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Abstract

We examine how to induce selfish heterogeneous users in a multicommodity network to
reach an equilibrium that minimizes the social cost. In the absence of centralized coordina-
tion, we use the classical method of imposing appropriate taxes (tolls) on the edges of the
network. We significantly generalize previous work [20, 13, 9] by allowing user demands to
be elastic. In this setting the demand of a user is not fixed a priori but it is a function of
the routing cost experienced, a most natural assumption in traffic and data networks.
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1 Introduction

We examine a network environment where uncoordinated users, each with a specified origin-
destination pair, select a path to route an amount of their respective commodity. Let f be a
flow vector defined on the paths of the network, which describes a given routing according to
the standard multicommodity flow conventions. The users are selfish: each wants to choose a
path P that minimizes the cost TP (f). The quantity TP (f) depends typically on the latency
induced on P by the aggregated flow of all users using some edge of the path.

We model the interaction of the selfish users by studying the system in the steady state
captured by the classic notion of a Wardrop equilibrium [19]. This state is characterized by
the following principle: in equilibrium, for every origin-destination pair (si, ti), the cost on
every used si− ti, path is equal and less than or equal to the cost on any unused path between
si and ti. The Wardrop principle states that in equilibrium the users have no incentive to
change their chosen route; under some minor technical assumptions the Wardrop equilibrium
concept is equivalent to the Nash equilibrium in the underlying game. The literature on traffic
equilibria is very large (see, e.g., [2, 6, 5, 1]). The framework is in principle applicable both
to transportation and decentralized data networks. In recent years, starting with the work of
Roughgarden and Tardos [17], the latter area motivated a fruitful treatment of the topic from
a computer science perspective.

The behavior of uncoordinated selfish users can incur undesirable consequences from the
point of view of the system as a whole. The social cost function, usually defined as the total
user latency, expresses this societal point of view. Since for several function families [17] one
cannot hope that the uncoordinated users will reach a traffic pattern which minimizes the social
cost, the system designer looks for ways to induce them to do so. A classic approach, which we
follow in this paper, is to impose economic disincentives, namely put nonnegative per-unit-of-
flow taxes (tolls) on the network edges [2, 12]. The tax-related monetary cost will be, together
with the load-dependent latency, a component of the cost function TP (f) experienced by the
users, cf. Eq. (1) below. As in [3, 20] we consider the users to be heterogeneous, i.e., belonging
to classes that have different sensitivities towards the monetary cost. This is expressed by
multiplying the monetary cost with a factor a(i) for user class i. We call optimal the taxes
inducing a user equilibrium flow which minimizes the social cost.

The existence of a vector of optimal edge taxes for heterogeneous users in multicommodity
networks is not a priori obvious. It has been established for fixed demands in [20, 13, 9]. In this
paper we significantly generalize this previous work by allowing user demands to be elastic.
Elastic demands have been studied extensively in the traffic community (see, e.g., [10, 1, 12]).
In this setting the demand di of a user class i is not fixed a priori but it is a function Di(u)
of the vector u of routing costs experienced by the various user classes. Demand elasticity
is natural in traffic and data networks. People may decide whether to travel based on traffic
conditions. Users requesting data from a web server may stop doing so if the server is slow.
Even more elaborate scenarios, such as multi-modal traffic, can be implemented via a judicious
choice of the demand functions. E.g., suppose that origin-destination pairs 1 and 2 correspond
to the same physical origin and destination points but to different modes of transit, such as
subway and bus. There is a total amount d of traffic to be split among the two modes. The
modeler could prescribe the modal split by following, e.g., the well-studied logit model [1]:

D1(u) = d
eθu1+A1

eθu1+A1+eθu2+A2
, D2(u) = d−D1(u)
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for given negative constant θ and nonnegative constants A1 and A2. Here u1 (resp. u2) denotes
the routing cost on all used paths of mode 1 (resp. 2).

For the elastic demand setting we show in Section 3 the existence of taxes that induce
the selfish users to reach an equilibrium that minimizes the total latency. Note that for this
result we only require that the vector D(u) of the demand functions is monotone according to
Definition 1. The functions Di(u) do not have to be strictly monotone (and therefore invertible)
individually, and for some i 6= j, Di(u) can be increasing while Dj(u) can be decreasing on a
particular variable (as for example in the logit model mentioned above). The result is stated
in Theorem 1 and constitutes the main contribution of this paper. The existence results for
fixed demands in [20, 13, 9] follow as corollaries. Our proof is developed over several steps but
its overall structure is explained at the beginning of Section 3.1.

We emphasize that the equilibrium flow in the elastic demand setting satisfies the demand
values that materialize in the same equilibrium, values that are not known a priori. This
indeterminacy makes the analysis particularly challenging. On the other hand, one might
argue that with high taxes, which increase the routing cost, the actual demand routed (which
being elastic depends also on the taxes) will be unnaturally low. This argument does not
take fully into account the generality of the demand functions Di(u) which do not even have
to be decreasing; even if they do they do not have to vanish as u increases. Still it is true
that the model is indifferent to potential lost benefit due to users who do not participate.
Nevertheless, there are settings where users may decide not to participate without incurring
any loss to either the system or themselves and these are settings we model in Section 3.
Moreover in many cases the system designer chooses explicitly to regulate the effective use of
a resource instead of heeding the individual welfare of selfish users. Charging drivers in order
to discourage them from entering historic city cores is an example, among many others, of a
social policy of this type.

A more user-friendly agenda is served by the study of a different social cost function which
sums total latency and the lost benefit due to the user demand that was not routed [10, 11].
This setting was recently considered in [4] from a price of anarchy [14] perspective. In this case
the elasticity of the demands is specified implicitly through a function Γi(x) (which is assumed
nonincreasing in [4]) for every user class i. Γi(di) determines the minimum per-user benefit
extracted if di users from the class decide to make the trip. Hence Γi(di) also denotes the
maximum travel cost that each of the first di users (sorted in order of nonincreasing benefit)
from class i is willing to tolerate, in order to travel. We show the existence of optimal taxes
for this model in Section 4. We demonstrate however that for these optimal taxes to exist,
participating users must tolerate, in the worst-case, higher travel costs than those specified by
their Γ(·) function.

All omitted proofs are in the appendix.

2 Preliminaries

The model: Let G = (V,E) be a directed network (possibly with parallel edges but with no
self-loops), and a set of users, each with an infinitesimal amount of traffic (flow) to be routed
from an origin node to a destination node of G. Moreover, each user α has a positive tax-
sensitivity factor a(α) > 0. We will assume that the tax-sensitivity factors for all users come
from a finite set of possible positive values. We can bunch together into a single user class all
the users with the same origin-destination pair and with the same tax-sensitivity factor; let
k be the number of different such classes. We denote by Pi, a(i) the the flow paths that can
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be used by class i, and the tax-sensitivity of class i, for all i = 1, . . . , k respectively. We will
also use the term ‘commodity i’ for class i. Set P .= ∪i=1,...,kPi. Each edge e ∈ E is assigned
a latency function le(fe) which gives the latency experienced by any user that uses e due to
congestion caused by the total flow fe that passes through e. In other words, as in [3], we
assume the additive model in which for any path P ∈ P the latency is lP (f) =

∑
e∈P le(fe),

where fe =
∑

e3P fP and fP is the flow through path P . If every edge is assigned a per-unit-
of-flow tax be ≥ 0, a selfish user in class i that uses a path P ∈ Pi experiences total cost TP (f)
equal to ∑

e∈P

le(fe) + a(i)
∑
e∈P

be (1)

hence the name ‘tax-sensitivity’ for the a(i)’s: they quantify the importance each user assigns
to the taxation of a path.

A function g : Rn → Rm is positive if g(x) > 0 when x > 0. We assume that the functions
le are strictly increasing, i.e., x > y ≥ 0 implies le(x) > le(y), and that le(0) ≥ 0. This implies
that le(fe) > 0 when fe > 0, i.e., the function le is positive.

Definition 1 Let f : K → Rn, K ⊆ Rn. The function f is monotone on K if (x−y)T (f(x)−
f(y)) ≥ 0, ∀x ∈ K, y ∈ K. The function f is strictly monotone if the previous inequality is
strict when x 6= y.

In what follows we will use heavily the notion of a nonlinear complementarity problem. Let
F (x) = (F1(x), F2(x), . . . , Fn(x)) be a vector-valued function from the n-dimensional space Rn

into itself. Then the nonlinear complementarity problem of mathematical programming is to
find a vector x that satisfies the following system:

xT F (x) = 0, x ≥ 0, F (x) ≥ 0.

3 The elastic demand problem

In this section the social cost function is defined as the total latency
∑

e fele(fe). We set up
the problem in the appropriate mathematical programming framework and formulate the main
result for this model in Theorem 1.

The traffic (or Wardrop) equilibria for a network can be described as the solutions of the
following mathematical program (see [1] p. 216):

(TP (f)− ui)fP = 0 ∀P ∈ Pi, i = 1 . . . k

TP (f)− ui ≥ 0 ∀P ∈ Pi, i = 1 . . . k∑
P∈Pi

fP −Di(u) = 0 ∀i = 1 . . . k

f, u ≥ 0

where TP is the cost of a user that uses path P , fP is the flow through path P , and u =
(u1, . . . , uk) is the vector of shortest travel times (or generalized costs) for the commodities.
The first two equations model Wardrop’s principle by requiring that for any origin-destination
pair i the travel cost for all paths in Pi with nonzero flow is the same and equal to ui. The
remaining equations ensure that the demands are met and that the variables are nonnegative.
Note that the formulation above is very general: every path P ∈ Pi for every commodity i has
its own TP (even if two commodities share the same path P , each may have its own TP ).
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If the path cost functions TP are positive and the Di(·) functions take nonnegative values, [1]
shows that the system above is equivalent to the following nonlinear complementarity problem
(Proposition 4.1 in [1]):

(TP (f)− ui)fP = 0 ∀i, ∀P ∈ Pi (CPE)
TP (f)− ui ≥ 0 ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP −Di(u)) = 0 ∀i

∑
P∈Pi

fP −Di(u) ≥ 0 ∀i

f, u ≥ 0

In our case the costs TP are defined as
∑

e∈P le(fe) + a(i)
∑

e∈P be, ∀i, ∀P ∈ Pi, where be is
the per-unit-of-flow tax for edge e, and a(i) is the tax sensitivity of commodity i. In fact, it
will be more convenient for us to define TP slightly differently:

TP (f) :=
lP (f)
a(i)

+
∑
e∈P

be, ∀i, ∀P ∈ Pi.

The special case where Di(u) is constant for all i, was treated in [20, 13, 9]. The main
complication in the general setting is that the minimum-latency flow f̂ cannot be considered
a priori given before some selfish routing game starts. At an equilibrium the ui achieve some
concrete value which in turn fixes the demands. These demands will then determine the
corresponding minimum-latency flow f̂ . At the same time, the corresponding minimum-latency
flow affects the taxes we impose and this, in turn, affects the demands. The outlined sequence
of events serves only to ease the description. In fact the equilibrium parameters materialize
simultaneously. We should not model the two flows (optimal and equilibrium) as a two-
level mathematical program, since there is no the notion of leader-follower here, but as a
complementarity problem as done in [1].

Suppose that we are given a vector u∗ of generalized costs. Then the social optimum f̂∗ for
the particular demands Di(u∗) is the solution of the following mathematical program:

min
∑
e∈E

le(f̂e)f̂e s.t. (MP)∑
P∈Pi

f̂P ≥ Di(u∗) ∀i

f̂e =
∑

P∈P:e∈P

f̂P ∀e ∈ E

f̂P ≥ 0 ∀P

Under the assumption that the functions xle(x) are continuously differentiable and convex, it
is well-known that f̂∗ solves (MP) iff (f̂∗, µ∗) solves the following pair of primal-dual linear
programs (see, e.g., [8, pp. 9–13]):

min
∑
e∈E

(
le(f̂∗e ) + f̂∗e

∂le
∂fe

(f̂∗e )
)

f̂e s.t. (LP2) max
∑

i

Di(u∗)µi s.t. (DP2)

∑
P∈Pi

f̂P ≥ Di(u∗), ∀i µi ≤
∑
e∈P

(
le(f̂∗e ) + f̂∗e

∂le
∂fe

(f̂∗e )
)
∀i,∀P ∈ Pi
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f̂e =
∑

P∈P:e∈P

f̂P , ∀e ∈ E µi ≥ 0 ∀i

f̂P ≥ 0, ∀P
Let the functions Di(u) be bounded and set K1 := maxi maxu≥0{Di(u)} + 1. Then if n

denotes |V | the solutions f̂∗, µ∗ of (LP2), (DP2) are upper bounded as follows:

f̂∗P ≤ Di(u∗) < K1, ∀P ∈ Pi

µi ≤
∑
e∈P

(
le(f̂∗e ) + f̂∗e

∂le
∂fe

(f̂∗e )
)

< n ·max
e∈E

max
0≤x≤k·K1

{le(x) + x
∂le
∂fe

(x)}, ∀i

It is important to note that these upper bounds are independent of u∗.
We wish to find a tax vector b that will steer the edge flow solution of (CPE) towards f̂ .

Similarly to [13] we add this requirement as a constraint to (CPE): for every edge e we require
that fe ≤ f̂e. By adding also the Karush-Kuhn-Tucker conditions for (MP) we obtain the
following complementarity problem:

fP (TP (f)− ui) = 0 ∀i,∀P ∈ Pi (GENERAL CP)
TP (f) ≥ ui ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP −Di(u)) = 0 ∀i

∑
P∈Pi

fP −Di(u) ≥ 0 ∀i

be(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

(
∑
e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e))− µi)f̂P = 0 ∀i,∀P ∈ Pi

∑
e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e))− µi ≥ 0 ∀i, ∀P ∈ Pi

µi(
∑

P∈Pi

f̂P −Di(u)) = 0 ∀i

∑
P∈Pi

f̂P −Di(u) ≥ 0 ∀i

fP , be, ui, f̂P , µi ≥ 0

where fe =
∑

P3e fP , f̂e =
∑

P3e f̂P .
The users should be steered towards f̂ without being conscious of the constraints fe ≤ f̂e;

the latter should be felt only implicitly, i.e., through the corresponding tax be. Our main result
is expressed in the following theorem. For convenience, we view Di(u) as the ith coordinate of
a vector-valued function D : Rk → Rk.

Theorem 1 Consider the selfish routing game with the latency function seen by the users in
class i being

TP (f) :=
∑
e∈P

le(fe) + a(i)
∑
e∈P

be, ∀i, ∀P ∈ Pi.
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If (i) for every edge e ∈ E, le(·) is a strictly increasing continuous function with le(0) ≥ 0
such that xle(x) is convex and continuously differentiable and (ii) Di are continuous functions
bounded from above for all i such that D(·) is positive and −D(·) is monotone then there
is a vector of per-unit taxes b ∈ R|E|

+ such that, if f̄ is a traffic equilibrium for this game,
f̄e = f̂e, ∀e ∈ E. Therefore f̄ minimizes the social cost

∑
e∈E fele(fe).

3.1 Proof of the main theorem

The structure of our proof for Theorem 1 is as follows. First we give two basic Lemmata 1 and
2. We then argue that the two lemmata together with a proof that a solution to (GENERAL
CP) exists imply Theorem 1. We establish that such a solution for (GENERAL CP) exists in
Theorem 2. The proof of the latter theorem uses the fixed-point method of [18] and arguments
from linear programming duality.

The following result of [1], can be easily extended to our case:

Lemma 1 (Theorem 6.2 in [1]) Assume that the le(·) functions are strictly increasing for
all e ∈ E, D(·) is positive and −D(·) is monotone. Then if more than one solutions (f, u)
exist for (CPE), u is unique and f induces a unique edge flow.

Lemma 2 Let (f∗, b∗, u∗, f̂∗, µ∗) be any solution of (GENERAL CP). Then
∑

P∈Pi
f∗P =

Di(u∗), ∀i and f∗e = f̂∗e , ∀e ∈ E.

Let (f∗, b∗, u∗, f̂∗, µ∗) be a hypothetical solution to (GENERAL CP). Then f̂∗ is a minimum
latency flow solution for the demand vector D(u∗). Moreover f∗e ≤ f̂∗e , ∀e ∈ E. After setting
b = b∗ in (CPE), Lemma 1 implies that any solution (f̄ , ū) to (CPE) would satisfy f̄e = f∗e
and ū = u∗. Therefore f̄e ≤ f̂∗e , ∀e ∈ E. Under the existing assumptions on le(·), Claim 1
in the appendix implies that any equilibrium flow f̄ for the selfish routing game where the
users are conscious of the modified latency TP (f) := lP (f)

a(i) +
∑

e∈P b∗e, ∀i, ∀P ∈ Pi, is a
minimum-latency solution for the demand vector reached in the same equilibrium. Therefore
the b∗ vector would be the vector of the optimal taxes. To complete the proof of Theorem 1
we will now show the existence of (at least) one solution to (GENERAL CP):

Theorem 2 If fele(fe) are continuous, convex, strictly monotone functions for all e ∈ E, and
Di(·) are nonnegative continuous functions bounded from above for all i, then (GENERAL CP)
has a solution.

Proof: (GENERAL CP) is equivalent (in terms of solutions) to the complementarity prob-
lem (GENERAL CP’) (listed in full in the appendix). The only difference between (GEN-
ERAL CP) and (GENERAL CP’) is that TP (f) =

∑
e∈P ( le(fe)

a(i) + be) is replaced by TP (f̂) =∑
e∈P ( le(f̂e)

a(i) + be) in the first two constraints.

Lemma 3 (GENERAL CP) is equivalent to (GENERAL CP’).

To show that (GENERAL CP’) has a solution, we will follow a classic proof method
by Todd [18] that reduces the solution of a complementarity problem to a Brouwer fixed-
point problem. In what follows, let [x]+ := max{0, x}. If φ : Rn → Rn with φ(x) =
(φ1(x), φ2(x), . . . , φn(x)) is a function with components φ1, . . . , φn defined as

φi(x) = [xi − Fi(x)]+,
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then x̂ is a fixed point to φ iff x̂ solves the complementarity problem xT F (x) = 0, F (x) ≥
0, x ≥ 0. Following [1], we will restrict φ to a large cube with an artificial boundary, and show
that the fixed points of this restricted version of φ are fixed points of the original φ by showing
that no such fixed point falls on the boundary of the cube.

Note that for (GENERAL CP) x = (f, u, b, f̂ , µ). We start by defining the cube which will
contain x. Let

Kf̂ := max
i

max
u≥0

{Di(u)}+ 1, Kf := Kf̂ , Kµ := n ·max
e∈E

max
0≤x≤k·Kf̂

{le(x) + x
∂le
∂fe

(x)}

Let S be the maximum possible entry of the inverse of any ±1 matrix of dimension at most
(k + m) × (k + m), where m denotes |E| (note that S depends only on (k + m).) Also, let
amax = maxi{1/a(i)} and lmax = maxe{le(k ·Kf )}. Then define

Kb := (k + m)Smamaxlmax + 1, Ku := n ·
(

max
e∈E,i∈{1,...,k}

{
le(k ·Kf )

a(i)

}
+ Kb

)
+ 1

We allow x to take values from the cube {0 ≤ fP ≤ Kf , P ∈ P}, {0 ≤ ui ≤ Ku, i =
1, . . . k}, {0 ≤ be ≤ Kb, e ∈ E}, {0 ≤ f̂P ≤ Kf̂ , P ∈ P}, {0 ≤ µi ≤ Kµ, i = 1, . . . k}. We
define φ = ({φP : P ∈ P}, {φi : i = 1, . . . , k}, {φe : e ∈ E}, {φP̂ : P ∈ P}, {φî : i = 1, . . . k})
with |P|+ k + m + |P|+ k components as follows:

φP (f, u, b, f̂ , µ) = min{Kf , [fP + ui − TP (f̂)]+} ∀i,∀P ∈ Pi

φi(f, u, b, f̂ , µ) = min{Ku, [ui + Di(u)−
∑

P∈Pi

fP ]+} i = 1, . . . , k

φe(f, u, b, f̂ , µ) = min{Kb, [be + fe − f̂e]+} ∀e ∈ E

φP̂ (f, u, b, f̂ , µ) = min{Kf̂ , [f̂P + µi −
∑
e∈P

∂le
∂fe

(f̂e)]+} ∀i,∀P ∈ Pi

φî(f, u, b, f̂ , µ) = min{Kî, [µi + Di(u)−
∑

P∈Pi

f̂P ]+} i = 1, . . . , k

where fe =
∑

P3e fP , f̂e =
∑

P3e f̂P . By Brouwer’s fixed-point theorem, there is a fixed point
x∗ in the cube defined above, i.e., x∗ = φ(x∗). In particular we have that f∗P = φP (x∗), u∗i =
φi(x∗), b∗e = φe(x∗), f̂∗P = φP̂ (x∗), µ∗i = φî(x

∗) for all P, P̂ ∈ P, i = 1, . . . , k, e ∈ E.
Following the proof of Theorem 5.3 of [1] we can show that

f̂∗P = [f̂∗P + µ∗i −
∑
e∈P

(le(f̂∗e ) + f̂∗e
∂le
∂fe

(f̂∗e ))]+, ∀P and µ∗i = [µ∗i + Di(u∗)−
∑

P∈Pi

f̂∗P ]+, ∀i

f∗P = [f∗P + u∗i − TP (f̂∗)]+, ∀P. (2)

Note that this implies that (f̂∗, µ∗) satisfy the KKT conditions of (MP) for u∗. Here we prove
only (2) (the other two are proven in a similar way). Let f∗P = Kf for some i, P ∈ Pi (if f∗P < Kf

then (2) holds). Then
∑

P∈Pi
f∗P > Di(u∗), which implies that u∗i + Di(u∗)−

∑
P∈Pi

f∗P < u∗i ,
and therefore by the definition of φi we have that u∗i = 0. Since TP (f̂∗) ≥ 0, this implies that
f∗P ≥ f∗P +u∗i −TP (f̂∗). If TP (f̂∗) > 0, the definition of φP implies that f∗P = 0, a contradiction.
Hence it must be the case that TP (f̂∗) = 0, which in turn implies (2).
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If there are i, P ∈ Pi such that f∗P > 0, then (2) implies that u∗i = TP (f̂∗) =
∑

e∈P
le(f̂∗e )
a(i) +∑

e∈P b∗e. In this case we have that u∗i < Ku, because u∗i = Ku ⇒
∑

e∈P
le(f̂∗e )
a(i) +

∑
e∈P b∗e =

n ·
(
maxe∈E,i∈{1,...,k}

{
le(Kf )

a(i)

}
+ Kb

)
+ 1 which is a contradiction since b∗e ≤ Kb. On the other

hand, if there are i, P ∈ Pi such that f∗P = 0, then (2) implies that u∗i ≤ TP (f̂∗). Again
u∗i < Ku, because if u∗i = Ku we arrive at the same contradiction. Hence we have that

u∗i = [u∗i + Di(u∗)−
∑

P∈Pi

f∗P ]+, ∀i. (3)

Next, we consider the following primal-dual pair of linear programs:

min
∑

i

∑
P∈Pi

fP
lP (f̂∗)
a(i)

s.t. (LP*) max
∑

i

Di(u∗)ui −
∑
e∈E

f̂∗e be s.t. (DP*)

∑
P∈Pi

fP ≥ Di(u∗) i = 1, . . . , k ui ≤
lP (f̂∗)
a(i)

+
∑
e∈P

be ∀i, ∀P ∈ Pi

fe =
∑

P∈P:e∈P

fP ∀e ∈ E be, ui ≥ 0 ∀e ∈ E,∀i

fe ≤ f̂∗e ∀e ∈ E
fP ≥ 0 ∀P

From the above, it is clear that f̂∗ is a feasible solution for (LP*), and (u∗, b∗) is a feasible
solution for (DP*). Moreover, since the objective function of (LP*) is bounded from below by
0, (DP*) has at least one bounded optimal solution as well. We show that there is an optimal
solution (û, b̂) of (DP*) such that all the b̂e’s are suitably upper bounded:

Lemma 4(folklore)There is an optimal solution (û, b̂) of (DP*) such that b̂e ≤ Kb−1, ∀e ∈ E.

Let f̂ be the optimal primal solution of (LP*) that corresponds to the optimal dual solution
(û, b̂) of (DP*). Let

L(f, u, b) =
∑

i

∑
P∈Pi

fP
lP (f̂∗)
a(i)

+
∑
e∈E

be(fe − f̂∗e ) +
∑

i

ui(Di(u∗)−
∑

P∈Pi

fP ) (4)

be the Lagrangian of (LP*)-(DP*). Then it is well known that (f̂ , û, b̂) is a saddle point for
the Lagrangian (see e.g. [16]), i.e.,

L(f̂ , u, b) ≤ L(f̂ , û, b̂) ≤ L(f, û, b̂), ∀f, u, b. (5)

Because f̂ is optimal for (LP*),
∑

P∈Pi
f̂P = Di(u∗),∀i. Because f̂ satisfies the assumptions of

Claim 1 in the appendix we obtain that f̂e = f̂∗e ,∀e. Therefore L(f̂ , û, b̂) =
∑

i

∑
P∈Pi

f̂P
lP (f̂∗)
a(i) .

Equation (3) implies that for all i, Di(u∗)−
∑

P∈Pi
f∗P ≤ 0, hence

L(f∗, û, b̂) ≤
∑

i

∑
P∈Pi

f∗P
lP (f̂∗)
a(i)

+
∑
e∈E

(f∗e − f̂∗e )b̂e. (6)

Going back to (u∗, b∗) which is feasible for (DP*), we get from weak duality that∑
i

Di(u∗)u∗i −
∑
e∈E

f̂∗e b∗e ≤
∑

i

∑
P∈Pi

f̂P
lP (f̂∗)
a(i)

. (7)
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By Eq. (2), for all i and P ∈ Pi, if f∗P > 0, then u∗i = TP (f̂∗) =
∑

e∈P
le(f̂∗e )
a(i) +

∑
e∈P b∗e. Also

Eq. (3) yields that
∑

P∈Pi
f∗P = Di(u∗) for all i with u∗i > 0. Therefore

∑
i

Di(u∗)u∗i −
∑
e∈E

f̂∗e b∗e =
∑

i

∑
P∈Pi

(f∗P u∗i )−
∑
e∈E

f̂∗e b∗e =
∑

i

∑
P∈Pi

f∗P
lP (f̂∗)
a(i)

+
∑
e∈E

(f∗e − f̂∗e )b∗e

and then (7) implies that

∑
i

∑
P∈Pi

f∗P
lP (f̂∗)
a(i)

+
∑
e∈E

(f∗e − f̂∗e )b∗e ≤
∑

i

∑
P∈Pi

f̂P
lP (f̂∗)
a(i)

= L(f̂ , û, b̂). (8)

If for some edge e ∈ E b∗e = [b∗e + f∗e − f̂∗e ]+, we have that if b∗e > 0 then f∗e = f̂∗e , and if
b∗e = 0, then f∗e ≤ f̂∗e . If b∗e = Kb and b∗e > [b∗e + f∗e − f̂∗e ]+, then f∗e > f̂∗e . Assume that there
is at least one edge e such that b∗e = Kb and b∗e > [b∗e + f∗e − f̂∗e ]+. Then because of Lemma 4
we have that ∑

e∈E

(f∗e − f̂∗e )b̂e <
∑
e∈E

(f∗e − f̂∗e )b∗e, (9)

which in turn implies that

L(f∗, û, b̂)
(6),(9)

<
∑

i

∑
P∈Pi

f∗P
lP (f̂∗)
a(i)

+
∑
e∈E

(f∗e − f̂∗e )b∗e
(8)

≤ L(f̂ , û, b̂)

But from the second inequality of (5) we have that L(f̂ , û, b̂) ≤ L(f∗, û, b̂), a contradiction.
Hence it cannot be the case b∗e = Kb and b∗e > [b∗e + f∗e − f̂∗e ]+ for any edge e, therefore

b∗e = [b∗e + f∗e − f̂∗e ]+, ∀e ∈ E. (10)

Equations (2),(3),(10) imply that (f∗, u∗, b∗, f̂∗, µ∗) is indeed a solution of (GENERAL CP’),
and therefore a solution to (GENERAL CP). The proof of Theorem 2 is complete. 2

4 Optimal taxes for elastic-demand users with participation
benefits

In this section the social cost function is defined as the total latency of the participating users
plus the lost benefit due to the non-participating users as in [10, 11, 4]. We explain first the
meaning of equilibrium in this new setting. Let the benefit distribution be Γi(x) : a strictly
decreasing1, continuous function with domain [0, Gi] for i = 1, . . . , k. The quantity Gi is the
maximum potential demand for commodity i. Due to elasticity, demand gi ≤ Gi will be actually
routed. Think of the users of class i as points on the interval [0, Gi], and assume that they are
sorted in order of decreasing benefit. In a user equilibrium we require that ui = Γi(gi), i.e. all
participating users have a benefit at least equal to their travel cost. See [10, 11, 4] for further
discussion.

1In case the Γi(·) functions are nonincreasing, we can find taxes for which some (instead of any) equilibrium
induces an optimal flow. See [13] for details.
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Now we modify accordingly the social cost. We define the social optimum (f̂ , ĝ) as the
the solution of the following optimization problem: minf,g{

∑
e∈E fele(fe)+

∑k
i=1

∫ Gi

gi
Γi(x)dx :

f is a flow satisfying demands gi, 0 ≤ gi ≤ Gi} which is also a solution of the following
optimization problem after a simple change of variables:

min
f,g

{∑
e∈E

fele(fe) +
k∑

i=1

∫ Gi−gi

0
Γi(Gi − z)dz : f is a flow satisfying demands gi, 0 ≤ gi ≤ Gi

}
(11)

We assume that such a solution (f̂ , ĝ) exists.
We reduce the new model to the classic Wardrop setting as in [11]: we add an imaginary

new edge ei = (si, ti) connecting the origin-destination pair of commodity i. By imaginary we
mean that this new edge is not actually seen by the users. We think of the unrouted demand
Gi − gi as being sent along this edge. The cost of this new edge is set to Γ(

∑
P∈Pi

fP ). As
in [13] we can write down the associated complementarity problem (ELASTIC CP) (listed in
the appendix).

The objective function of (11) is a sum of terms, one for every edge (real or imaginary).
Every term is an increasing function of the corresponding edge flow. Therefore, in any solution
(f∗, u∗, b∗) of (ELASTIC CP) we have that f∗ei

= Gi − ĝi,
∑

P∈Pi
f∗P = ĝi for all i, and

f∗e = f̂e,∀e ∈ E. If any of these equalities is a strict inequality then (f̂ , ĝ) is not an optimal
solution of (11) for reasons similar to the argument in Lemma 2. The results of this paper2

imply the existence of optimal taxes (b∗, v∗) that will induce each user i to send flow ĝi through
the original network incurring flow f̂e on every edge e ∈ E.

For the case of homogeneous users (a(i) = 1, i = 1, . . . , k), it is well-known that the
KKT conditions for (11) imply that setting the tax be to f̂e

∂le
∂fe

(f̂e) and vi = 0,∀i a solution
of (ELASTIC CP) is achieved. For this particular solution, the (common) cost of any path
P ∈ Pi used by commodity i is indeed equal to the benefit Γi(ĝi) as originally required.

In the general case of heterogeneous users though, some vi may have to be non-zero. In other
words it is in general impossible to steer the selfish users through taxation to the optimal flow
pattern f̂ and have the participants from class i experience travel cost Γi(ĝi). Intuitively the
reason is that we now prescribe both the edge flow f̂ and the generalized costs ui of the
equilibrium. An infinite family of counterexamples can be easily constructed. For example,
consider the simple network with two nodes s, t and a single edge e = (s, t) with latency
function le(x) = x. We have two players (commodities) with a(1) = 1, a(2) = 2, G1 = G2 = 1
and Γ1(x) = 8(1 − x),Γ2(x) = 4(1 − x). The unique flow that optimizes (11) sends amounts
f̂1 = 5/7, f̂2 = 3/7 of flow for the first and second players respectively through e, and Γ1(5/7) =
16/7,Γ2(3/7) = 16/7. But there is no be such that le(f̂1 + f̂2)+ a(1)be = le(f̂1 + f̂2)+ a(2)be =
16/7, therefore v1, v2 cannot be both 0.

Computability of optimal taxes. The results of Sections 3 and 4 imply the existence
of optimal taxes for the setting of elastic demands both without and with penalties for non-
participation. For the latter case, modeled by (ELASTIC CP), it has been shown [20, 9, 13]
that given an optimum solution (f̂ , ĝ) the solution of this complementarity problem is reduced
to the solution of a linear program, hence the optimal taxes can be computed in polynomial
time. On the other hand, the complementarity problem (GENERAL CP’) can be hard to
solve, even with our assumption that functions xle(x) are convex, due to the generality of the
Di(u) functions.

2In fact the results of [13] suffice.
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A The omitted complementarity problem formulations

The complementarity problem (GENERAL CP’):

fP (TP (f̂)− ui) = 0 ∀i, ∀P ∈ Pi (GENERAL CP’)

TP (f̂) ≥ ui ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP −Di(u)) = 0 ∀i

∑
P∈Pi

fP −Di(u) ≥ 0 ∀i

be(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

(
∑
e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e))− µi)f̂P = 0 ∀i, ∀P ∈ Pi

∑
e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e))− µi ≥ 0 ∀i, ∀P ∈ Pi

µi(
∑

P∈Pi

f̂P −Di(u)) = 0 ∀i

∑
P∈Pi

f̂P −Di(u) ≥ 0 ∀i

fP , be, ui, f̂P , µi ≥ 0

The complementarity problem (ELASTIC CP):

fP (lP (f) +
∑
e∈P

be − ui) = 0 ∀i,∀P ∈ Pi (ELASTIC CP)

fei(Γ(Gi − fei) + vi − ui) = 0 ∀i

lP (f) +
∑
e∈P

be ≥ ui ∀i,∀P ∈ Pi
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Γ(Gi − fei) + vi ≥ ui ∀i

ui(
∑

P∈Pi

fP + fei −Gi) = 0 ∀i

∑
P∈Pi

fP + fei ≥ Gi ∀i

vi(fei − (Gi − ĝi)) = 0 ∀i
fei ≤ Gi − ĝi ∀i

be(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

fP , be, ui, vi ≥ 0 ∀i,∀P,∀e

B Proof of Lemma 2

The proof of the first part of the lemma is essentially the same as the proof by contradiction of
Proposition 4.1 in [1]. Suppose that

∑
P∈Pi

f∗P > Di(u∗) ≥ 0 for some i. Then u∗i (
∑

P∈Pi
f∗P −

Di(u∗)) = 0 ⇒ u∗i = 0 and there is a path P ∈ Pi such that f∗P > 0. Since f∗P 6= 0
and the TP () function is positive, TP (f∗) > 0 = u∗i . Because (f∗, b∗, u∗, f̂∗, µ∗) is a solution
of (GENERAL CP), we have that f∗P (TP (f∗) − u∗i ) = 0 ⇒ f∗P = 0, a contradiction. Hence∑

P∈Pi
f∗P = Di(u∗), ∀i.

Since f∗ is part of a solution for (GENERAL CP), f∗e ≤ f̂∗e , ∀e ∈ E. The following claim is
a result of the special nature of f̂∗ as a minimizer of the social cost:

Claim 1 Let f̄ be a flow that satisfies the following set of constraints:∑
P∈Pi

fP = Di(u∗) ∀i ∈ {1, . . . , k}

fe =
∑

P∈P:e∈P

fP ∀e ∈ E

fe ≤ f̂∗e ∀e ∈ E

fP ≥ 0 ∀P ∈ P

Then f̄e = f̂∗e , ∀e ∈ E.

Proof of Claim: Vector f̂∗ solves optimally (MP) hence∑
e∈E

f̂∗e le(f̂∗e ) ≤
∑
e∈E

f̄ele(f̄e) (12)

Since f̄e ≤ f̂∗e and le(·) is increasing we obtain that le(f̄e) ≤ le(f̂∗e ). Since le(·) is nonnegative
for all e ∈ E, we obtain that

f̄ele(f̄e) ≤ f̂∗e le(f̂∗e ), ∀e ∈ E.

If for some e, f̄e < f̂∗e , then because le(·) is increasing 0 ≤ le(f̄e) ≤ le(f̂∗e ); because le(·) is
positive le(f̂∗e ) 6= 0. From these two facts

f̄ele(f̄e) < f̂∗e le(f̂∗e )
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and then
∑

e∈E f̄ele(f̄e) <
∑

e∈E f̂∗e le(f̂∗e ) which contradicts (12). 2

Since f∗ satisfies the constraints of Claim 1, we have that f∗e = f̂e, ∀e ∈ E. 2

C Proof of Lemma 3

If (f∗, b∗, u∗, f̂∗, µ∗) is a solution of (GENERAL CP), then it is also a solution of (GENERAL
CP’) due to Lemma 2. Conversely, if (f̄ , b̄, ū,

¯̂
f, µ̄) is a solution of (GENERAL CP’), then

we can prove the analogue of Lemma 2 for (GENERAL CP’) (we only have to notice that
le(

¯̂
fe) ≥ le(f̄e) > 0 whenever f̄e > 0, hence if there is P ∈ Pi such that f̄P > 0, then∑
e∈P

le(
¯̂
fe)

a(i) +
∑

e∈P b̄e > 0).

D Proof of Lemma 4

The proof is very similar to the proof of the stronger result contained in Theorem 2 in [9] (we do
not need the stronger version for our purposes). Let (û, b̂) be an optimal basic feasible solution
of (DP*). Then the solution (û, b̂) can be partitioned into two components (ûB, b̂B), (ûN , b̂N ),
with

(ûN , b̂N ) = 0, (ûB, b̂B) = A−1
B t

where A, t are the coefficient matrices for the constraints of (DP*) (i.e., A[u b]T ≤ t in (DP*)),
B is the set of A rows in the basis of (û, b̂), and N the rest of the A rows. By observing that
AB is of dimension at most (k + m) × (k + m) and its entries are all ±1, we can conclude
that the entries of A−1

B are upper-bounded by S, the maximum possible entry of any inverse
of any ±1 matrix of dimension at most (k + m) × (k + m) (note that S depends only on

(k + m).) Recall that amax = maxi{1/a(i)} and lmax = maxe{le(k ·Kf )}. Then tP = lP (f̂∗)
a(i) ≤

amaxmlmax, ∀i, ∀P ∈ Pi, and therefore

b̂e ≤ (k + m)Smamaxlmax = Kb − 1, ∀e ∈ E.

2
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