
Single-item lot-sizing with quantity discount and bounded inventory

Douglas G. Downa, George Karakostasa,∗, Stavros G. Kolliopoulosb, Somayye Rostamia

aDepartment of Computing and Software, McMaster University, Hamilton ON, Canada
bDepartment of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece

Abstract

In this paper, an efficient O(n2) algorithm is proposed to solve a special case of single-item lot-sizing problems (SILSP)
in which both the production and holding costs are piecewise linear, there is an all-unit discount with one breakpoint
for the production cost, and the inventory is bounded. The algorithm is based on a key structural property that may
be of more general interest, that of a just-in-time ordering policy. Finally, we show that when the problem is extended
to two items, it is NP-complete.

Keywords: lot-sizing, quantity discount, bounded inventory

1. Introduction

Lot-sizing problems have seen continued research inter-
est for the past six decades. Our focus is on single-item lot-
sizing problems (SILSP), for which an extensive survey is
provided in [1]. In the basic SILSP, there is a time-varying,
but known in advance, demand for a single product over a
time horizon of n periods. One wishes to determine the pe-
riods in which production (or purchase) of the product will
take place, and the quantities that will be produced. The
cost function is the summation of production and hold-
ing costs, where the production cost may include a fixed
setup-cost component. The goal is to find a sequence of
orders that satisfies the demands and minimizes the total
cost. Several variations of the main problem can be de-
fined, by including constraints such as production capaci-
ties, bounded inventory, stochastic demands, backlogging,
and lost sales [1]. A typical assumption in the literature is
that the cost function is piecewise concave, which provides
the flexibility to model scenarios such as discounts, mini-
mum quantity requirements, and capacities [2]. A function
with m breakpoints is piecewise concave if it is concave
over each interval between two adjacent breakpoints. The
case of capacitated production or bounded inventory can
be modelled by adding a breakpoint to the production or
holding cost function, and defining an infinite cost for the
last interval [4].

In this paper, we study the very basic scenario where
in every period one can buy the item at two price lev-
els: expensively or cheaply depending on the quantity of
units purchased. Demands have to be satisfied on time,

∗Corresponding author
Email addresses: downd@mcmaster.ca (Douglas G. Down),

karakos@mcmaster.ca (George Karakostas), sgk@di.uoa.gr
(Stavros G. Kolliopoulos), rostas1@mcmaster.ca (Somayye
Rostami)

without backlogging, and there are no order capacities, or
set-up costs. In order to anticipate future demand, one
may stock units bought cheaply, but this is curbed in two
ways: hoarding incurs a holding cost and is limited by the
hard constraint of a bound on the size of the inventory.
In SILSP terminology, this is an all-unit discount pricing
scheme with one breakpoint for the production cost and
bounded inventory. All-unit means that the discount is
applied to the entire volume of a purchase if this volume
falls within a specified range. In our case, the range is
any quantity at least equal to the single production break-
point Q. To our knowledge this basic setting has not been
considered separately in the literature. We show that an
optimal solution can be found in polynomial time, and
how exploiting a just-in-time ordering policy achieves sig-
nificant running-time improvements. We assume that the
production cost is a piecewise linear (and, hence, concave)
function with two segments. The holding cost function is
linear.

Solutions for SILSP problems are typically found using
dynamic programming. There are several results in the lit-
erature, based on characterizations of the structure of an
optimal solution that can be leveraged to develop efficient
algorithms [3],[5],[6]. A seminal work of this nature (and
for lot sizing in general) is [3]. They consider a problem
with fixed unit production cost (the final inventory value
is zero and only the setup cost changes) and linear holding
cost, for which they derive an algorithm with time com-
plexity O(n2). In [6], constraints on the production and
inventory quantities are studied. For the case of bounded
inventory and concave cost function, they propose an algo-
rithm with complexity O(n3). In [7], an O(mn3) algorithm
is presented for the problem with capacitated production
and piecewise linear cost functions with an average of m
breakpoints in each time period. In [8], an O(nm+2 log n)
algorithm is constructed for the uncapacitated version of

Preprint submitted to Elsevier November 8, 2021

the problem in [7]. In [4], a model with an all-unit dis-
count with one breakpoint and capacitated production is
studied. The complexity of their algorithm is O(n4). In
[9], a cost function with one breakpoint is considered and
algorithms for the cases of all-unit and incremental dis-
count with complexity of O(n2) and O(n3) respectively,
are constructed. The production and holding costs con-
sidered in [10] are linear for the case of capacitated pro-
duction. They study the NP-completeness of the problem
based on five cases of general, nonincreasing, nondecreas-
ing, constant and zero-value functions for the setup, pro-
duction and holding costs, and production capacity. An
O(n3) algorithm is constructed in [11] for the case of con-
cave production cost and linear holding cost with constant
capacities. An O(n2) algorithm is presented in [12] and
fixed by [13] for the case of linear costs with a lower and
upper-bounded inventory. A fully polynomial approxima-
tion scheme is proposed in [14] for an NP-hard case of
SILSP. A more efficient approximation algorithm is pro-
posed in [15]. In [16] a fixed cost and variable cost per
unit for a change in the inventory size at each time period
are also considered.

Our proposed problem is a special case of the general
problem with piecewise concave production and holding
costs defined by Swoveland in [5]. Swoveland showed that
there is an optimal solution which is a sequence of time
intervals with starting and ending inventories either 0 or
equal to the inventory bound, such that within each inter-
val there is at most one order not equal to a production
breakpoint level. In [5] the author used this to propose a
pseudo-polynomial algorithm for capacitated production,
bounded inventory and piecewise concave production and
holding costs, which also works for our problem. In order
to reduce the running time to polynomial, we essentially
prove in Section 3 that there is an optimal solution which
is a sequence of regeneration intervals with 0 starting and
ending inventories, each comprised by at most two inter-
vals of the type defined in [5]. In fact the structure of our
regeneration interval is more specific than that, cf. Lem-
mas 1-3 for the exact description. We use this property to
design in Section 4 an efficient O(n2) Dynamic Program-
ming (DP) algorithm for the case of bounded inventory,
piecewise linear production cost function with one break-
point, and linear holding cost. We show that by adopting
a just-in-time policy. Finally, we show in Section 5 that
when the problem is extended to two items with separate
budgets, it becomes NP-complete.

2. Problem definition

A buyer has to order a number of units of a prod-
uct, in order to satisfy n consecutive demand requests
d1, d2, . . . , dn. At time period t, the buyer orders xt units,
so that, together with the remaining inventory It−1 at the
end of time t−1, demand dt is satisfied, i.e., xt+It−1 ≥ dt.
The new remaining inventory is It = xt + It−1 − dt. Ini-
tially, the available inventory of the product is I0. The

buyer has an inventory capacity B(t) at time t, which can-
not be exceeded at any time, i.e., It ≤ B(t), t = 1, . . . , n.

The product pricing is as follows: Given threshold Q, if
xt < Q then the buyer pays a price p1(t) per unit, other-
wise the buyer pays a price p2(t) per unit, where p1(t) ≥
p2(t). We assume that unit prices are non-increasing as a
function of time, i.e., p1(t) ≥ p1(t′), p2(t) ≥ p2(t′), t < t′.
There is also a holding cost h(t) per inventory unit for
time t. Given Q, I0, and p1(t), p2(t), B(t), dt, h(t), t =
1, 2, . . . , n, we would like to compute orders xt, t =
1, 2, . . . , n that respect the inventory capacity constraint,
and minimize the buyer’s total cost.

In what follows, an expensive order at time t is an order
priced at p1(t), and a cheap order is an order priced at

p2(t). For i ≤ j, di,j denotes
∑j

k=i dk.

3. Structural properties of an optimal solution

Let OPT be an optimal solution. In this section we show
that there is an optimal solution of a special structure,
which will allow its fast computation. Similarly to [2], we
define a regeneration interval (i, j) of OPT (with i ≤ j) to
be a sequence of consecutive time periods [i, i + 1, . . . , j]
with inventories Ik > 0 for all i ≤ k ≤ j−1, and Ii−1 = 0 or
i = 1, and Ij = 0 or j = n. In other words, a regeneration
interval is the time between two times i and j which starts
and ends with 0 inventory (except for the interval with
i = 1, or j = n), and maintains a non-zero inventory
everywhere in between. Note that if Ik > 0, ∀1 ≤ k < n,
then there is only one interval (1, n).

Starting from OPT , we derive an optimal solution with
the following structural properties:

Lemma 1. There is an optimal solution where, for any
regeneration interval (i, j), an expensive order can only
occur at time j. If xj is expensive, then xj = dj − Ij−1.

Proof: Let (i, j) be an interval of OPT with an expensive
order xk at time i ≤ k < j. Since there are leftover inven-
tories Ik > 0, Ik+1 > 0, . . . , Ij−1 > 0, we can reduce order
xk by 1, reduce all these inventories by 1, and increase
order xj by 1, without harming the cost or the feasibility
of OPT (xk was already an expensive order below Q, xj is
increased, prices are non-increasing, and the intermediate
inventories are reduced, thus not increasing the holding
costs). We continue this process of reducing xk by 1, until
either xk = 0 or Il = 0 for some k ≤ l < j. In the second
case, interval (i, j) is now split into two or more smaller
intervals, and we can repeat the process with the new set
of intervals, until we obtain the optimal solution claimed
by the lemma.

If xj is expensive, then if j < n, by the definition of an
interval, we have Ij = xj + Ij−1 − dj = 0; if j = n, then
OPT uses the available inventory In−1 and if dn > In−1
orders an additional xn = dn−In−1 or Q units (whichever
is cheaper). 2

2

Lemma 2. There is an optimal solution satisfying the
property of Lemma 1, which satisfies the following: For
any regeneration interval (i, j), let k be the total number
of cheap orders occurring in it. Then the first k−1 orders
are for exactly Q units, and the k-th order is for at least
Q units.

Proof: Let OPT be an optimal solution satisfying the
property of Lemma 1, and let (i, j) be any of its intervals.

Lemma 1 implies that the only expensive order can oc-
cur at time j, so the previous k orders are all cheap.
Let xl1 , xl2 , . . . , xlk be these orders lk ≤ j, occurring at
times l1, l2, . . . , lk, respectively. Let lm < lk be the last
of these times before the last, for which xlm > Q (i.e.,
xlm+1

= · · · = xlk−1
= Q). Then, since Ilm > 0, Ilm+1 >

0, . . . , Ilk−1 > 0, we can reduce xlm by 1 without changing
its pricing, reduce inventories Ilm , Ilm+1, . . . , Ilk−1 by 1,
and increase xlk by 1, without violating the feasibility of
the solution or increasing its cost (both xlm and xlk remain
cheap, the prices are non-increasing, and the holding cost
is always non-increasing when postponing orders for later).
We continue repeating this process, until either xlm = Q,
or at least one of the inventories Ilm , Ilm+1, . . . , Ilk−1 be-
comes 0. In the first case, we repeat this process, but
now concentrating on a cheap order bigger than Q that is
earlier than lm; in the second case, interval (i, j) is split
into two or more (smaller) intervals, and we can repeat the
process with the new set of intervals. 2

In order to show that there is an optimal solution mak-
ing cheap orders just-in-time, we will need the following
definition.

Definition 1. Let (i, j) be a regeneration interval of an
optimal solution adhering to the structure of Lemma 2,
with its last cheap order at time i ≤ t < j. A feasible time
t′ is any time t < t′ ≤ j where a cheap just-in-time order
can be placed, without increasing Ij, and without violating
inventory bounds, after setting xt := Q. More specifically,
given inventory It−1 and xt := Q, let t < k ≤ j be the
time when both

It−1 +Q ≥ dt,k−1 and It−1 +Q < dt,k

hold. Then, if a cheap order can be placed at k without
increasing Ij, and all inventory bounds B(l), k ≤ l ≤ j,
are respected, we set t′ := k.

Note that in Definition 1, it may be the case that the
latest possible time k one can afford to wait until forced
to place a cheap order just-in-time, may not be a feasible
time, e.g., if Q − dk > B(k) and, therefore, there is not
enough inventory space to accommodate a cheap order at
k. If this is the case, then placing a cheap order for Q units
earlier than k will still violate the inventory constraint at
k, i.e., if k cannot be a feasible time, no time t < t′ < k
can be a feasible time.

Lemma 3. There is an optimal solution satisfying the
properties of Lemmas 1 and 2, which, for any regenera-
tion interval (i, j), also satisfies the following: If there are
cheap orders, then every cheap order occurs at the furthest
possible time from the previous one (or from time i, for
the first cheap order); also, for j < n, there is no feasible
time for a new cheap order between the last cheap order
and j.

Proof: Let OPT be an optimal solution complying with
Lemmas 1 and 2.

First we prove the lemma for intervals (i, j) with i > 1.
For simplicity, we assume that di > 0. Since Ii−1 = 0,
xi > 0 in OPT . If this order is the expensive one, or
the only cheap one, then there is nothing more to prove.
Otherwise, since there is more than one cheap order, so
xi = Q (Lemma 2). Let k > i be the latest time when there
must be a cheap order, otherwise some demands will not
be satisfiable, i.e., k is the latest possible time in the sense
of Definition 1 (since there is more than one cheap order, k
is well-defined). If there are no other cheap orders by OPT
in the times between i and k, then notice that OPT has
to order cheaply at k, and we repeat our arguments here
with k playing the role of i. Otherwise, let xl1 = xl2 =
. . . = xlm ≥ Q be these cheap orders with i < l1 < . . . <
lm < k. Then we can place all these orders (together with
any preexisting order xk > 0 in OPT) cheaply at time
k, since the inventory Ik−1 is now reduced by

∑m
g=1 xlg ,

and the other intermediate inventories can only decrease.
By the definition of k, no demand is left uncovered by
this transfer of orders. If after the transfer inventory It
drops to zero for some i < t ≤ k − 1 we split (i, j) into
smaller regeneration intervals, like in Lemma 1. Moreover,
similarly to the previous lemma the cost does not increase.
By this process, we get another optimal solution OPT ′,
with its first two cheap orders at times i, k, with xi = Q
and xk ≥ Q, and which can be brought into the format
of Lemma 2. Then we repeat the argument above (with k
now playing the role of i) repeatedly, until we obtain an
optimal solution satisfying the property of the lemma.

For the first interval (1, j), we can define time k exactly
as before, while it may be the case x1 = 0 in OPT (OPT
uses the initial inventory I0 to satisfy the initial demands).
Then the argument proceeds exactly as before.

For the second property, assume that (i, j) (with j < n)
is a regeneration interval of an optimal solution that satis-
fies the first property of the lemma. Note that if there is a
feasible time t′ after the last cheap order xt at time t < t′,
then we can set x′t := Q and x′t′ := xt−Q, without increas-
ing the cost of the solution; this is because x′t′ is cheap (by
the feasibility of t′), and the inventories It, It+1, . . . , It′−1
can only decrease, ensuring that holding costs do not in-
crease. If there is more than one feasible time, let t′ be
the feasible time furthest from t. Then the new optimal
solution also satisfies the first property of the lemma. As
before, if the new inventory I ′l = 0 for some t ≤ l ≤ t′ − 1,
then we split (i, j) into two new intervals (i, l), (l + 1, j)

3

and repeat the process with the new set of intervals. Oth-
erwise, we can repeat this process until there is no feasible
time after the last cheap order in our final optimal solu-
tion. 2

4. A Dynamic Programming algorithm

We use the properties of Lemmas 1-3 to compute an
optimal solution, using Dynamic Programming (DP). Let
OPT (i) be the optimal cost for interval (i, n). Then

OPT (i) ={
mini≤k≤n{cost(i, k) +OPT (k + 1)}, i ≤ n
0, i = n+ 1

(1)

where cost(i, j) is the minimum feasible cost in a regener-
ation interval (i, j).

The crucial idea for the algorithm is to notice that
the cheap orders at level exactly Q made to achieve
cost(i, j) remain valid for the sequence of orders that
achieve cost(i, j+1), due to Lemma 3. This means that the
addition of dj affects only the last cheap order of cost(i, j)
in two possible ways: (i) either it also remains the last
cheap order for cost(i, j), but with a different number of
units (and with a potential corresponding expensive or-
der xj+1), or (ii) there are new feasible time(s) created,
so it breaks into one or more Q just-in-time cheap orders,
according again to Lemma 3.

In what follows, we denote by x(i,j)(t) the order placed
at time t for the solution that achieves cost(i, j). A se-
quence of orders is feasible for (i, j) if it respects the in-
ventory bounds, Ij = 0 and Ik > 0, i ≤ k ≤ j − 1, and
moreover complies with Lemma 3.

Preprocessing: The algorithm starts by calculating
the following quantities:

• di,j =
∑j

k=i dk, hi,j =
∑j

k=i h(k), and H(i, j) =∑j
k=i h(k)di,k for all 1 ≤ i ≤ j ≤ n. These quan-

tities are needed in calculations performed by the al-
gorithm, and they are done in O(n2) time.

• For all 1 ≤ i ≤ j ≤ n, let A(i, j) be the maximum
order size at time i, that does not violate any inven-
tory bounds B(l), i ≤ l ≤ j when we assume that
Ii−1 = 0 and no other orders happen between i + 1
and j (inclusive). Then

A(i, i) = B(i) + di

A(i, j + 1) =

{
A(i, j), if A(i, j)− di,j+1 ≤ B(j + 1)
di,j+1 +B(j + 1), otherwise.

Note that if there is inventory Ii−1 > 0 coming into
i, the value A(i, j) − Ii−1 gives an upper bound for
order xi, which ensures that xi will not violate any
inventory bounds in time interval (i, j). All values
A(i, j) can be calculated in total O(n2) time.

• For every i, the algorithm calculates a sequence T i =
{t1, t2, . . . , tl} of potential just-in-time order times,
as well as inventory values Ît1−1, Ît2−1, . . . , Îtl−1 as
follows: The initial condition is that t1 = i and
Ît1−1 = 0. If xi = Q is infeasible, the sequence
T i is empty. To calculate ts, s ≥ 2 given inven-
tory Îts−1−1, we set xts−1

:= Q and scan times
ts−1 + 1, ts−1 + 2, . . . until we reach the furthest time
ts when a cheap order can be placed with no de-
mand being unsatisfied, and no inventory bound vi-
olated. The former can be checked by checking that
Q+Îts−1−1 ≥ dts−1,f , and the latter can be checked by

checking that Q ≤ A(ts−1, f) − Îts−1−1, for all times
f = ts−1 + 1, ts−1 + 2, . . . we scan. If there can be
no cheap order at ts, then ts−1 is the last element of
sequence T i. Otherwise, we also calculate inventory
value Îts−1 = Îts−1−1+Q−dts−1,ts−1, and continue to
discover the next sequence element ts+1. Clearly se-
quence T i and values Î can be calculated in O(n− i)
time, or O(n2) for all i. Inventory values Î will be
used in the calculation of functions f1, f2 below. In
what follows i is fixed so we use T in place of T i.
Remark: The sequence T i is the sequence of possible
cheap order times that is promised by Lemma 3, i.e.,
for period (i, j + 1) all cheap orders happen at times
that are a prefix of T i, all of them except possibly the
last are exactly Q, and there is potentially one more
order at j + 1.

• For each s’th element of sequence
T i, we calculate cost Ci(ts) =∑s−1

w=1

(
Qp2(tw) +

∑tw+1−1
k=tw

h(k)(Îtw−1 +Q− dtw,k)
)

.

This is the ordering and holding cost incurred in
time period (t1, ts − 1) when all orders at times
t1, t2, . . . , ts−1 ∈ T i are exactly Q.

In the special case of i = j with no capability of plac-

ing a cheap order at time i (di < Q), we set x
(i,i)
i = di,

cost(i, i) = p1(i)·di, and cost(i, i+k) =∞, ∀1 ≤ k ≤ n−i;
otherwise we set x

(i,i)
i = di, cost(i, i) = p2(i) · di.

Assuming that cost(i, j) 6= ∞ has been calculated,
cost(i, j + 1) is calculated as follows: Let ts−1, ts ∈ T
be the last two times in T before j + 1 in (i, j + 1) (since
t1 = i, there is always at least one such time; if there is
only t1, then what follows is adjusted accordingly). There
are orders of exactly Q units up to time ts−2, and there are
two possibilities for ordering after ts−2: (i) Set xts−1 := Q
and order at ts and at j + 1, or (ii) order at ts−1 and
at j + 1. We can calculate (in constant time) the opti-

mal orders x
(i,j+1)
ts , x

(i,j+1)
j+1 and cost for (i) as follows (the

calculation for (ii) is exactly the same):

4

We define the following functions

f1(xts , xj+1) =

= p2(ts)xts +p1(j+ 1)xj+1 +

j∑
k=ts

h(k)(Îts−1 +xts −dts,k)

= (p2(ts)+hts,j)xts+p1(j+1)xj+1+Îts−1hts,j−H(ts, j)
(2)

and

f2(xts , xj+1) =

= p2(ts)xts +p2(j+ 1)xj+1 +

j∑
k=ts

h(k)(Îts−1 +xts −dts,k)

= (p2(ts)+hts,j)xts+p2(j+1)xj+1+Îts−1hts,j−H(ts, j).
(3)

Given orders xts and xj+1, the functions f1, f2 give the
cost incurred when xts is cheap and xj+1 is cheap or ex-
pensive, respectively. Note that these functions can be
computed in O(1) time, since values hts,j , H(ts, j), and

Îts−1 have been precomputed.
We solve the following two linear integer programs:

c1 = min f1(xts , xj+1) + h(j + 1)Ij+1 + Ci(ts) s.t.

xts + Îts−1 − dts,j ≥ 1

xts + Îts−1 + xj+1 − Ij+1 = dts,j+1

Ij+1

{
= 0, if j ≤ n− 2
≤ B(j + 1), if j = n− 1

xts ≤ A(ts, j)− Îts−1
xts ≥ Q

0 ≤ xj+1 ≤ Q− 1

and

c2 = min f2(xts , xj+1) + h(j + 1)Ij+1 + Ci(ts) s.t.

xts + Îts−1 − dts,j ≥ 1

xts + Îts−1 + xj+1 − Ij+1 = dts,j+1

Ij+1

{
= 0, if j ≤ n− 2
≤ B(j + 1), if j = n− 1

xts ≤ A(ts, j)− Îts−1
xts = Q

xj+1 ≥ Q

The objective is the cost f1 or f2, plus the holding cost
for time j + 1 and the costs incurred before ts. The first
constraint ensures that xts satisfies all demands until time
j+1 while always leaving an inventory (otherwise this can-
not be a feasible regeneration period), the second that the
order values as well as inventory Ij+1 are consistent and
satisfy all demands, and the remaining constraints ensure
that the final inventory and the order values satisfy their

inventory restrictions, as well as the cheap/expensive def-
initions. Note that both integer programs have variables
xts , xj+1, Ij+1, and can be solved in O(1) time. If c1 is
infeasible, then we set c1 = ∞, and the same for c2. Let
cost1 = min{c1, c2}.

We repeat the same process for x
(i,j+1)
ts−1

and x
(i,j+1)
j+1 , and

let cost2 = min{c′1, c′2}, where c′1, c′2 are the analogues of
c1 and c2. If cost1 < cost2, then we return the calculated

x
(i,j+1)
ts , x

(i,j+1)
j+1 , and cost(i, j + 1) = cost1. Otherwise,

if cost2 = ∞ return cost(i, j + 1) = ∞, else return the

calculated x
(i,j+1)
ts−1

, x
(i,j+1)
j+1 , and cost(i, j + 1) = cost2.

Correctness: We show the following

Theorem 1. The DP algorithm above computes an opti-
mal solution.

Proof: To prove that the algorithm is correct, it is enough
to prove that it produces an optimal solution of the struc-
ture guaranteed by Lemma 3, i.e., it is enough to show
that the cost(i, j + 1) calculated for regeneration period
(i, j + 1) (and has the structure of Lemma 3) is optimal.

Lemma 3 implies that all cheap orders (except possibly
xj+1) in (i, j+1) are done on the times of sequence T i, by
the definition of the latter as the just-in-time sequence of
potential cheap order times. Let ts−2, ts−1, ts be the last
members of T i before j+ 1. We observe that, in (i, j+ 1),
the cheap orders up to time ts−2 ∈ T i (inclusive) are orders
of exactly Q units. This is due to the fact that if ts−2 were
the last cheap order time for (i, j+ 1), then xts−2

≥ 2Q to
cover dts−2,ts , since orders of size Q had to be placed at
ts−2, ts−1 to cover these demands by just-in-time sequence
T i. As a result, we can set xts−2

:= Q and move the rest of
the units to a cheap order at ts−1, without increasing the
cost. Hence, it is enough for the algorithm to check the
pairs of times ts−1, j + 1 and ts, j + 1 for the calculation
of the best last two orders, which will also result in the
optimal cost(i, j + 1). 2

Complexity: First observe that the calculation of se-
quence T i can be done in time O(n− i), since all its orders
can all be calculated by scanning interval (i, n) once. In
every interval (i, j) we need to calculate orders for 3 times,
namely j and the last 2 times of T i contained in (i, j), and
this can be done in O(1) time. All other times of T i be-
fore j get an order of exactly Q. Also note that there is no
need to record separately all orders placed in all intervals
(i, j), i ≤ j ≤ n, since all we need to record for each one
is the last time of T i utilized by (i, j), the last cheap or-
der time and size, and x(i,j)(j). With this information, we
can reconstruct the orders that incur cost(i, j). Hence, the
overall running time and space needed for all i is O(n2).

Collecting all running times and space needed by the
different algorithm components we get

Theorem 2. The DP algorithm takes O(n2) time and
space.

5

5. The case of two items

The two-items decision problem we examine is defined
as follows: We have two items, black and red, which can
be stored in an inventory of total capacity I. The pricing
scheme for black is given by fixed unit prices b1 > b2, and
threshold QB above which price b2 applies. The pricing
scheme for red is given by fixed unit prices r1 > r2, and
threshold QR. Given budget targets CB , CR for black and
red, as well as a sequence of n black and red demands,
the question is whether they can be fulfilled, within the
corresponding budgets, and without ever exceeding the
inventory capacity I. There can also be initial inventories
of the two items, but here we prove the NP-completeness
of the problem, even in the case where these initial
inventories are 0. More formally, the problem is defined
as follows:

2-Bulk Ordering
Input: Sets F = {f1, . . . , fn} ⊆ Z+ of black demand
values and G = {g1, . . . , gn} ⊆ Z+ of red demand values.
Pricing schemes (b1, b2, QB) and (r1, r2, QR) for the black
and red item respectively. Inventory size I. Nonnegative
target costs CB and CR.
Question: Are there two n-vectors of orders for the black
and the red item so that all demands are satisfied, the
inventory capacity is never exceeded, the cost of black
orders is at most CB and the cost of red orders is at most
CR?

A pair of n-vectors of black and red orders is an admissible
sequence for a 2-Bulk Ordering instance if the units
purchased can be consumed at the time they were bought
or stored so that all the demands at each time are covered
and the inventory capacity I is never exceeded. We reduce
from the Equipartition problem.

Equipartition
Input: Set A = {a1, . . . , an} ⊆ Z+ with

∑n
i=1 ai = 2B.

Question: Is there an index set A′ ⊆ [n], |A′| = n
2 , such

that
∑

i∈A′ ai = B?

It is well-known that Equipartition is NP-complete
[17]. Given an Equipartition instance A, we construct
an instance φ(A) of the 2-Bulk Ordering problem, that
has an affirmative answer iff the Equipartition instance
does. We now proceed to define φ(A). We set b1 = r1 = p1
and b2 = r2 = p2 for two positive values satisfying p1 > p2,
i.e., both items have the same prices p1 > p2 (whose exact
values will not matter in the reduction). We set

I = 5 max
i∈[n]

ai (4)

QB = QR = Q = 2I + 3B + 1 (5)

CB = CR = p1(
n

2
Q+ 2B) + p2(

n

2
Q+ 2B). (6)

The time horizon of φ(A) consists of n consecutive inter-
vals S1, . . . , Sn, with each interval consisting of four time
periods with respective demands Q − (I − 2ai), 0, I, 0 for
black, and 0, Q−(I−2ai), 0, I for red (cf. Figure 1). When
a specific interval is implied from the context its time pe-
riods are numbered from 1 to 4.

I

Q− (I − 2ai) Q− (I − 2ai)

4321

I

Figure 1: Demands for the four times of interval Si, i ∈ [n].

Lemma 4. In any admissible sequence for the instance
φ(A) at most one of black, red makes a cheap purchase in
interval Si, i ∈ [n]. This purchase happens at time 1 for
black or at time 2 for red.

Proof: Because of (5) a cheap purchase is possible only
at time 1 or 2. In interval Si, i ∈ [n], each of the items
requires I−2ai space in the inventory for a cheap purchase
at time 1 (for black) or 2 (for red). By (4) 2ai < I − 2ai,
hence there is not enough free inventory space for cheap
purchases in both times 1 and 2. 2

Lemma 5. In any admissible sequence for φ(A) where the
cost of black orders is at most CB at least n/2 cheap orders
for the black item are placed.

Proof: Assume that in the admissible sequence n/2 − x
cheap orders have been placed for black for some x ≥ 1.
Let N0 be the set of indices of the intervals in which there
are no cheap black purchases, and N1 = [n]\N0. Lemma 4
implies that |N1| = n

2−x, and, therefore, |N0| = n
2 +x. Let

`i be the total net amount of black item that can be fetched
from the inventory to cover demand during interval Si.
This amount must have been purchased at some previous
time, and at a unit price of at least p2. Hence, the total
cost costB incurred for the black item is lower-bounded as
follows:

costB ≥ p1[(
n

2
+ x)Q+

∑
i∈N0

2ai]− p1
∑
i∈N0

`i+

+ p2[(
n

2
− x)Q+

∑
i∈N1

2ai] + p2
∑
i∈N0

`i

≥ p1(
n

2
+ x)Q− p1

∑
i∈N0

`i + p2[(
n

2
− x)Q]+

+ 4Bp2 + p2
∑
i∈N0

`i

= CB + (p1 − p2)(xQ− 2B −
∑
i∈N0

`i). (7)

6

Note that, for any admissible sequence, we can assume
that items are never purchased expensively, in order to be
stored in the inventory. Let the excess of a cheap purchase
xt ≥ dt at some time t be the amount xt−dt which will be
stored in the inventory. Given an admissible sequence the
associated red and black costs are uniquely determined by
the order vectors and do not depend on when a stored unit
is actually consumed. For the purposes of cost accounting
we may allocate the excess units to satisfy demand at any
time of our choice as long as all demand has been satisfied
by the end of the time horizon and all the excess has been
consumed. The maximum amount of a cheap purchase at
time 1 of interval Si, i ∈ N1, is Q−(I−2ai)+I = Q+2ai,
i.e., the excess is at most 2ai. The calculation in (7) allo-
cated Q+ 2ai units to cover the black demand in interval
i ∈ N1. This way all potential excess has been consumed
and it follows that

∑
i∈N0

`i = 0. But in that case, (5)
and (7) imply that costB > CB , a contradiction to the
assumption that the black cost is at most CB . Therefore
x = 0. 2

Similarly we can prove:

Lemma 6. In any admissible sequence for φ(A) where the
cost of red orders is at most CR at least n/2 cheap orders
for the red item are placed.

Lemma 7. The Equipartition instance A is a Yes-
instance iff the 2-Bulk Ordering instance φ(A) is a
Yes-instance.

Proof: Let the Equipartition instance have a solution
given by A′ ⊆ [n], |A′| = n/2 such that

∑
i∈A′ ai = B.

There is a corresponding admissible sequence for the 2-
Bulk Ordering instance, in which a cheap red purchase
of Q + 2ai units takes place at every interval Si, i ∈ A′,
and a cheap black purchase at the amount of Q+2ai takes
place for every Si, i ∈ [n]\A′. The sequence meets the cost
targets for both items.

Conversely, assume that the 2-Bulk Ordering in-
stance is a Yes-instance. Let TB (TR) be the indices of
the intervals in which a black (red) cheap purchase occurs.
By Lemmas 4, 5 and 6 |TB | = |TR| = n/2. The excess of a
cheap purchase (either black at time 1 or red at time 2) is
at most I. We can lower bound the cost by assuming that
it is always I.

We allocate all potential excess of a cheap purchase
at interval Si ∈ TB (Si ∈ TR) to cover the demand
at time 3 (resp. 4). Therefore the total black item
amount bought expensively is at least n

2Q +
∑

i∈TR
2ai,

and the total red item amount bought expensively is at
least n

2Q +
∑

i∈TB
2ai. It holds that

∑
i∈TR∪TB

2ai =∑
i∈[n] 2ai = 4B. If

∑
i∈TR

2ai = 2B+ y for some positive

y, the cost paid for the black item is CB +(p1−p2)y > CB ,
a contradiction, and similarly for the red. Therefore∑

i∈TR
2ai ≤ 2B and

∑
i∈TB

2ai ≤ 2B, which imply that∑
i∈TR

2ai =
∑

i∈TB
2ai = 2B, i.e., the Equipartition

instance has a feasible solution. 2

Lemma 7, together with the easy fact that 2-Bulk Or-
dering is in NP, imply the following

Theorem 3. The 2-Bulk Ordering problem is NP-
complete even when both items have the same pricing
scheme (p1, p2, Q).

A pair of values (x1, x2) dominates another pair (y1, y2)
if x1 ≤ y1 and x2 ≤ y2. The cost pair of an admissible se-
quence σ for a 2-Bulk Ordering instance is the pair of
black and red costs incurred by σ. The trade-off or Pareto
curve for 2-Bulk Ordering is the set of all admissible se-
quences for which the corresponding cost pair is not dom-
inated by the cost pair of any other (admissible) sequence.
Observe that in the proof of Lemma 7 we actually estab-
lished that the Equipartition instance is a Yes-instance
iff there is an admissible sequence for the corresponding 2-
Bulk Ordering instance where the cost for black is ex-
actly CB and for red is exactly CR. The following corollary
is immediate and suggests the intractability of identifying
points on the Pareto curve.

Corollary 1. Given an instance of 2-Bulk Ordering
and a pair of cost targets (C1, C2) it is NP-complete to de-
termine whether (i) there is an admissible sequence whose
cost pair dominates (C1, C2) and (ii) there is an admissible
sequence on the Pareto curve with cost pair (C1, C2).

Acknowledgement. The authors thank an anonymous re-
viewer for comments that helped to substantially improve
the paper.

[1] N. Brahimi, N. Absi, S. Dauzére-Pérés, A. Nordli, Single-item dy-
namic lot-sizing problems: An updated survey, European Journal
of Operational Research, 263 (3) (2017) pp. 838-863.

[2] E. Koca, H. Yaman, M. Selim Aktürk, Lot sizing with piecewise
concave production costs, INFORMS Journal on Computing 26
(4) (2014) pp. 767-779.

[3] H. M. Wagner, T. M. Whitin, Dynamic version of the economic
lot size model, Management Science, 5 (1) (1958) pp. 1007-1013.

[4] Y. Malekian, S. Hamid Mirmohammadi, M. Bijari, Polynomial-
time algorithms to solve the single-item capacitated lot sizing
problem with a 1-breakpoint all-units quantity discount, Com-
puters & Operations Research, 134 (2021).

[5] C. Swoveland, A deterministic multi-period production planning
model with piecewise concave production and holding-backorder
costs, Management Science, 21 (9) (1975) pp. 89-96.

[6] S. F. Love, Bounded production and inventory models with piece-
wise concave costs, Management Science, 20 (3) (1973) pp. 313-
318.

[7] J. Ou, A polynomial time algorithm to the economic lot siz-
ing problem with constant capacity and piecewise linear concave
costs, Operations Research Letters, 45 (5) (2017) pp. 493-497.

[8] J. Ou, Improved exact algorithms to economic lot-sizing with
piecewise linear production costs, European Journal of Opera-
tional Research, 256 (3) (2017) pp. 777-784.

[9] A. Federgruen, C. Lee, The dynamic lot size model with quantity
discount, Naval Research Logistics (NRL), 37 (5) (1990) pp. 707-
713.

[10] G. R. Bitran, H. H. Yanasse, Computational complexity of
the capacitated lot size problem, Management Science, 28 (10)
(1982) pp. 1174-1186.

[11] C. P. M. van Hoesel, A. P. M. Wagelmans, An O(T 3) algo-
rithm for the economic lot-sizing problem with constant capaci-
ties, Management Science, 42 (1) (1996) pp. 142-150.

7

[12] T. Liu, Economic lot sizing problem with inventory bounds,
European Journal of Operational Research, 185 (1) (2008) pp.
204-215.

[13] M. Önal, W. van den Heuvel, T. Liu, A note on “The economic
lot sizing problem with inventory bounds,” European Journal of
Operational Research, 223 (1) (2012) pp. 290-294.

[14] C. P. M. van Hoesel, A. P. M. Wagelmans, Fully polynomial
approximation schemes for single-item capacitated economic lot-
sizing problems, Mathematics of Operations Research, 26 (2)
(2001) pp. 339-357.

[15] C. T. Ng, Mikhail Y. Kovalyov, T. C .E. Cheng, A simple FP-
TAS for a single-item capacitated economic lot-sizing problem
with a monotone cost structure, European Journal of Opera-
tional Research, 200 (2) (2010) pp. 621-624.

[16] J. Fan, G. Wang, Joint optimization of dynamic lot and ware-
house sizing problems, European Journal of Operational Re-
search, 267 (3) (2018) pp. 849-854.

[17] M. R. Garey, D. S. Johnson, Computers and Intractability: A
guide to the theory of NP-completeness, W. H. Freeman and
Company, (1979).

8

	Introduction
	Problem definition
	Structural properties of an optimal solution
	A Dynamic Programming algorithm
	The case of two items

