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Abstract

We consider Persistence, a new online problem concerning optimizing weighted
observations in a stream of data when the observer has limited buffer capacity.
A stream of weighted items arrive one at a time at the entrance of a buffer
with two holding locations. A processor (or observer) can process (observe) an
item at the buffer location it chooses, deriving this way the weight of the ob-
served item as profit. The main constraint is that the processor can only move
synchronously with the item stream. Persistence is the online problem of
scheduling the processor movements through the buffer so that its total derived
value is maximized under this constraint. We study the performance of the
straight-forward heuristic Threshold, i.e., forcing the processor to "follow" an
item through the whole buffer only if its value is above a threshold. We analyze
both the optimal offline and Threshold algorithms in the cases where the input
stream is either a random permutation, or its items are iid valued. We show
that in both cases the competitive ratio achieved by the Threshold algorithm
is at least 2/3 when the only statistical knowledge of the items is the median
of all possible values. We generalize our results by showing that Threshold,
equipped with some minimal statistical advice about the input, achieves com-
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petitive ratios in the whole spectrum between 2/3 and 1, following the variation
of a newly defined density-like measure of the input. This result is a significant
improvement over the case of arbitrary input streams, where we show that no
online algorithm can achieve a competitive ratio better than 1/2.

Keywords: Buffer, Competitive Ratio, Data Stream, Online

1. Introduction

Suppose that the Automated Quality Control (AQC) of an assembly line has
the ability to check all new parts as they enter the assembly line. Every such
check increases our quality confidence by a certain percentage, which depends
on the nature of the part itself. Now, suppose that the AQC is given the option
of a second look at the same part in the next time slot, with a similar increase
in our quality confidence. The downsize of this option, is that when the AQC
returns to the beginning of the assembly line, it will have completely missed the
part immediately following the one that was double-checked. We are looking for
an algorithm to decide whether to take the option or not with every new item.
Obviously, a good strategy would strive to look twice at “low-quality" items,
since that would imply the greatest increases to our confidence, while “missing"
only pristine-looking ones.

This problem falls within the data stream setting: a sequence of input data is
arriving at a very high rate, but the processing unit has limited memory to store
and process the input. Data stream algorithms have been explored extensively
in the computer science literature. Typical algorithms in this area work with
only a few passes (often just one) over the data input and use memory space
less than linear in the input size. Applications can be found in processing cell
phone calls or Internet router data, executing Web searches, etc. (cf. [18, 19]).

In this work we study a new online problem in data stream processing with
limited buffer capacity. An online stream of items (the parts in our AQC exam-
ple) arrives (one item at a time) at a buffer with two locations L0, L1 (assembly
points 1 and 2 respectively in the example above), staying at each location for
one unit of time, in this order. A processor/observer (the AQC) can move be-
tween the two locations synchronously, i.e., its movements happen at the same
time as the items move. This means that if the processor is processing (ob-
serving) the i-th item in time t at L0, moving to L1 will result in processing
again the i-th item at L1 in time t + 1. On the contrary, if the processor is
processing the i-th item in time t at L1, moving to L0 will result in processing
the i+ 2-th item at L0 in time t+ 1; the i+ 1-th item has already moved to L1

and will leave the buffer without the processor ever encountering it! (just like
the AQC totally missed a part). We emphasize that we restrict the processor
to not even know what item it missed (i.e., cannot “see” into a location other
than its current one). Processing the i-th item (either in L0 or L1) produces
an added value or payoff. The processor has very limited (constant in our re-
sults) memory capacity, and cannot keep more than a few variables or pieces of
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data. The problem we address is whether such a primitive processor can have
a strategy to persist and observe (if possible) mostly “good values”, especially
when compared to an optimal algorithm that is aware of the input stream. We
call this online problem Persistence, which to the best of our knowledge is
also new.

1.1. Related Work
There is extensive literature on data stream algorithms. Here the emphasis is

on input data arriving at a very high rate and limited memory to store and pro-
cess the input (thus stressing a tradeoff between communication and computing
infrastructure). A general introduction to data stream algorithms and models
can be found in [18, 19]. Lower bound models for space complexity are elabo-
rated in [3]. In the section on new directions for streaming models, [19] discusses
several alternatives for data streams for permutation streaming of non-repeating
items [1], windowed streaming whereby the most recent past is more important
than the distant past [14], as well as reset model, distributed continuous com-
putation, and synchronized streaming. Applications of data stream algorithms
are explored extensively in the computer science literature and can be found
in sampling (finding quantiles [13], frequent items [17], inverse distribution [7],
and range-sums of items [2]).

Related to our study is the well-known secretary problem which appeared
in the late 1950s and early 1960s (see [9] for a historical overview of its origins
and [10] which discusses several extensions). It is concerned with the optimal
strategy or stopping rule so as to maximize the probability of selecting the best
job applicant assuming that the selection decision can be deferred to the end.
Typically we are concerned with maximizing the probability of selecting the
best job applicant; this can be solved by a maximum selection algorithm which
tracks the running maximum.

The problem has fostered the curiosity of numerous researchers and stud-
ied extensively in probability theory and decision theory. Several variants have
appeared in the scientific literature, including on rank-based selection and car-
dinal payoffs [6], the infinite secretary problem in [12], secretary problem with
uncertain employment in [20], the submodular secretary problem in [5], just to
mention a few.

The “secretary problem” paradigm has important applications in computer
science of which it is worth mentioning the recent work of [4] which studies the
relation of matroids, secretary problems, and online mechanisms, as well as [15]
which is investigating applications of a multiple-choice secretary algorithm to
online auctions. Obviously the secretary problem differs from Persistence in
terms of the objective function: in our case the payoff is the sum of process-
ing payoffs, as opposed to the maximum for the secretary problem. The two
problems also differ in the synchronicity and location of arrivals, i.e., what can
be accessed and how it is accessed. Nevertheless, the two problems share the
inherent difficulty of having to make decisions on the spot while missing parts
of the input altogether. Notably, and as in solutions for various secretary prob-
lems, our algorithms rely on threshold-decision choices. Similar algorithms have
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been observed by congitive scientists to be implemented in practice in human
behaviour [16].

1.2. High Level Summary of our Results & Outline of the Paper:
Our primary focus is the study of the Persistence problem, which we

formally define in Section 2.1. Our goal is to compare the performance of any
primitive (online) algorithm, which is not aware of the input stream, against the
optimal offline algorithm. In Section 2.2 we present all such possible primitive
algorithms that we call Threshold. Subsequently, in Section 2.3 we analyze the
performance of any Threshold online algorithm for deterministic input streams.
Our findings indicate that simplistic primitive algorithms are actually optimal
(among all online solutions), and are off no more than 1/2 the performance of
an optimal (offline) algorithm that is aware of the entire input. Similar to the
setting of the secretary and other online decision problems, this motivates the
study of Persistence problems when the input is random, which is also our
main focus.

Our main contributions are discussed in detail in Section 2.4. At a high level,
we show that when the online observer (processor) knows the median of the
possible random values that can appear in the input stream, then it is possible
to perform observations in such a way that the total payoff is asymptotically at
least 2/3 of the optimal offline solution (Theorem 1). Moreover, we prove that
when the random input streams come from certain natural families of inputs in
which the mass of possible values is concentrated in relatively few heavy items,
the asymptotic performance of very primitive algorithms is nearly optimal. In
fact, we parameterize the performance of online algorithms for such inputs using
a proper density measure, and we show how the relative asymptotic performance
changes from almost optimal (competitive ratio almost 1) to competitive ratio
2/3 (Theorem 3).

The results discussed above are just the byproduct of our main technical
contributions that pertain to an analytic exposition of the performance of op-
timal offline and any online algorithm for random inputs, parameterized by a
proper statistical density-like measure on inputs. The two random models that
we study are input streams that are either random permutations (Section 3) or
input streams whose elements assume independent and identically distributed
values (Section 4). In each case we provide closed formulas for the performance
of the optimal offline algorithm and any online algorithm (Sections 3.1 and
4.1 respectively), which we think is interesting in its own right. Then we use
the closed formulas to derive the promised asymptotic competitive analysis in
Sections 3.2 and 4.2 respectively.

We emphasize that the analysis of a size-2 buffer we provide is technically
involved, and we cannot see how it could be extended to larger buffers without
considerable extra effort. But even for this restricted case, the problem is in-
teresting. Indeed, given our model of algorithms allowed (streaming algorithms
with a constant-size memory that can keep only a few variable values, i.e.,
memoryless), the fact that the simple threshold algorithm achieves non-trivial
improvements is already a rather surprising result.
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2. Preliminaries

2.1. Model & Problem Definition
Assume that n incoming data values v1, v2, . . . , vn−1, vn arrive sequentially

and synchronously from the left one at a time at a processing unit consisting of
two registers L0 and L1 which are capable of storing these values instantaneously
(see also Figure 1). The values pass first through location (register) L0 and then
through location L1, before exiting. A processing unit can process (i.e., derive
some payoff from or contribute some additive value to) an item either in L0

or L1. The value vi derived by processing item i comes from a set of possible
values a0 < a1 < · · · < ak−1, and is independent of the location that processing
happened. The main constraint is that all processing is synchronous, i.e., at
every time unit exactly one new item enters L0 and the processor (observer) is
allowed to either do some processing (observe) at the location it’s already in, or
perform a single move (and then do processing in) to the other location. The
other important constraint is the fact that the processor has only a constant-size
memory (i.e., it has space to hold at most O(1) variables) as well as it is only
aware of the value of the register of its location. In particular, when processor
is located at one register, it is oblivious to the value of the other register. More

vn, vn−1, . . . , v2, v1
L0 L1

Incoming Data Stream Exit

Observer

Figure 1: Incoming values arriving sequentially and synchronously from the left one at a time
and occupying first location L0 and then location L1. An observer (processor) can look at
only one of these two locations at a time. Data is exiting synchronously from the right.

formally, our model is the following:

1. At time step t = 1, the processor (observer) occupies position L0, which
holds value v1.

2. At time step t ≥ 2, the following take place in that order:

• The processor may change the location it is about to process (ob-
serve); at the same time, locations L0, L1 get (new) values vt, vt−1

respectively.

• Processing is done at the location of the processor; the added value
achieved at t is the value of the item in that location.

The next tableau summarizes the total reward of an observer for two consecutive
time steps t, t+1, given that τi denotes the current value in location Li (at time
t), and τ−1 denotes the new value to enter location L0 in the next step (at time
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t+ 1). The columns and the rows correspond to the position of the observer at
time t and t+ 1 respectively.

L0 L1

L0 τ0 + τ−1 τ1 + τ−1

L1 2τ0 τ1 + τ0

(1)

In the online model the observer is not aware of the sequence v1, v2, . . . , vn−1, vn,
rather she may only know some statistical information that requires constant
memory. The limited memory implies a limited ability of keeping statistics
or historical data, and, therefore, there is not much leeway for sophisticated
processing policies. The (possible) movement of the observer can be determined
exclusively by the current value she is observing and in particular not by the
value of the location that the observer is not occupying. As a result, the only
power an online algorithm has is to choose to observe a value twice in two
consecutive time steps, if she thinks that this value provides high enough reward.
In contrast, and in the offline model, the observer is aware of the entire sequence
v1, v2, . . . , vn−1, vn in advance, and may choose to move between registers with
no restrictions so as to maximize her total payoff.

Our main goal is to design Persistence strategies for the observer that
maximize the total added value (or, equivalently, the average or relative added
value or payoff). Our focus is to understand how the lack of information af-
fects the performance of an oblivious online algorithm, compared to the optimal
offline algorithm. The standard performance measurement that we use is the so-
called competitive ratio, defined as the (worst case) ratio between the (expected
- when the input stream is random) payoffs of an online and the optimal offline
algorithm. It is immediate that for any input stream (even random), the com-
petitive ratio of a fixed online algorithm is ALG/OPT < 1, where ALG,OPT
are the (expected) payoff of the online and the optimal offline algorithm, respec-
tively.

2.2. On Persistence Strategies
Given an input stream v1, v2, . . . , vn−1, vn, the optimal solution for the of-

fline model is straightforward; If the processor (observer) is in L0, processing
(observing) an item i with value vi, then it moves to L1 only if the item that
follows i has a value smaller than vi; If the processor is in L1, processing an
item i with value vi, then it moves to L0 only if the item i + 2 that will enter
L0 in the next round has a value vi+2 greater than the value vi+1 of the item
i+ 1 currently in L0. As a result, an offline and optimal observer may choose to
always occupy the location (and subsequently obtain its value as a reward) that
holds the maximum value that currently appears in the two locations L0, L1.
Since at any step, an algorithm cannot have payoff more than the maximum
value of the two registers, we conclude that

Observation 1. For input stream v1, v2, . . . , vn−1, vn, and at each time step
t = 2, . . . , n, the optimal solution of an offline algorithm incurs payoff equal to
max{vt, vt−1}.
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We will invoke Observation 1 later, when we will derive closed formulas for the
performance of the optimal offline algorithm when the values of the input stream
come from certain distributions.

Now we turn our attention to Persistence strategies in the online model.
Recall that any online algorithm is oblivious, non-adaptive and with limited
memory. In particular, when at register L0, an observer has the option to
process the same value for one more time in the next step, or stay put at the
register and watch in the next step the (currently unknown) value which will
enter L0 (see also Tableau (1)). If the observer is at register L1, then the possible
payoff at the next step is unknown independently of the move of the observer.
Hence it is natural to move the observer back to L0, giving her the option (in the
future) to observe favorable values more than once. This primitive idea gives
rise to the following threshold algorithms, which are determined by a choice of
threshold that dictates when a register value will be observed twice in case the
observer is at register L0.

Threshold Algorithm(T )
Input: a sequence of n items with values v1, v2, . . . , vn−1, vn

1. When the processor has finished processing an item of value τ0 at L0 then
1a. if τ0 ≥ T then move to L1

1b. if τ0 < T then stay at L0

2. When the processor has finished processing an item at L1 then move to L0

Our main contribution in subsequent sections is the (competitive) analysis of
Threshold algorithms for various choices of thresholds. In what follows we call
the simplistic algorithm that doesn’t move the processor from L0 (or, equiva-
lently, has a threshold greater than ak−1) Naive.

2.3. General Input Streams
Here we demonstrate that the threshold algorithm cannot achieve a compet-

itive ratio better than 1/2. There are the following cases:

1. ak−1 < T In this case, the processor stays always at L0, and, therefore,
acquires the payoff for each item exactly once, for a total payoff of exactly∑n

i=1 vi. On the other hand, the optimal offline algorithm has the chance
of acquiring the payoff of the largest-value items at most twice (by pro-
cessing them in both processors), for a total payoff of, at most, 2

∑n
i=1 vi.

Hence the competitive ratio is at least 1/2.
2. ak−2 ≤ T < ak−1. In this case, the threshold algorithm always gets the

payoff of an item with value ak−1 twice, and exactly once the values of the
other items it processes in L0 (obviously it misses the items that follow
immediately after the items of value ak−1 processed in both L0 and L1. It
is clear that the optimal offline algorithm does the same. Therefore, the
adversary will minimize this overlap between the threshold and optimal
offline algorithms, by creating a sequence without value-ak−1 items; this
is the same as the previous case, and the competitive ratio is at least 1/2.
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3. T < ak−2 In this case, the adversary creates the sequence of items with
values ak−2, ak−1, ak−2, ak−1, . . .. Then the relative (average) payoff for
the threshold algorithm is ak−2 (the algorithm will always process the ak−2

items twice, missing the more valuable ak−1 items). The offline optimal
algorithm will behave exactly in the opposite way, achieving a relative
payoff ak−1. Hence the competitive ratio is at most ak−2/ak−1, which can
be made to be arbitrarily close to 0.

Therefore, the best threshold is any number greater than ak−1, and the compet-
itive ratio is at least 1/2. An upper bound of almost 1/2 for the ratio is achieved
by the input sequence with values ak−2, ak−1, ak−2, ak−1, . . . and ak−2 � ak−1.

2.4. A Summary of our Results
In its most general version, the input stream to Persistence is chosen by

an unrestricted adversary. It is not difficult to see that the threshold algo-
rithm cannot achieve a competitive ratio better than 1/2. This shows that in
order for the threshold algorithm to perform better, we need to restrict the in-
put instances by making assumptions about the input stream. There are two
assumptions that are common in online problems such as the secretary prob-
lem [10], or resource allocation problems [8]: One is the IID assumption, i.e.,
the value of each new item is drawn independently and uniformly from the set
{a1, a2, . . . , ak−1}. Another is the random order assumption, i.e., the input is a
(uniformly) random permutation of n items, each with its own distinct value.
In what follows, we study the threshold algorithm under these assumptions.

More formally, we study the following two random models of input streams
v1, v2, . . . , vn−1, vn:

• Random Permutations: Input sequence stream is a random permutation
of values a0 ≤ . . . ,≤ an−1.

• Independent and Identically Distributed Values: Each vi assumes the value
aj with probability pj independently at random, where j = 0,≤ k−1 (note
that we allow that n = ω(k)).

For both input families we assume that an online algorithm is oblivious, non-
adaptive and with minimal memory, still we assume it has access in advance to
some limited statistical information in order to determine a proper threshold.
Our main technical contribution pertains to a detailed analysis of the perfor-
mance of both the optimal offline and any Threshold online algorithm for any
such random input. As a result we demonstrate that if the online algorithm
knows the median of the set from which the input stream elements assume
values, then the competitive ratio improves significantly.

Theorem 1. For any random permutation or uniform iid input stream, the
online Threshold algorithm that uses as threshold the median of the values {ai}i
has (asymptotic) competitive ratio 2/3.
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We emphasize that Theorem 1 is the byproduct of analytic and closed formulas
that we derive for optimal offline and Threshold online algorithms, when the
input stream is a random permutation (Section 3) or iid (Section 4), and not
necessarily uniform. Next we ask whether it is possible for certain families of
random inputs to achieve a competitive ratio better than 2/3, and given that the
online algorithm has access to some statistical information. Again, we answer
this in the positive by studying generic families of instances parametrized by
the relative weight of their largest values.

Definition 2 (c-dense input streams). Consider a random input stream (in
either the random permutation or the iid model) whose values are chosen from
A = {a1, . . . , at}, with ai ≤ ai+1. The input stream is called c-dense if c ∈
[0, 1/2] is the smallest value for which

1− c ≤
∑t

i=t−bctc+1 ai∑t
i=1 ai

. (2)

Intuitively, a random input stream is c-dense if the total weight of the largest
bctc many values of A, relative to the total weight of A is approximately 1− c.
Although c cannot be greater than 1/2 by definition, when c is 0 or 1, then
the left hand-side of (2) is 1 and 0 respectively, while the right hand-side is 0
and 1 respectively. At the same time, the two sides have different monotonicity
as c increases, and as such the notion of c-dense input streams is well defined.
Our main contribution pertaining to the families of random inputs which are
asymptotically c-dense, for some c ∈ (0, 1/2], is the following.

Theorem 3. For any random permutation or uniform iid c-dense input stream,
the online Threshold algorithm that uses as threshold the bc · nc largest value of
ai’s has (asymptotic) competitive ratio 1

2
2−c

(1−c)(1+c)2 .

Clearly, when c tends to 0, the performance of our Threshold algorithms is
nearly optimal for c-dense input streams. Most notably, the worst configura-
tion for such an input is when c = 1/2, inducing a competitive ratio equal to
2/3 (and as already predicted by Theorem 1). The proof of Theorem 3 for
random permutations and uniform iid inputs can be found in Sections 3 and 4
respectively.

3. Random Permutation Input Streams

In this section we study the special case of inputs that are a random permu-
tation of n items with distinct values a0 < a1 < · · · < an−1 (with n ≥ 2). First
we find closed formulas for the performance of the optimal offline algorithm and
any Threshold online algorithm for the Persistence problem, and then we
conclude with the competitive analysis.
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3.1. Offline and Online Algorithms for Random Permutations
Using Observation 1 we can show that

Theorem 4. The relative expected payoff (asymptotic payoff per time step) of
the optimal offline algorithm when the input is a random permutation is:

1(
n
2

) n−1∑
i=1

i · ai.

Proof. If Xi is the random variable whose value is the profit of the optimal
algorithm at time i, we need to calculate E

[∑n+1
i=1 Xi

]
=
∑n+1

i=1 E [Xi]. When
calculating the relative expected payoff, the extreme case observations X1, Xn+1

have (asymptotically) 0 contribution. So we may focus on a fixed and arbitrary
time step i and evaluate E [Xi].

At time i, let T0, T1 denote the random variables that are equal to values in
the two windows. For the optimal algorithm, we have that Xi = max{T0, T1}.
Since the input is a random permutation, and for all i 6= j, we observe that

P [T0 = ai & T1 = aj ] =
(n− 2)!

n!
=

1

n(n− 1)
.

Hence, using also Observation 1, we have

E [Xi] =

n−1∑
i=0

∑
j∈{0,1,...,n−1}\{i}

P [T0 = ai & T1 = aj ] max{ai, aj}

=
1

n(n− 1)

n−1∑
i=0

i−1∑
j=0

max{ai, aj}+

n−1∑
i=0

n−1∑
j=i+1

max{ai, aj}


=

1

n(n− 1)

n−1∑
i=0

i−1∑
j=0

ai +

n−1∑
i=0

n−1∑
j=i+1

aj


=

1

n(n− 1)

n−1∑
i=1

2i · ai.

The main technical contribution of this section is the performance analysis
of any Threshold online algorithm.

Theorem 5. Let k = k(n) be such that limn→∞ k
n = c ∈ Θ(1). Let also A−, A+

denote the summation of the smallest n − k and largest k values respectively.
Then the relative expected payoff of the Threshold algorithm (payoff per time
step) when the threshold is T := an−k is:

A−

1 + c
+

2A+

1 + c
.
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The remaining of the section is devoted in proving Theorem 5. We will
need the following random variables: Ai denotes the profit of our algorithm
from value ai, or in other words, the contribution of ai to the performance
of the algorithm. Clearly, if ai ≥ T then Ai ∈ {0, 2ai}, and if ai < T then
Ai ∈ {0, ai}. Vt ∈ {ai}i=0,...,n−1 is the value that appears in position t of
the (random) permutation, where position 1 is the value that will be read first
(t = 1, . . . , n). Finally, Oi is the indicator random variable that equals 1 iff
value ai is observed.

Since all values ai will appear in every permutation, we have that the ex-
pected payoff equals E

[∑n−1
i=0 Ai

]
=
∑n−1

i=0 E [Ai] . The contribution of each ai
clearly depends on whether the value is observed. This motivates the following
lemma.

Lemma 6. For every aj0 ≥ a and for every ai (i 6= j0) we have

E [Oi|Vt = ai & Vt−1 ≥ T ] = 1− E [Oj |Vt = ai & Vt−1 = aj0 ] . (3)

Proof. If ai ≥ T , and for any fixed aj0 , j0 6= i, we have

E [Oi|Vt = ai & Vt−1 ≥ T ]

=
∑

j: aj≥T,j 6=i

P [Vt−1 = aj |Vt = ai & Vt−1 ≥ T ] E [Oi|Vt = ai & Vt−1 = aj ]

=
1

k − 1

∑
j: aj≥T,j 6=i

E [Oi|Vt = ai & Vt−1 = aj ] = E [Oi|Vt = ai & Vt−1 = aj0 ]

where the last equality is due to the fact that the penult expectations are all the
same for all j in the range of the summation. From the description of the thresh-
old algorithm, and given that Vt = ai and Vt−1 = aj ≥ T , we have that Oi = 1
exactly when Oj = 0. Therefore, we see that E [Oi|Vt = ai & Vt−1 ≥ T ] =
1− E [Oj |Vt = ai & Vt−1 = aj0 ] as we promised in (3). The proof for ai < T is
almost identical.

We can now compute the expected value of Oi given that ai has a certain
position in the permutation.

Lemma 7.

E [Oi|Vt = ai] =

{
1− k

n−1f
t−1
n−1,k , if ai < T

f tn,k , if ai ≥ T
(4)

where

f tn,k =
1(

n−1
k−1

) min{t,k}−1∑
s=0

(−1)s
(
n− 1− s
k − 1− s

)
.
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Proof. From the behaviour of the threshold algorithm, it is immediate that
E [Oi|Vt = ai] depends only on whether ai ≥ T or not. First we observe that

E [Oi|Vt = ai] =

(
P [Vt−1 < T |Vt = ai] E [Oi|Vt = ai & Vt−1 < T ]

+ P [Vt−1 ≥ T |Vt = ai] E [Oi|Vt = ai & Vt−1 ≥ T ]

)
(5)

where

P [Vt−1 ≥ T |Vt = ai] =

{ k
n−1 , if ai < T
k−1
n−1 , if ai ≥ T

.

The next observation is that

E [Oi|Vt = ai & Vt−1 < T ] = 1.

Indeed, if Vt−1 = aj < T , then aj is either observed or not. If it is observed,
then this happens only in L0, so the observer will also observe the next coming
value which is ai. If on the other hand aj is not observed, then necessarily the
next coming value is observed. Hence, expression (5) simplifies to

E [Oi|Vt = ai] =

{
1− k

n−1 + k
n−1 E [Oi|Vt = ai & Vt−1 ≥ T ] , if ai < T

1− k−1
n−1 + k−1

n−1 E [Oi|Vt = ai & Vt−1 ≥ T ] , if ai ≥ T
.

(6)
We are now ready to justify (4) examining the two cases.

Case ai ≥ T : For every ai ≥ T , we set

E [Oi|Vt = ai] := f tn,k,

since the value is independent of ai, but it is depended on the number of
available values n, the position t, as well as the number of values k not
less than T . Then we observe that (3) of Lemma 6 can be written as

E [Oi|Vt = ai & Vt−1 ≥ T ] = 1− f t−1
n−1,k−1.

Continuing from (6), we see then that

f tn,k = 1− k − 1

n− 1
f t−1
n−1,k−1.

Given that for all t, k ≥ 1 we have that f tn,k = 1 whenever t = 1 or k = 1
the claim follows.

Case ai < T : Similar to the previous case we write (3) as

E [Oi|Vt = ai & Vt−1 ≥ T ] = 1− f t−1
n−1,k

(note that in this case, and since ai < T we still have k many values at
least T to choose from). Hence, (6) becomes

E [Oi|Vt = ai] = 1− k

n− 1
f t−1
n−1,k,

again as promised.
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It is clear from the previous lemmata that the formulas of the payoff of online
Threshold algorithms involve numerous binomial expressions, which we simplify
in Appendix .1,Appendix .2. Given this quite technical work, we are ready to
prove Theorem 5.

Proof (of Theorem 5).
Let a denote some threshold value, such that n − k many a′is are less than a.
For every i = 0, . . . , n− 1 we have

E [Ai] =

n∑
t=1

P [Vt = ai] E [Ai|Vt = ai] =
1

n

n∑
t=1

E [Ai|Vt = ai] . (7)

Using the random variables Oi that indicate whether ai is observed, we have

E [Ai|Vt = ai] =

{
ai E [Oi|Vt = ai] , if ai < a
2ai E [Oi|Vt = ai] , if ai ≥ a

whose values are given by Lemma 7. Since the Expected payoff is
∑n−1

i=0 E [Ai],
and by (7), we have that

Expected Payoff =

n−k−1∑
i=0

1

n

n∑
t=1

E [Ai|Vt = ai] +

n−1∑
i=n−k

1

n

n∑
t=1

E [Ai|Vt = ai]

=
1

n

(
n∑

t=1

(
1− k

n− 1
f t−1
n−1,k

))
A− +

2

n

(
n∑

t=1

f tn,k

)
A+

=

(
1−

k−1∑
s=0

(−1)s
(
n−1−s
k−1−s

)(
n
k

) )
A− + 2

(
k−1∑
s=0

(−1)s
(

n−s
k−1−s

)(
n

k−1

) )A+.

(From Lemma 11 in Appendix .1)

The last equality follows from binomial manipulations regarding summations of
f tn,k. According to technical Lemma 12 in Appendix Appendix .2, and given
that k

n → c, the theorem follows.

3.2. Competitive Analysis for Random Permutations
We can now prove Theorems 1 and 3 pertaining to random permutations.

Suppose that the Threshold algorithm chooses threshold value T equal to the k̄
largest element of the value ai. Denote by A the sum of all values ai, and by
Lk̄ the sum of the k̄ largest values of them. Abbreviate also k̄/n by c.

Theorem 5 applies with T := an−k̄, to give (asymptotically) that

ALG =
1

1 + c

1

n
A+

c

1 + c

1

k̄
Lk̄. (8)

13



At the same time, Theorem 4 implies that for the optimal offline algorithm we
have that

OPT =
1(
n
2

) n−1∑
i=0

i · ai

≤ 1(
n
2

)
(n− k)

n−k̄−1∑
i=0

ai + n

n−1∑
i=n−k̄

ai


(k∼=cn)

=
2

n
((1− c)A+ cLk̄) . (9)

Proof (of Theorem 1 for Random Permutations).
When the Threshold value is the median, we have that c = 1/2. Using the the
bounds (8) and (9) derived for ALG,OPT , it is straightforward that the two
quantities ALG,OPT are within 2/3 of each other.

Proof (of Theorem 3 for Random Permutations).
When the input is a c-dense stream, the Threshold algorithm can choose k̄
satisfying 1− k̄/n = 1− c ≤ Lk̄/A. But then, using the bounds for ALG,OPT ,
the competitive ratio becomes

ALG

OPT

(8),(9)
≥ 1

2
· 1

1 + c
·

1 + Lk̄

A

(1− c) + cLk̄

A

≥ 1

2
· 2− c

(1− c)(1 + c)2
.

The last inequality is due to that 1− c ≤ Lk̄/A, where c ≤ 1/2.

4. Random iid-Valued Input Streams

In this section we study the special case of inputs streams whose elements
are iid valued. As per the description of the model in Section 2.4, we assume
that the value vi of the i-th input item of the stream is an independent random
variable assuming a value a0 < a1 < · · · < ak−1 (with k ≥ 2) with probability
p0, p1, . . . , pk−1 respectively (i.e., Pr[vi = aj ] = pj).

4.1. Performance of Offline and Online Algorithms for iid-Valued Streams
Using Observation 1, we can compute the asymptotic payoff of the optimal

offline algorithm.

Theorem 8. The relative expected payoff (asymptotic payoff per time step) of
the optimal offline algorithm when the input is a random i.i.d. sequence is

k−1∑
i=0

piai +

k−1∑
i=0

k−1∑
j=i+1

pipj(aj − ai).

14



Proof. A random i.i.d. input realizes into the sequence ai1ai2 . . . ain−1 with
probability

∏n
j=1 pij , where ij ∈ {0, k − 1}, j = 1, . . . , n. By Observation 1, it

follows that the expected profit between time 2 and n equals

k−1∑
in=0

k−1∑
in−1=0

. . .

k−1∑
i1=0

n∏
j=1

pij

n∑
t=2

max{ait , ait−1
}. (10)

We focus at the case t = 2, since it is immediate from the above formula that
calculations will be identical for any t ∈ {2, . . . , n}. The summand of (10)
corresponding to t = 2 equals

k−1∑
in=0

k−1∑
in−1=0

. . .

k−1∑
i1=0

n∏
j=1

pij max{ai2 , ai1}

=

k−1∑
in=0

k−1∑
in−1=0

. . .

k−1∑
i3=0

n∏
j=3

pij

(
k−1∑
i2=0

k−1∑
i1=0

pi1pi2 max{ai2 , ai1}

)

=

k−1∑
i=0

k−1∑
j=0

pipj max{ai, aj}

=

k−1∑
i=0

i∑
j=0

pipj max{ai, aj}+

k−1∑
i=0

k−1∑
j=i+1

pipj max{ai, aj}

=

k−1∑
i=0

i∑
j=0

pipjai +

k−1∑
i=0

k−1∑
j=i+1

pipjaj

=

k−1∑
i=0

k−1∑
j=0

pipjai −
k−1∑
i=0

k−1∑
j=i+1

pipjai +

k−1∑
i=0

k−1∑
j=i+1

pipjaj

=

k−1∑
i=0

piai +

k−1∑
i=0

k−1∑
j=i+1

pipj(aj − ai).

The last formula concludes the theorem.

The remaining of this section is devoted in determining the asymptotics of
any Threshold algorithm.

Theorem 9. The relative expected payoff of the Threshold algorithm (asymp-
totic payoff per time step) that uses threshold T = ar and when the input is a
random i.i.d. is ∑r−1

i=0 piai + 2
∑k−1

i=r piai∑r−1
i=0 pi + 2

∑k−1
i=r pi

.

Proof. We introduce abbreviations Avg :=
∑k−1

i=0 piai and P :=
∑k−1

i=r pj . Let
also Yi be the random variable such that Yi = b indicates that, at time i, the
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observer is at Lb, b ∈ {0, 1}. Let also qi := P [Yi = 0]. By definition, q0 = 1.
Next we observe that

1− qi+1 = P [Yi+1 = 1]

= P [Yi = 0 & Xi ≥ T ]

= P [Xi ≥ T | Yi = 0] P [Yi = 0]

= Pqi.

Next, we find a closed formula for qi.

Lemma 10. The solution to the recurrence 1 − qi+1 = Pqi is given by the
formula

qi =
1− (−1)iP i

1 + P
. (11)

Proof. This recurrence can be solved using generating functions. Indeed, let
us define the function f(x) :=

∑
i≥0 qix

i. If we multiply the recurrence by xi+1

we see that qi+1x
i+1 +Aqix

i+1 = xi+1. Summing all these recurrences for i ≥ 0
we conclude that ∑

i≥0

qi+1x
i+1 +Ax

∑
i≥0

qix
i =

∑
i≥0

xi+1.

This last equation is easily seen to be equivalent to f(x) + Axf(x) = x
1−x . It

follows that
f(x) =

x

(1− x)(1 +Ax)

from which we easily derive that

qi =
1− (−1)iP i

1 + P
,

as wanted.

Next we observe that E [Xi | Yi = 0] = Avg. If we set

Avg+ :=

k−1∑
s=r

asps

we see that

E [Xi | Yi = 1] = E [Xi | Yi−1 = 0 & Xi−1 ≥ T ] =
Avg+

P
.
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We now compute

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi]

=

n∑
i=1

(
P [Yi = 0]E [Xi | Yi = 0] + P [Yi = 1]E [Xi | Yi = 1]

)

=

n∑
i=1

qi ·Avg +

n∑
i=1

(1− qi) ·
Avg+

P

(11)
=

(
n

1 + P
+
P + (−P )n+1

(1 + P )2

)
·Avg +

(
n

1 + P
+

(−P )n − 1

(1 + P )2

)
·Avg+.

Dividing the last quantity by n, and taking the limit n→∞ gives the promised
formula.

4.2. Competitive Analysis for Uniform iid-Valued Input Streams
Note that the formulas derived in Section 4.1 hold for all iid-valued input

streams. In this section we provide competitive analysis for input streams that
are uniformly valued, i.e. when pi = 1

k , for all i = 0, . . . , k − 1. That would be
Theorems 1 and 3 pertaining to uniform iid-valued random input streams.

As before, denote by A the sum of all values ai, and by Lr̄ the sum of the
r̄ largest values of them. Abbreviate also r̄/n by c. Suppose also that the
Threshold algorithm uses as threshold the r̄-th largest value of the ai’s. We use
Theorem 8 to find an upper bound for the performance of the offline algorithm:

OPT =
1

k
A+

1

k2

k−1∑
i=0

k−1∑
j=i+1

(aj − ai)

=
1

k
A+

1

k2

k−1∑
i=0

(2i− k + 1)ai

≤ 1

k
A+

1

k2

(
k−r̄∑
i=0

(2i− k + 1)ai +

k∑
i=k−r̄+1

(2i− k + 1)ai

)

≤ 1

k
A+

k − 2r̄ + 1

k2
(A− Lr̄) +

k + 1

k2
Lr̄

= 2

(
k − r̄ + 1/2

k2
A+

r̄

k2
Lr̄

)
. (12)

Next, using Theorem 9 (which is written for threshold value ar = ak−1−r̄)
we obtain that for the Threshold algorithm

ALG =
1

k
· A+ Lr̄

1 + r̄/k
. (13)
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Proof (of Theorem 1 for Uniform iid-Valued Streams).
When the Threshold value is the median, we have that r̄/k = 1/2. Using bounds
the bounds (12) and (13) established for ALG,OPT , it is straightfoward then
to see that the two quantities are indeed within 2/3 of each other as promised.

Proof (of Theorem 3 for Uniform iid-Valued Streams).
When the input is a c-dense stream, the Threshold algorithm can choose r̄
satisfying 1 − r̄/n = 1 − c ≤ Lr̄/A. Using the bounds derived previously, the
competitive ratio becomes

ALG

OPT

(12),(13)
≥ 1

2
· 1

1 + c
·

1 + Lr̄

A

(1− c+ o(c)) + cLr̄

A

≥ 1

2
· 2− c

(1− c)(1 + c)2
.

The last inequality is due to that 1− c ≤ Lk̄/A, where c ≤ 1/2.

5. Open Problems

As described in the introduction, our model can be extended in many differ-
ent ways. An obvious extension is to have a bigger buffer, i.e., k > 2 locations
L0, L1, . . . , Lk−1. In this case, there are different possibilities of moving the
processor within the buffer: a single jump model would require the processor to
always jump to L0, while a local jump model would allow the processor to move
close to its current location. Another obvious extension would be to consider
general payoffs, i.e., allowing an item to have different values in different buffer
locations. Also, we leave open the potential increase in the power of the proces-
sor if it is allowed to know the item it’s going to miss in L0 (if it moves to L0

from L1 in the next time slot).
The threshold algorithm is probably the simplest algorithm one can use

to tackle Persistence. The obvious question is whether there are better algo-
rithms for the non-oblivious setting. Are there upper bounds that can be shown?
The thresholds we calculated above do not apply in the oblivious setting, since
we do not know the payoffs ahead of time. In that setting, it is natural to con-
sider adaptive algorithms, probably using a prefix of the input in order to ‘learn’
something about it before employing a threshold-like or some other strategy.
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Appendix .1. Combinatorial Identities - Part I
Lemma 11.

(a)

n∑
t=1

f tn,k = n

k−1∑
s=0

(−1)s
(

n−s
k−1−s

)(
n

k−1

)
(b)

n∑
t=1

(
1− k

n− 1
f t−1
n−1,k

)
= n− n

k−1∑
s=0

(−1)s
(
n−1−s
k−1−s

)(
n
k

) .

Proof.

(a)

(
n

k − 1

) n∑
t=1

f tn,k =

n∑
t=1

min{t,k}−1∑
s=0

(−1)s
(
n− 1− s
k − 1− s

)

=

k∑
t=1

t−1∑
s=0

(−1)s
(
n− 1− s
k − 1− s

)
+

n∑
t=k+1

k−1∑
s=0

(−1)s
(
n− 1− s
k − 1− s

)

=

k−1∑
s=0

(−1)s(k − s)
(
n− 1− s
k − 1− s

)
+ (n− k)

k−1∑
s=0

(−1)s
(
n− 1− s
k − 1− s

)

=

k−1∑
s=0

(−1)s(n− s)
(
n− 1− s
k − 1− s

)

= n

k−1∑
s=0

(−1)s
(

n− s
k − 1− s

)
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(b)

n∑
t=1

(
1− k

n− 1
f t−1
n−1,k

)
= n− k

n− 1

n∑
t=1

f t−1
n−1,k

(f0
n,k=0)
= n− k

n− 1

n∑
t=2

f t−1
n−1,k

= n− k

n− 1

n−1∑
t=1

f t−1
n−1,k

(a)
= n− k

k−1∑
s=0

(−1)s
(
n−1−s
k−1−s

)(
n−1
k−1

)
= n− n

k−1∑
s=0

(−1)s
(
n−1−s
k−1−s

)(
n
k

) .

Appendix .2. Combinatorial Identities - Part 2
Lemma 12. For every k = k(n), let limn→∞ k

n = c ∈ Θ(1). Then

lim
n→∞

1(
n

k−1

) k−1∑
s=0

(−1)s
(

n− s
k − 1− s

)
=

1

1 + c
.

Proof. We show that for every ε > 0 (that can be chosen to be arbitrarily
small), such that log ε/ log c is an even integer, we have

1

1 + c
− ε

1 + c
≤ lim

n→∞
1(
n

k−1

) k−1∑
s=0

(−1)s
(

n− s
k − 1− s

)
≤ 1

1 + c
+

√
ε

1− c
. (.1)

Indeed, consider the odd constant r := log ε/ log c− 1. Then we have

lim
n→∞

1(
n

k−1

) k−1∑
s=0

(−1)s
(

n− s
k − 1− s

)

= lim
n→∞

1(
n

k−1

) r∑
s=0

(−1)s
(

n− s
k − 1− s

)
︸ ︷︷ ︸

A(n)

+ lim
n→∞

1(
n

k−1

) k−1∑
s=r+1

(−1)s
(

n− s
k − 1− s

)
︸ ︷︷ ︸

B(n)

.
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Since A(n) is a finite sum we have

lim
n→∞

A(n) =

r∑
s=0

(−1)s

(
lim
n→∞

1(
n

k−1

)( n− s
k − 1− s

))

=

r∑
s=0

(−1)scs

=
1 + (−1)rcr+1

1 + c

=
1− ε
1 + c

. (.2)

Now, without loss of generality assume that k is even (otherwise the last
summand is positive and our bound below is still valid). We observe that

B(n) =

k−1∑
s=r+1

(−1)s
(

n−s
k−1−s

)(
n

k−1

)
=

(k−2)/2∑
s=(r+1)/2

((
n−s

k−1−s
)(

n
k−1

) − (n−s−1
k−2−s

)(
n

k−1

) )

=

(
1− k + 1

n

) (k−2)/2∑
s=(r+1)/2

s+1∏
j=0

k − 1− j
n− 1− j

.

It is easy to see that k−1−j
n−1−j are decreasing with j, and since each term is positive,

we have

0 < B(n) <

(
1− k + 1

n

) (k−2)/2∑
s=(r+1)/2

(
k − 1

n− 1

)s+2

. (.3)

The non-negativity of limn→∞B(n), together with (.2), imply the lower bound
of (.1). As for the upper bound, we introduce the shorthand q := (k−1)/(n−1),
and we see that (.3), after we compute the sum in the right-hand side, implies
that

B(n) <
q2

1− q

(
q(r+1)/2 − qk/2

)
<
q(r+5)/2

1− q
.

Therefore

lim
n→∞

B(n) <

(
limn→∞ k−1

n−1

)(r+5)/2

1− limn→∞ k−1
n−1

=
c(r+5)/2

1− c
=
c2
√
ε

1− c
.

Combining the above, and given that c ≤ 1, we conclude that (.1) holds.
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