“search domain” is the same and the evacuation problem without a treasure for
a single robot is trivial. Thus, in addition to searching for the two stationary
objects (namely treasure and exit) at unknown locations in the perimeter of a
disk we are also interested in fetching the treasure to the exit. As such, our
treasure evacuation type problem is of much different nature than the series of
evacuation-type problems above, and in fact solutions to our problem require a
novel approach.

Our optimization problem models real-life situations that may arise in surveil-
lance, emergency response, and search-and-rescue operations, e.g. by aerial
drones or other unmanned vehicles. Indeed, consider a rescue-robot that re-
ceives a distress signal indicating that a victim is at an unknown location but at
known distance from a safe shelter. What is the optimal trajectory of the robot
that can locate the victim and fetch it to the shelter? Similar problems are
well studied in the robotics community since the 90’s, e.g. see [22]. Part of our
contribution is that we introduce a theoretical model for this online problem,
for which we provide (additive) competitive analysis.

A search-and-fetch problem similar to ours was introduced by Alpern in [2],
where the underlying domain was discrete and the approach/analysis resembled
that of standard search-type problems [3]. In contrast, the focus of the current
work is to demonstrate how some knowledge of the input may affect optimality
in designing online solutions when there is only one rescue-robot available.

In an independent work, the authors of the current manuscript generalized
the 1-robot treasure evacuation problem into an optimization problem for two
robots [18]. Unlike the current work, [18] studies a distributed problem, where
the focus is the effectiveness of the underlying distributed system as a function
of the communication capabilities between the robots. Nevertheless, our cur-
rent results for the 1-robot problem, and in particular the nearly optimal but
not tight algorithmic solution we provide for one of the problems, give strong
evidence that solving the 2-robot problem of [18] optimally is very difficult.

2. Preliminaries, Notation, and Results of the Paper

We begin with presenting the precise definitions of the treasure evacuation
problem and some basic notation, concepts and necessary definitions.

A treasure and an exit are located at unknown positions on the perimeter
of a unit-disk and at arc distance α (in what follows all distances will be arc-
distances, unless specified otherwise). A robot starts from the center of the disk,
and can move anywhere on the disk at constant speed 1. The robot detects the
treasure or the exit only if its trajectory passes over that point on the disk.
Once detected, the treasure can be carried by the robot at the same speed. Our
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goal is to design algorithms that minimize the evacuation time, i.e. the time it
takes from the moment the robot starts moving, till the treasure is detected and
brought to the exit by the robot. Sometimes we refer to the task of bringing
the treasure to the exit as treasure-evacuation. We also use the abbreviations
T,E for the treasure and the exit, respectively. For convenience, in the sequel
we will refer to the locations of the exit and the treasure as interesting points.
For an interesting point I on the perimeter of the disk, we also write I = E
(I = T ) to indicate that the exit (treasure) lies at point I.

We focus on the following two variants of treasure-evacuation reflecting the
knowledge of the robot with respect to its environment.

Definition 1. In 1-TE=, one robot attempts treasure-evacuation knowing that
the distance between T,E is exactly α. In 1-TE≥, one robot attempts treasure-
evacuation knowing that the distance between T,E is at least α.

2.1. Final Steps of Treasure-Evacuation
The exploration part of any evacuation algorithm concludes with the dis-

covery of an interesting point (i.e., treasure or exit). This leads us to define
the concepts of double and triple move that will prove useful in the subsequent
analysis for the case when the robot knows that the exit and the treasure are
at distance exactly α.

I

I ′

α

I

I ′

I ′′

α

α

Figure 1: The double move (left) and triple move (right) of a robot occur when the first
interesting point to be encountered by the robot is an exit.

If a robot encounters an interesting point at I then the other interesting
point is either at point I ′ or I ′′ (Figure 1, right), both at arc distance α from I.

If the robot has already explored one of these points (say I ′′) without finding
an interesting point there, then the situation reduces to the left of Figure 1. If
this is the robot that will eventually evacuate the treasure, then the worst case
is to find the exit in I and the treasure in I ′; in this case, the robot will perform
a double move, going to I ′, pick up the treasure, and return to I, spending time
equal to twice the chord distance between I and I ′, i.e. 4 sin(α/2). On the other
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hand, if both I ′, I ′′ are still unexplored, the worst case for the algorithm would
be to perform a triple move, i.e., find the exit at I, then visit I ′ without finding
anything there, then visit I ′′ and pick up the treasure, and return to I, always
moving along the shortest underlying chords, inducing time 4 sin(α/2)+2 sin(α).
Once an interesting point is found, we will refer to the above process as the
evacuation step. Clearly, this will involve either a double or a triple move,
depending on whether sufficiently many points on the disk have already been
explored.

2.2. Outline and results of the paper
We study treasure evacuation for a single robot. We contrast how knowledge

affects the evacuation time by considering two models: in the first the robot
knows only a lower bound on the actual arc-distance, while in the second the
robot knows the distance between treasure and exit. When a lower bound α on
the actual arc-distance l is known to the robot (see Section 3) then we give an
optimal treasure evacuation algorithm which takes time 1+2π−α+2 sin(α/2)+
2 sin(l/2). When the robot knows that α is not just a lower bound, but the
actual arc-distance between treasure and exit (i.e., l = α) (see Section 4), then
we propose the arc-partition algorithm which makes the robot alternate between
exploring and hopping arcs and use continuous optimization techniques in order
to show that it is nearly optimal. More specifically, our upper and lower bounds
are off multiplicatively by no more than 4

√
2+3π+2

6
√
2+2π+2

≤ 1.019, when α = π/2,
while for α → 0 or α → π our algorithm is nearly optimal. In Section 5 we
conclude and suggest several extensions and open problems.

3. Knowledge of Lower Bound on Arc Distance: Problem 1-TE≥

In this section we prove tight upper and lower bounds for treasure evacuation
when only a lower bound, say α, on the arc distance between exit and treasure
is known to the robot. Note that for problem 1-TE≥ considered here the special
case α = 0 means that the robot does not know anything about the arc distance
between treasure and exit.

Our “Arc Avoidance” Evacuation Algorithm is given below. As implied by
its name, the algorithm merely avoids exploration of an arc of length α following
the encounter of the first interesting point.

Theorem 2. When the robot is given a lower bound α on the actual arc distance
l between exit and treasure, the evacuation time of Algorithm 1 is at most 1 +
2π−α+2 sin(α/2)+2 sin(l/2) in the worst-case. Further, Algorithm 1 is worst-
case optimal, i.e. no algorithm can attain a better time in the worst case for a
robot to evacuate the treasure.

Proof. (Theorem 2) We prove the upper and lower bounds separately.
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Algorithm 1 Arc Avoidance Evacuation Algorithm

Step 1. Starting at the center of the disk, move to the perimeter and start
exploring Clock-Wise (CW) along the perimeter until the first interesting
point A is found.

Step 2. Move CW along chord AB of length 2 sin(α/2) (see Figure 2).
Step 3. Continue exploring from point B on the perimeter until the second

interesting point is found.
Step 4. Evacuate the treasure.

3.1. Upper Bound
Let x be the time it takes until the robot encounters at A the first interesting

point on the perimeter of the disk. Consider the two cases depicted in Figure 2.

1

d α

A

B

C

x

y

P

1
d

α

A

B

C

x

d
B′

y

P

Figure 2: The two cases of the evacuation Algorithm 1.

Case 1: x > α. This is depicted in Figure 2 (left). The robot makes the move
A → B along the chord. Then it explores again the perimeter. Let y be the
time until it finds the second interesting point at C. It is clear that the worst
total cost (i.e., A = E,C = T ) is

1 + x+ 2 sin(α/2) + y + 2 sin(l/2), (1)

where 2 sin(l/2) is the length of the chord CA connecting the treasure to the
exit. Further, observe that y ≤ 2π − α− x, which implies that x+ y ≤ 2π − α.
Also, for this case we have that x ≥ α and, since y ≤ 2π − α − x, the bound
follows.
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Case 2: x ≤ α.. This is depicted in Figure 2 (right). Let B,B′ be the two
points at arc distance α from A, and y be the time it takes for the robot to find
the second interesting point at C. As before, the evacuation cost is given by
Formula (1). Observe that in this case the robot does not need to traverse the
arc
>
B′AB (by assumption the other interesting point must be at arc distance at

least α) and therefore y ≤ 2π−2α. Also since x ≤ α we also have x+y ≤ 2π−α,
and the bound follows.

3.2. Lower Bound
First we prove the following lemma which will be used in the proof of the

lower bound below.

Lemma 3. If a robot during its exploration of the perimeter has covered length
less than 2π − α then there is a chord of length exactly 2 sin(α/2) neither of
whose endpoints has been explored by the robot.

Proof. (Lemma 3) Let us define d := 2 sin(α/2). Assume on the contrary no
such chord exists. It follows that for any unexplored point A if we draw two
chords AA1 and AA2 each of length d then each point in the arc A1A2 must
have been explored by the robot (see Figure 3).

A

A1 A2

B

C

d d

Figure 3: Proving that there is a chord of length at least d with two unexplored endpoints.

The same observation holds for any unexplored point in either of the arcs
AA1 and AA2. If we consider the leftmost and righmost unexplored points on
the disk on either side of A, say B and C, then the arc BA1A2C is fully explored
and the distance between B and C must be at least d (if |BC| < d then the
explored portion would exceed 2π−α, a contradiction, since the robot does not
have enough time to explore the arc BA1A2C). This proves the lemma.
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We now return to the proof of the main theorem. Consider any algorithm A
solving the evacuation problem for a single robot, an exit and a treasure. Run
the algorithm starting at the centre of the disk. It takes at least one time unit
for the robot to reach the perimeter. The robot starts exploring the perimeter
after this time. Run algorithm A for additional 2π − α − ε time. During this
additional time, the robot can explore a total length of at most 2π − α − ε of
the perimeter.

Take a pair of points delimiting a chord with the properties specified in
Lemma 3. Such a chord has length exactly d = 2 sin(α/2) and has both end-
points unexplored. Clearly, the robot has not yet found neither the exit nor the
treasure. Following the algorithm A the robot will visit one of its endpoints
first; the adversary can place the exit at this first endpoint and the treasure in
the other. Therefore it will take additional time at least 2 sin(l/2) to evacuate
the treasure, and the total evacuation time will be at least 1 + 2π − α − ε +
2 sin(α/2)+2 sin(l/2), for any ε > 0. This completes the proof of Theorem 2.

4. Exact Knowledge of Arc-Distance: Problem 1-TE=

In this section, we separate our analysis into an upper bound accompanied by
a search algorithm and a lower bound using continuous optimization techniques.

4.1. Upper Bound
When a robot knows the exact arc-distance of the interesting points, there

is a naive evacuation protocol, which we call the Sweeping Algorithm: go to an
arbitrary point on the perimeter of the disk, and start traversing clockwise till
an interesting point is found. Then either perform a double or a triple move to
finalize the evacuation. It is not hard to see that in the worst case, this naive
algorithm has cost 1+2π−α+4 sin (α/2). Our goal in this section is to improve
upon this naive approach. To explain the main evacuation algorithm we first
provide a definition.

Definition 4 (Alternating Arcs Partition). An alternating arcs partition
is a partition P of the perimeter of the disk into 2n + 1, n ≥ 0 consecu-
tive and pairwise non-intersecting arcs a1, b1, a2, b2, . . . , an, bn, an+1, such that
bi ≤ α, ∀i. If in addition we have that α ≤ ai, for all 1 ≤ i ≤ n, we call the
partition α-greedy.

Our Algorithm 2 first picks an alternating arc partitioning P, before it follows
through with its steps. In case the partition contains only a1 (i.e., n = 0), the
algorithm performs no “jumps" along chords until the first interesting point is
encountered, i.e. it is exactly the Sweeping Algorithm.

Algorithm 2 succeeds in evacuating the treasure when run on input some
α-greedy partition, so in what follows we consider only such partitions. Correct-
ness is an immediate corollary of the definition of the partition (that depends
on the value of α). Note that the chord-jumps correspond to arcs of size at
most α, hence two interesting points cannot fit in any arc bi. Also, since the
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Algorithm 2 Alternating Arcs, on input partition P

Step 1. Walk to the perimeter, say point P ;
Step 2. Keep moving in CW direction arc-sweeping each ai, and chord-

jumping along the chord of each bi, until the first interesting point is
found.

Step 3. Evacuate the treasure using either a double or a triple move.

sweeping-arcs ai have length at least α, two interesting points cannot be in two
(consecutive) arcs bi, bi+1. It follows that, eventually, a robot following Algo-
rithm 2 will locate an interesting point and will evacuate with either a double
or a triple move.

It remains to define the partition P used by Algorithm 2. The intuition
behind our partition is based on the following greedy rule: perform as many
alternating arc-chord moves as possible so that the worst configuration of inter-
esting points which concludes evacuation with a double-move has total time no
more than the worst configuration of interesting points which concludes evacu-
ation with a triple-move.

Definition 5 (Greedy Partition Pα). For every α > 0, we set

κα :=

⌊
2π − 3α− 2 sin (α)

2α

⌋
, slackα := 2π − (2κα + 3)α− 2 sin (α)

and

γα :=

{
α , if slackα > α
slackα , otherwise , χα :=

{
slackα − α , if slackα > α
0 , otherwise

Then, we define

Pα :=

{
a1, b1, . . . , aκα , bκα , aκα+1, bκα+1, aκα+2 , if κα ≥ 0
2π , otherwise

where ai = bi = α, for i = 1 . . . κα, aκα+1 = α, bκα+1 = γα, and aκα+2 =
2α+ 2 sin (α) + χα.

It is clear that if κα < 0, then the above partition gives rise to the sweeping
algorithm, which happens after the root α0 ≈ 1.43396 of the equation 2π =
3α+ 2 sin (α). It is also clear that Pα is an α-greedy alternating arcs partition.

Next we show that the worst configuration for Algorithm 2 that uses parti-
tion Pα is indeed a double-move.

Lemma 6. The worst case configuration for Algorithm 2 that uses partition
Pα makes the robot perform a double-move. An upper bound for the cost can be
computed by placing the treasure arbitrarily close to the starting point P (from
the opposite direction than the one that the robot starts sweeping) and the exit
at Counter-Clock-Wise (CCW) arc-distance α from it.
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Proof. The statement is true for the sweeping algorithm, since the worst-case
double-move is no less costly than the worst triple-move. So we may focus on
the case χα > 0, in which we do have at least one chord-move.

We observe that after the last chord-jump, the robot is at some point A at
distance 2α+2 sin (α)+χα away from returning to the original point P . Denote
the time that point A is reached by t0. If it is forced to do any double or triple
move after time t0, i.e. after reaching poitn A, that would make the total cost at
least as costly as in any other double or triple move (respectively) configuration
before that.

Next recall that the cost of the double-move alone is 4 sin (α/2), while that
of a triple-move (alone) is 4 sin (α/2)+2 sin (α). The worst-case scenario ending
with a double-move would be to have the treasure close to P and the exit at
distance α from P in a CCW direction; by construction, the robot will have to
sweep an additional arc of length α+ 2 sin (α) + χα − ε before encountering an
interesting point, i.e. before the double-move starts. In contrast, the worst-case
triple-move scenario would be possible only if the robot discovered an interesting
point in distance α− ε after point A.

To conclude, if the robot is forced to do a double-move, the overall perfor-
mance would be t0 + α − ε + 2 sin (α) + 4 sin (α/2) + χα, whereas if the robot
is forced to do a triple-move, the overall performance would be t0 + α − ε +
2 sin (α)+4 sin (α/2). The fact that χα is always non negative shows the claim.
This proves Lemma 6.

Now we can give an upper bound to the performance of our algorithm.

Theorem 7. For every α > 0, the performance of Algorithm 2 that uses parti-
tion Pα is at most

2π − (κα + 2)α+ 2(κα + 3) sin (α/2) , if π > (κα + 2)α+ sinα,

(κα + 2)α+ 2(κα + 2) sin (α/2) + 2 sin

(
2κα + 3

2
α+ sinα

)
+ 2 sinα, o.w.,

where κα =
⌊
2π−3α−2 sin(α)

2α

⌋
.

Proof. By Lemma 6, the worst configuration will place the treasure close to P
and the exit at distance α from P in a CCW direction. Hence, using the α-greedy
partition Pα, the cost of Algorithm 2 is 1 +

∑κα+1
i=1 ai + 2

∑κα+1
i=1 sin (bi/2) +

(aκα+2−α) + 4 sin (α/2). Using Definition 5, we can expand the above formula
with respect to whether κα ≥ 0 and slackα > α or not. Observing that κα ≥ −1
for all α and by simplifying the resulting formula yields the promised expression.
Note that when κα = −1, the above formula indeed induces the cost of the
sweeping algorithm.

4.2. Lower Bound
Next we prove our main lower bound for the problem 1-TE=. In general,

arguments for lower bounds are based on an adversary detecting the input con-
figuration that maximizes the worst-case time of an optimal algorithm (for that
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configuration). We are not able to analyze such an all-powerful adversary (which
would give us the best (i.e., highest) lower bound). Instead, we analyze an ad-
versary that is restricted as follows to place the exit and the treasure only when
the algorithm has left only one completely unexplored pair of points A,B at
distance α, and only at the points A and B, therefore obtaining a weaker lower
bound.

Theorem 8. Any algorithm that solves problem 1-TE= must run for time at
least

1 + π +min

{
4 sin α

2 + 2
(⌈

π
α

⌉
− 1
)
sin π−α

2(d παe−1)
,

π − α
⌊
π
α

⌋
+ 2

(⌊
π
α

⌋
+ 1
)
sin α

2

}
Proof. We restrict the adversary to place the exit and the treasure only when
the algorithm has left only one completely unexplored pair of points A,B at
distance α, and only at the points A and B. Obviously, with such a restricted
adversary and because of the triangle inequality, the optimal algorithm will
follow an alternating arcs partition in a single direction (say CW), starting
at A, ending its exploration phase at B, and leaving the arc AB of length α
completely unexplored; at this point, the adversary will have placed the treasure
at A and the exit at B, forcing a double-move.

Therefore, we have that 1+
∑l
i=1 ai+

∑l−1
i=1 2 sin(bi/2)+4 sin(α/2) is a lower

bound on the evacuation time of an algorithm that chooses an alternating arcs
partition, leaving a single unexplored segment bl, and then performs a double
move. Since 1+4 sin(α/2) doesn’t depend on the lengths of ai, bi, we get a lower
bound for the optimal algorithm by minimizing

∑l
i=1 ai+

∑l−1
i=1 2 sin(bi/2), given

the constraints we have imposed so far. This leads to the following family of
optimization problems (one for each integer l ≥ 1):

minimize
l∑
i=1

ai +

l−1∑
i=1

2 sin(bi/2) (MP)

subject to
l∑
i=1

ai +

l∑
i=1

bi = 2π (2)

bi ≤ α for i = 1, 2, . . . , l (3)
ai, bi ≥ 0 for i = 1, 2, . . . , l (4)

which is equivalent to

minimize −
l∑
i=1

bi + 2

l−1∑
i=1

sin(bi/2) (MP’)

subject to bi ≤ α for i = 1, 2, . . . , l (5)
bi ≥ 0 for i = 1, 2, . . . , l (6)

The overall lower bound we will calculate is the minimum amongst the can-
didate lower bounds calculated for each value of l ≥ 1. Note that for l = 1,
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the bound corresponds to the case of a sweeping algorithm with a1 = 2π − b1.
Given our adversary assumption, we have b1 = α. In this case the candidate
lower bound for the running time is

LA = 1 + 4 sin(α/2) + 2π − α. (7)

We estimate now the candidate lower bounds LB(l) for l ≥ 2 using (MP’). For
brevity reasons, we set x :=

∑l
i=1 ai. Constraint (2) implies that x ≤ 2π − bl.

Also, we have π ≤ x, because of the following claim:

Claim 9.
∑l
i=1 ai ≥

∑l
i=1 bi.

Proof. Moving clockwise, and starting from b1, we can map each point of
b1, b2, . . . to a unique explored point of some ai at distance α clockwise, since
there is only one pair of unexplored points in distance α when the first interesting
point is found (at one of these two points). Therefore, the total length of the
bi’s is mapped one-to-one to the ai’s, and the claim follows.

For the special case x = 2π − bl, we have that bi = 0, i = 1, . . . , l − 1 (from
(2)), and the bound becomes the bound in (7) (since all the ai’s form a sin-
gle contiguous explored segment and then bl = α, according to our adversary
assumption). Therefore we can assume that

π ≤ x < 2π − bl. (8)

We note that
2π − bl − x

l − 1
≤ α⇔ l ≥ 1 +

2π − x− bl
α

, (9)

because, otherwise, 2π > (l− 1)α+ bl + x ≥
∑l
i=1 ai +

∑l
i=1 bi = 2π, a contra-

diction. We distinguish two cases:
CASE 1: 2π−x−bl

l−1 < α
Suppose that an optimal solution of (MP’) has a pair of optimal values

bi <
2π−bl−x
l−1 and bj >

2π−bl−x
l−1 (note that if there is such a bi, there must

be such a bj , and vice versa, due to (2)). Then there is ε > 0 such that
bi + ε < 2π−bl−x

l−1 and bj − ε > 2π−bl−x
l−1 . Notice that

sin

(
bi + ε

2

)
+ sin

(
bj − ε

2

)
< sin

(
bi
2

)
+ sin

(
bj
2

)
,

since the LHS is a monotonically decreasing function of ε, a contradiction since
by setting bi, bj to bi + ε, bj − ε we get a better feasible solution of (MP’) than
the optimal. Hence

bi =
2π − bl − x

l − 1
, i = 1, . . . , l − 1 (10)

and (MP’) is equivalent of solving the following minimization problem

min
π≤x<2π−bl

x+ 2(l − 1) sin
2π − bl − x
2(l − 1)

.
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If we set y := 2π−bl−x
2(l−1) , the latter is equivalent to solving

min
0<y≤ π−bl

2(l−1)

−bl − 2(l − 1)y + 2(l − 1) sin y.

For any value of bl, the optimal solution has to minimize

min
0<y≤ π−bl

2(l−1)

sin y − y

and, therefore, y = π−bl
2(l−1) in the optimal solution. This also implies that x = π.

Hence, the objective function becomes a function of bl:

min
0≤bl≤α

2(l − 1) sin
π − bl
2(l − 1)

Since π−bl
2(l−1) ≤

π
2 , the minimum is achieved for bl = α. Therefore bi = π−α

l−1 , i =

1, . . . , l − 1 (note that π−α
l−1 ≤ α because of (9)). In this case, the lower bound

candidate is

LB(l) = 1 + 4 sin
α

2
+ π + 2(l − 1) sin

π − α
2(l − 1)

. (11)

(11) is increasing in l, and, therefore, the infimum of LB(l) w.r.t. l is (due to
(9) and the condition on l of case 1)

LB
(⌈π
α

⌉)
= 1 + 4 sin

α

2
+ π + 2

(⌈π
α

⌉
− 1
)
sin

π − α
2(
⌈
π
α

⌉
− 1)

(12)

if πα /∈ N, and

LB
(π
α
+ 1
)
= 1 + 4 sin

α

2
+ π +

2π

α
sin

α(π − α)
2π

(13)

if πα ∈ N.
CASE 2: 2π−x−bl

l−1 = α⇔ x = 2π − bl − α(l − 1)
In this case, (5) implies that bi = α, i = 1, . . . , l − 1. Also, (8) implies that

bl ≤ π−α(l− 1). Since bl ≥ 0, this implies that l ≤ 1+ π
α . The candidate lower

bounds (parameterized by l) are

LC(l) = 1 + 4 sin
α

2
+ 2π − bl − α(l − 1) + 2(l − 1) sin

α

2
.

Then, problem (MP’) becomes

min
0≤bl≤min{π−α(l−1),α}

−bl

which is optimized when bl = min{π − α(l − 1), α}. If π − α(l − 1) < α, then
LC is increasing, and the minimum candidate is

LC
(⌈π
α

⌉)
= 1 + π + 2

(⌈π
α

⌉
+ 1
)
sin

α

2
(14)

13



if πα /∈ N, and

LC
(π
α
+ 1
)
= 1 + π +

(
2π

α
+ 4

)
sin

α

2
(15)

if π
α ∈ N. Since (15) is always greater or equal to the bound in (13), we will

consider only the latter. If π − α(l − 1) ≥ α, then we have that 2 ≤ l ≤ π
α , LC

is decreasing, and the minimum candidate is

LC
(⌊π
α

⌋)
= 1 + 2π − α

⌊π
α

⌋
+ 2

(⌊π
α

⌋
+ 1
)
sin

α

2
(16)

which holds only for α ≤ π/2. But (16) is lower than (7) for α ≤ π/2, and
coincides with it for π/2 ≤ α ≤ π. It is also lower than (13) for π

α ∈ N. Hence
we will not be considering (7) and (13) at all.

The lower bound (for π
α /∈ N) will be min{LB(

⌈
π
α

⌉
), LC(

⌈
π
α

⌉
), LC(

⌊
π
α

⌋
)}.

But in this case, note that LB(
⌈
π
α

⌉
) ≤ LC(

⌈
π
α

⌉
) ∀α, so the lower bound will be

min{LB(
⌈
π
α

⌉
), LC(

⌊
π
α

⌋
)}.

5. Qualitative Discussion About Our Results / Conclusions

We introduced a new optimization problem on treasure evacuation with one
robot from a unit disk, where there is limited information about the input. We
studied two variants reflecting knowledge the robot has about its environment
and contrasted how robot knowledge and capabilities affect the search time.

The goal of the current work was to provide nearly optimal algorithms with
respect to worst case analysis. Indeed, in Section 3 we provided an optimal
algorithm for problem 1-TE≥. Problem 1-TE=was studied in Sections 4. The
proposed algorithm is multiplicatively off from the optimal by at most the ratio
between the expression derived in Theorem 7 (upper bound) over the expres-
sion derived in Theorem 8 (lower bound). It is not difficult to see that this
value tends to 1 when α tends to either 0 or π, meaning that our algorithm
is nearly optimal. Also, some tedious calculations show that this ratio is at
most 4

√
2+3π+2

6
√
2+2π+2

≈ 1.01868 (and this value is attained when α = π/2), while the
additive discrepancy is no more than π

2 −
√
2 ≤ 0.157.

In other words, our algorithm is provably off from the optimal by a multi-
plicative factor of at most 1.01868. This is also summarized in Figure 4. There
is a lot of technical involvement for improving the performance of the Sweeping
Algorithm for the problem. Figure 5 summarizes this improvement, while Fig-
ure 6 shows all the upper and lower bounds in the discussion above. Notably,
the improvement we obtain is linear in the radius of the disk when α is bounded
away from 0 or π.

Given that our optimization problem has limited information about the in-
put, it may be seen as an online task. Notably, our algorithms may not be
nearly optimal with respect to competitive analysis. The optimal offline algo-
rithm (knowing the exact locations of treasure and exit) has cost 1+2 sin (a/2).
Comparing this to the performance of our online algorithm for problem 1-TE≥
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gives rise to competitive ratio that is decreasing with α, and ranging from 1+2π,
when α = 0, to 5+π

3 ≈ 2.71386, when α = π. For problem 1-TE=, the induced
competitive ratio exhibits very similar behavior. We leave it as an open prob-
lem as to whether the competitive ratio can be improved. That would be in
addition to sharpening our bounds and to investigating our problem in other
(continuous) geometric or discrete domains.

Figure 4: The left-hand side plot is the ratio between the derived upper and lower bounds for
problem 1-TE=, for all values of α ranging from 0 to π. The right-hand side plot is a close-up
for values of α between π/12 and π/4.

Figure 5: The left-hand side plot is the difference between the naive Sweeping Algorithm and
the derived upper bound for problem 1-TE=, for all values of α ranging from 0 to π. The
right-hand side plot is a close-up for values of α between π/12 and π/4.
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Figure 6: Comparison between the cost of the naive sweeping algorithm (blue curve), the cost
of Algorithm 2 (purple curve) and our lower bound (yellow curve).
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