
Social Exchange Networks With Distant BargainingI

Konstantinos Georgiou1, George Karakostas2,∗, Jochen Könemann1, Zuzanna Stamirowska3

Abstract

Network bargaining is a natural extension of the classical, 2-player Nash bargaining solution to the network
setting. Here one is given an exchange network G connecting a set of players V in which edges correspond
to potential contracts between their endpoints. In the standard model, a player may engage in at most one
contract, and feasible outcomes therefore correspond to matchings in the underlying graph. Kleinberg and
Tardos [STOC’08] recently proposed this model, and introduced the concepts of stability and balance for
feasible outcomes. The authors characterized the class of instances that admit such solutions, and presented
a polynomial-time algorithm to compute them.

In this paper, we generalize the work of Kleinberg and Tardos by allowing agents to engage into more
complex contracts that span more than two agents. We provide suitable generalizations of the above stability
and balance notions, and show that many of the previously known results for the matching case extend to
our new setting. In particular, we can show that a given instance admits a stable outcome only if it also
admits a balanced one. Like Bateni et al. [ICALP’10] we exploit connections to cooperative games. We
fully characterize the core of these games, and show that checking its non-emptiness is NP-complete. On
the other hand, we provide efficient algorithms to compute core elements for several special cases of the
problem, making use of compact linear programming formulations.

Keywords: bargaining, exchange networks, cooperative games

1. Introduction

The study of bargaining has been a central theme in economics and sociology, since it constitutes a basic
activity in any human society. The most basic bargaining model is that of two agents A and B that negotiate
how to divide a good of a certain value (say, 1) amongst themselves, while at the same time each has an
outside option of value α and β respectively. The famous Nash bargaining solution [1] postulates that in an
equitable outcome, each player should receive her outside option, and that the surplus s = 1 − α − β is to
be split evenly between A and B.

IThis work was initiated in the International Problem Solving Workshop, held in July 16-20, 2012. and organized as part of the
MITACS International Focus Period “Advances in Network Analysis and its Applications”. We would like to thank MITACS for
this great opportunity. Research partially supported by NSERC.

∗Corresponding author
Email addresses: k2georgiou@math.uwaterloo.ca (Konstantinos Georgiou), karakos@mcmaster.ca (George

Karakostas), jochen@math.uwaterloo.ca (Jochen Könemann), zuzanna.stamirowska@sciences-po.org
(Zuzanna Stamirowska)

1Department of Combinatorics & Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
2Department of Computing & Software, McMaster University, Hamilton, Ontario L8S 4K1, Canada
3École Polytechnique, Paris, France

Preprint submitted to Theoretical Computer Science November 27, 2013

More recently, Kleinberg and Tardos [2] proposed the following natural network extension of this game.
Here, the set of players corresponds to the vertices of an undirected graph G = (V,E); each edge ij ∈ E
represents a potential contract between players i and j of value wij ≥ 0. In Kleinberg and Tardos’ model,
players are restricted to form contracts with at most one of their neighbours. Outcomes of the network
bargaining game are therefore given by a matching M ⊆ E, and an allocation x ∈ RV+ such that xi + xj =
wij for all ij ∈M , and xi = 0 if i is not incident to an edge of M .

Unlike in the non-network bargaining game, the outside option αi of player is not a given parameter but
rather implicitly determined by the network neighbourhood of i. Specifically, in an outcome (M,x), player
i’s outside option is defined as αi = max{wij−xj : ij ∈ δ(i)\M}, where δ(i) is the set of edges incident
to i. An outcome (M,x) is then called stable if xi + xj ≥ wij for all edges ij ∈ E, and it is balanced if
in addition, the value of the edges in M is split according to Nash’s bargaining solution; i.e., for an edge
ij, xi − αi = xj − αj . Kleinberg and Tardos provide a characterization of the class of graphs that admit
balanced outcomes, and present a combinatorial algorithm that computes one if it exists.

Bateni et al. [3] recently exhibited a close link between the study of network bargaining and that of
matching games in cooperative game theory. The authors showed that stable outcomes for an instance
of network bargaining correspond to allocations in the core of the underlying matching game. Moreover,
balanced outcomes correspond to prekernel allocations. As a corollary, this implies that an algorithm by
Faigle et al. [4] gives an alternate method to obtain balanced outcomes in a network bargaining game.
Bateni et al. also extended the work of [2] to bipartite graphs in which the agents of one side are allowed to
engage in more than one contract.

Matching games have indeed been studied extensively in the game theory community since the early 70s,
when Shapley and Shubik investigated the core of the class of bipartite matching games, so called assign-
ment games, in their seminal paper [5]. Granot and Granot [6] also study the core of the assignment game;
the authors show that it contains many points, some of which may not be desirable ways to share revenue.
The authors propose to focus on the intersection of core and prekernel instead, and provide sufficient and
necessary conditions for the former to be contained in the latter. Deng et al. [7] generalized the work of
Shapley and Shubik to matchings in general graphs as well as to cooperative games of many other com-
binatorial optimization problems. We refer the reader also to the recent survey paper [8] and the excellent
textbook [9].

In this paper we further generalize the work of [2] and [3] on network bargaining by allowing contracts
to span more than two agents. Our study is motivated by bargaining settings where goods are complex
composites of other goods that are under the control of autonomous agents. For example, in a computer
network setting, two hosts A and B may wish to establish a connection between themselves. Any such
connection may involve physical links from a number of smaller autonomous networks that are provisioned
by individual players. In this setting, value generated by the connection between A and B cannot merely
be shared by the two hosts, but must also be used to compensate those facilitators whose networks the
connection uses.

1.1. Generalized network bargaining

We formalize the above ideas by defining the class of generalized network bargaining (GNB) games.
In an instance of such a game, we are given a (directed or undirected) graph G = (V,E) whose vertices
correspond to players, and edges that correspond to atomic goods; the value of the good corresponding to e
is given by we ≥ 0. We assume that V is partitioned into terminals T , and facilitators R. Intuitively, the
terminals are the active players that seek participation in contracts, while facilitators are passive, and may

2

get involved in contracts, but do not seek involvement. We further let C be a family of contracts each of
whom consists of a collection of atomic goods. We let w(c) be the value of contract c which we simply
define as the sum of values we of the edges e ∈ c. We note here that in the work of [2] and [3], C consists
just of the singleton edges.

A set C ⊆ C of contracts is called feasible if each two contracts in C are vertex disjoint. An outcome of
an instance of GNB is given by a feasible collection C ⊆ C as well as an allocation x ∈ RV+ of the contract
values to the players such that

x(c) :=
∑
v∈c

xv = w(c).

Which outcomes are desirable? We propose the following natural extensions of the notions of stability
and balance of [2]. Consider an outcome (C, x) of some instance of GNB. Then define the outside option
αi of player i as

αi := max
c∈C:i∈c 6∈C

{w(c)− x(c)}+ xi.

Intuitively, the outside option of i is given by the value she can earn by breaking her current contract, and
participating in a contract that is not part of the current outcome. We will assume that each agent i is incident
to a self-loop of value 0, and hence has the option of not collaborating with anyone else. In what follows
a(c) :=

∑
v∈c av for a contract c ∈ C.

Having defined αi, we can now introduce the notions of stability and balance. An outcome (C, x) is
stable if xi ≥ αi for all agents i: every agent earns at least her outside option. Again extending the concept
of Nash bargaining solution in the most natural way, we say that an outcome is balanced if the surplus of
each contract is shared evenly among the participating agents. Formally, for all c ∈ C, and for all i ∈ c we
require

xi = αi +
w(c)− α(c)

|c|
.

Equivalently, this means that xi − αi = xj − αj for all i, j ∈ c, and for all c ∈ C.

1.2. Our results

Following Kleinberg and Tardos, we are interested in (a) characterizing the class of GNB instances that
have stable and balanced outcomes, and (b) in computing such outcomes efficiently whenever they exist.
Similar to [3], we first identify a natural cooperative game Γ(I) associated with a given GNB instance I .
Γ(I) has player set V and the value function is defined by letting

v(S) = max
C⊆C(S), C feasible

∑
c∈C

w(c),

for all S ⊆ V , where C(S) is the set of contracts contained in the set S. We briefly introduce a few pertinent
solution concepts for cooperative games, and refer the reader to [9] for a comprehensive introduction to the
topic. The core C of Γ(I) consists of all allocations x ∈ RV+ that satisfy x(S) ≥ v(S) for all S ⊆ V , and
this inequality is tight for S = V . The power of agent i over agent j is given by

sij(x) = max
S⊆V : i∈S,j 6∈S

v(S)− x(S), (1)

3

and the prekernel P consists of all allocations x for which sij = sji for all agents i and j. In the following
first result, let stable be the projection of the collection of all stable outcomes (C, x) onto the x-space.
Similarly, balance is the projection of all balanced outcomes onto the x-space.

Theorem 1.1. Let I be an instance of GNB, and Γ(I) the corresponding cooperative game. Then C =
stable, and C ∩ P ⊆ stable ∩ balance. There are instances of GNB where this inclusion is strict.

It is well known (e.g., see [4]) that if the core of Γ(I) is non-empty then so is the intersection of core and
prekernel. We therefore obtain the following corollary.

Corollary 1.2. Every GNB instance with a stable solution also admits a balanced one.

But can one find stable and balanced solutions efficiently? As it turns out (see below) not always.
However, given a point in the core, and an efficient oracle for the computation of powers (as specified in
(1)), we can find a point in the prekernel of Γ(I) via a result by Faigle, Kern and Kuipers [4] (see also [10]).
We obtain the following corollary.

Corollary 1.3. There is a polynomial-time algorithm to compute stable and balanced solutions for an in-
stance of GNB if (a) we have a polynomial-time method to compute a point in the core, and (b) (1) can be
computed efficiently.

Unfortunately, computing sij in (1) may amount to solving an NP-hard problem; e.g., when C consists
of all paths in the given graph, one easily sees that a poly-time oracle for computing powers would enable
us to solve the NP-hard longest path problem. Nevertheless, there are many families of instances of interest
where the conditions of Corollary 1.2 are satisfied, e.g. instances where C is explicitly given as part of the
input, or whenever the family C induces an acyclic subgraph of the input graph.

In light of Corollary 1.2, in order to characterize instances of GNB that have stable and balanced solu-
tions, we may characterize the set of instances I for which Γ(I) has a non-empty core. We can show the
following.

Theorem 1.4. For a given GNB instance I , we can write a linear program (P1) that has an integral optimal
solution iff the core of Γ(I) is non-empty.

Hence (P1) fully characterizes the class of GNB instances that admit stable and balanced solutions. We
may, however, not be able to solve the LP.

Theorem 1.5. Given an instance I of GNB, it is NP-complete to (a) check whether the core of Γ(I) is
non-empty, and (b) check whether a specific allocation x ∈ Rn+ is in the core.

In this theorem, we assume that C is part of the input. We can show (a) by using a reduction from
exact-cover by 3-sets following a previous result by Conitzer and Sandholm [11] closely. Part (b) employs
a reduction from 3-dimensional matching, and is similar to a result for minimum-cost spanning tree games
by Faigle et al. [12].

We note here that the results in Theorems 1.1, 1.4 and 1.5 do not rely on the specific type of underlying
graph (i.e., directed or undirected). Departing from this, our next result focuses on GNB instances whose
contract set is implicitly given as the set of all terminal-terminal paths in a directed graph. For such instances
I , we present efficiently solvable linear programs (P2) and (P3) that are integral only if the core of Γ(I) is
non-empty.

4

Theorem 1.6. Given an instance I of GNB where C is the set of all terminal-terminal paths in an underlying
directed graph, we can find efficiently solvable LPs (P2) and (P3) that are integral only if the core of Γ(I) is
non-empty.

Unfortunately, the latter two LPs do not fully characterize core non-emptiness of Γ(I), and there are
instances with non-empty core for which the two LPs are fractional. The two LPs are not equivalent, and
there are instance of GNB where one of the two LPs is fractional and the other is not.

2. Computing balanced outcomes

The goal of this section is to provide a proof of Theorem 1.1. Let us fix an instance I of GNB with graph
G = (V,E), and weights we for all e ∈ E. Recall that the cooperative game Γ(I) for I has player set V ,
and that the value v(S) of a coalition S ⊆ V is given by the maximum value of any feasible collection of
contracts that are entirely contained in S. We first make the following observation.

Observation 2.1. Computing v(V) for Distant Bargaining Games G=(V,E), for which the set of feasible
contracts is part of the input, is NP-hard.

Proof. The reduction is from 3-dimensional matching (3DM) where all three vertex sets have the same size.
Given an instance H = (L ∪M ∪ R,F) of this problem (where F contains hyperedges, each containing
exactly one vertex from each L,M,R), we consider the following Distant Bargaining instance. The set
of terminals is L ∪ R, and the set of facilitators is M . For every hyperedge, we introduce two new edges
connecting each of the two terminals to the facilitator, each of weight 1/2, as well as we introduce the
associated contract (of weight 1) containing exactly these two edges; we still allow only the “hyperedge
contracts” to be formed by the new edges, and no other combinations. Finally, it is easy to see that H =
(L ∪M ∪R,F) admits a 3d-matching if and only if v(L ∪M ∪R) = |L|.

We will now relate the core of Γ(I) and the set of stable outcomes of I . In order to do this, we need the
following lemma, and leave its straight-forward proof to the reader.

Lemma 2.2. Let x be an allocation in the core. Then there is a feasible collection C ⊆ C of maximum value
such that

∑
i xi =

∑
c∈C w(c).

The following lemma shows that core and set of stable allocations coincide.

Lemma 2.3. C = stable

Proof. Let x ∈ C, and note that by definition, x(c) ≥ w(c) for all c ∈ C. Again from the definition of the
outside option, this means that αi ≥ 0 for all agents i, and hence x ∈ stable.

Conversely, let x be a stable allocation and let C ⊆ C be the associated feasible set of contracts. We
clearly have x(c) = w(c) for all c ∈ C, and x(c′) ≥ w(c′) for all c′ 6∈ C. Consider a set S of players, and
let c′1, . . . , c

′
k ∈ C be a feasible collection of contracts that defines the value of S; i.e.,

v(S) = w(c′1) + . . .+ w(c′k).

From before we know that x(c′i) ≥ w(c′i) for all i, and feasibility therefore shows that x(S) ≥
∑

i x(c′i) ≥
v(S). Finally, note that this argument shows that x(V) ≥ v(V), but clearly, this latter inequality must be
tight from the definition of outcomes.

5

We now show that solutions in the prekernel P are balanced.

Lemma 2.4. C ∩ P ⊆ stable ∩ balance

Proof. Let x ∈ C ∩ P. By Lemma 2.3 we know that x ∈ stable. Hence it remains to argue that x is also
balanced. We first argue that for all agents i, j, whenever x ∈ C, there must be a contract c containing i and
not j such that sij = v(c)− x(c). Indeed, suppose that

sij = v(S)− x(S),

for some S ⊆ V for which i ∈ S 63 j. Then let c1, . . . , ct ∈ C(S) be a feasible collection of contracts whose
joint value equals v(S). Without loss of generality, suppose that i ∈ c1. Then for every contract cr, x ∈ C
implies that w(cr)− x(cr) ≤ 0, and hence, as claimed,

v(S)− x(S) =

t∑
r=1

(w(cr)− x(cr)) ≤ w(c1)− x(c1).

Since x ∈ P we know that sij(x) = sji(x), for all i, j ∈ V . From Lemma 2.2 we also know that x
corresponds to some maximum value set of feasible contracts, say, C. Fix a contract c ∈ C and two agents
i, j ∈ C. In what follows we argue that αi − xi = αj − xj , which directly implies that x ∈ balance.

For the sake of simplicity, we denote arg maxαi and arg max sij(x) by ci and qij respectively. Then we
note that if i 6∈ cj then qji = cj and hence sji(x) = αj − xj . Also, if i ∈ cj , then αj − xj ≥ sji(x), since
the set cj is not considered when we maximize over subsets in order to find sij(x).

With these observations at hand, we can now examine three cases. First, suppose that i 6∈ cj and j 6∈ ci.
Then sij(x) = sji(x) implies that αi − xi = αj − xj . In the second case, if i ∈ cj and j ∈ ci, then ci = cj ,
so again αi − xi = αj − xj . Finally, in the third case we assume that i 6∈ cj (and therefore qji = cj , that
is sji(x) = αj − xj) and that j ∈ ci (and so, αi − xi ≥ sij(x)). It follows that if sij(x) = sji(x), then
αi − xi ≥ αj − xj . Also, since j ∈ ci we conclude that αj − xj ≥ αi − xi. Overall, this implies again that
αj − xj = αi − xi, as we wanted.

u

z w

v
x

1

1 1
1

2

Figure 1: Counter-example for the reverse inclusion in Lemma 2.4

Figure 1 shows an instance of GNB with terminals {u, v, w, z} and contracts C = {uv, vw,wz, uz, uxv}.
Consider feasible contracts C = {uv,wz} of total value 3. The allocation χu = χv = 1, χw = χz = 1/2,
and χx = 0 is easily checked to be stable and balanced. However, since suv = 0− (1/2 + 1) = −3/2, and
svu = 1 − (1/2 + 1) = −1/2, χ is not in the prekernel. Together with Lemmata 2.3 and 2.4 we obtain a
proof of Theorem 1.1.

6

3. Characterizing the core

As we have seen in Lemma 2.3, the set of stable allocations for a GNB instance I equals the core of the
cooperative game Γ(I). In this section, our goal will be to characterize instances I where Γ(I) has a non-
empty core. Further, if the core of Γ(I) is non-empty then we will investigate the computational complexity
of finding such a point.

3.1. The core via linear programming

We start this section by presenting a linear programming formulation that is integral iff the core of Γ(I)
is non-empty. The LP has a variable zc for each contract c ∈ C, and maximizes the total value of chosen
contracts subject to feasibility. The LP is shown on the left below.

max
∑
c∈C

w(c) zc (P1)

s.t.
∑
c:i∈c

zc ≤ 1, ∀i ∈ V

z ≥ 0

min
∑
i∈V

yi (D1)

s.t.
∑
i∈c

yi ≥ w(c), ∀c ∈ C

y ≥ 0.

The LP

on the right is the linear programming dual of (P1). It has a variable yi for each agent i ∈ V , and a constraint
for every c ∈ C. We will now present a proof of Theorem 1.4, and show that the core of Γ(I) is non-empty
iff (P1) has an integral optimal solution.

Proof of Theorem 1.4. Recall that by Lemma 2.3, the core of Γ(I) equals the set stable of stable allocations
in I . Also recall that an outcome (C, x) is stable iff for all c′ 6∈ C, x(c′) ≥ w(c′) and w(c) = x(c) for all
c ∈ C.

Now suppose that (P1) has an integral optimal solution z, and let y be the corresponding optimal dual
solution. Clearly, 0 ≤ z ≤ 1, and hence we may define the set C ⊆ C of contracts c with zc = 1. We now
claim that (C, y) is a stable outcome. Indeed, all stability conditions are provided by the dual constraints,
and by complementary slackness, they are tight when zc > 0.

For the other direction, consider a stable outcome (C, x). It is easy to see that zP = 1 for P ∈ C and
0 otherwise, and y = x are primal and dual feasible solutions respectively. Complementary slackness is
implied exactly by the definition of outcomes that require that the sum of agent earnings in each contract
matches the contract surplus.

We do not know how to solve (P1) efficiently. Worse than that, even if we are able to solve the LP, we
may not be able to decide whether there is an integral optimal solution. The proof of the following result is
implicit in [11], and given here for completeness.

Lemma 3.1. Given an instance I of GNB it is NP-complete to decide whether the core of Γ(I) is non-empty.

Proof. We first show that the problem is in NP. For this, we non-deterministically guess a feasible collection
C ⊆ C of contracts. We then solve the linear system

x(c) = w(c) ∀c ∈ C (2)

x(c) ≥ w(c) ∀c ∈ C \ C. (3)

7

in order to find x ∈ RV+. This can be done in polynomial time (e.g., via linear programming) as C is part of
the input. It is easy to check that the system has a feasible solution if x is in the core.

To show hardness, we reduce from an instance of exact cover by 3-sets (X3C), where we are given a
ground-set S of size 3m and subsets {S1, . . . , Sq} of S each of which has size 3. The question is whether
there are m pairs whose union is S.

Here is how we encode this problem as an instance of GNB. We create a graph G with vertex set
S ∪ {x, y}, where x and y are two new dummy vertices. For each Si = {a, b, c} in the X3C instance,
we add distinct edges ab and bc each of cost 3/2 (middle vertex is chosen, say, lexicographically), and we
add abc to the list of allowed contracts C. We also add trees Tx and Ty spanning S ∪ {x}, and S ∪ {y},
respectively. Once again, the edge sets of Tx and Ty are disjoint, and distinct from the other edges added
previously. We distribute weight 6m over the edges of Tx, and similarly over the edges of Ty in some
arbitrary way, and add E(Tx) and E(Ty) to the set of allowed contracts. Finally we add xy to the graph and
contract set, and assign a weight of 6m to this edge. We claim that the core of the game Γ(I) of the above
instance is non-empty iff the given X3C instance is a ’yes’ instance.

Assume first that S1, . . . , Sm is an exact 3-cover. In this case, note that the corresponding contracts
together with xy are feasible, and have joint value 9m. One can now verify that χ with χi = 1, for all i ∈ S,
and χx = χy = 3m is in the core.

Conversely, if no exact 3-cover exists, then the value v(S) is less than 3m, and the value of the grand
coalition is less than 9m. Consider any vector χ ∈ RS∪{x,y}+ such that χ(V) = v(V) < 9m. It is not
difficult to see that there are two distinct sets

U,W ∈ {S, {x}, {y}},

such that χ(U) + χ(W) < 6m. But U ∪W is a coalition of value 6m by our definition, and χ is therefore
not in the core.

So, even if (P1) can be solved efficiently, we may not be able to check efficiently for an integral optimal
solution. We now show that it is also hard to check whether a certain allocation is in the core, which in
combination with Lemma 3.1 conclude Theorem 1.5.

Lemma 3.2. It is NP-complete to check whether an allocation x ∈ RV+ is in the core of the cooperative
game of a GNB instance I .

Proof. The problem is certainly contained in NP. To see this, we first non-deterministically guess a feasible
collection C ⊆ C and then check that (2) and (3) hold.

To prove hardness, we once again reduce from the 3-dimensional matching problem. Given an instance
of 3DM, we create an instance of GNB by creating a graph with terminal vertices L ∪M ∪ R. For each
(l,m, r) ∈ F , we add edges lm and mr of value 1/2 each, and add contract {lm,mr} to the set C of
allowed contracts.

Consider the vector χ with χv = 1 if v ∈ M , and χv = 0 otherwise. We claim that χ is in the core iff
the given 3DM instance is a ’yes’ instance.

If the given 3DM instance is a ’no’ instance, then v(V) < |M | = χ(V), and hence χ is not in the core.
Conversely suppose that the 3DM instance is a ’yes’ instance. In this case, χ(V) = |M | = v(V), and
clearly χ(c) = 1 = w(c) for every contract c ∈ C.

8

3.2. Implicitly given contracts

In this section, we focus on GNB instances where C is implicitly given as the set of all terminal-terminal
paths in an underlying directed graph D with node-set V , and arcs A. The internal nodes of each of these
paths are assumed to be facilitators. Thus, C is not part of the input, and LP (P1) may have an exponential
number of variables. We do not know how to efficiently solve this LP in this case. In the following, we
present two LPs for a given instance of GNB that (a) have integral optimal solutions only if the core of Γ(I)
is non-empty, and (b) are poly-time solvable.

In the following, let us fix an instance I of GNB with graph D = (V,A), and weights wuv for all arcs
(u, v) ∈ A. The two LPs to be presented are flow formulations.

3.2.1. Cycle-free Flow Formulation

Observe that a set C of arcs in D corresponds to a feasible set of contracts iff (a) every terminal agent
has at most one incident arc, (b) every facilitator agent has at most one outgoing arc, (c) every facilitator has
equally many incoming and outgoing arcs, and (d) for every set of facilitators S, there is at least one outgoing
arc in C if there is an arc in C that has both endpoints in S. Therefore, the following LP is a relaxation for
computing the value of the grand coalition (recall that contracts are all terminal-terminal paths). For a set S
of nodes, we let δ+(S) be the set of arcs with tail in and head outside S. Furthermore, we let γ(S) be the
set of arcs with both ends in S.

max
∑
a∈A

waxa (P2)

s.t. x
(
δ−(v)

)
+ x

(
δ+(v)

)
≤ 1 ∀v ∈ T

x(δ+(v)) ≤ 1 ∀v ∈ R
x
(
δ−(v)

)
− x

(
δ+(v)

)
= 0 ∀v ∈ R

x
(
δ+(S)

)
≥ xa ∀S ⊆ R, ∀a ∈ γ(S) (4)

x ≥ 0

Note that (P2) can be solved in polynomial time via the Ellipsoid method [13]: given a candidate solution
x, it can be efficiently checked whether one of the polynomially many constraints of one of the first three
types is violated. Separating the constraints of type (4) can be reduced to a polynomial number of minimum-
cut computations in suitable auxiliary graphs. We leave the details to the reader.

Lemma 3.3. If LP (P2) for GNB instance I has an integral optimal solution, then the core of Γ(I) is non-
empty.

Proof. We need to find an outcome χ such that for every S ⊆ V , χ(S)−v(S) ≥ 0, as well as χ(V) = v(V).
We claim that χ can be determined by considering the dual of (P2). For this we introduce the dual variables
αv, yv, zv, βS,a, corresponding to the constraints in the order they appear in (P2). Then the dual reads as

9

follows.

min
∑
v∈T

αv +
∑
v∈R

yv (D2)

s.t. yu + zu − zv −
∑

S,a:(u,v)∈δ+(S)

βS,a +
∑

S:(u,v)∈γ(S)

βS,(u,v) ≥ wuv ∀(u, v) ∈ γ(R)

αv − zv − yu −
∑

S,a:(u,v)∈δ+(S)

βS,a ≥ wuv ∀(u, v) ∈ A, u ∈ R, v ∈ T

αu + zv ≥ wuv ∀(u, v) ∈ A, u ∈ T, v ∈ R
αv + αu ≥ wuv ∀(u, v) ∈ γ(T)

α, y, β ≥ 0

We set χv = αv for all v ∈ T and χv = yv for all v ∈ R, and we claim that if (P2) has integrality gap 1, in
which case there is a matching dual solution, then χ ∈ C. To see this, consider S ⊆ V . We need to show
that χ(S)− v(S) ≥ 0, and that this constraint is tight for the grand coalition S = V . One quickly sees that
it suffices to show that for any path-contract P , x(P)− w(P) ≥ 0. This is because

v(S) = w(P1) + . . .+ w(Pk)

for some feasible collection of terminal-terminal paths P1, . . . , Pk.

So, fix a contract path P = v0, . . . , vp, where v0, vp ∈ T , and the rest of the agents are facilitators in R.
We sum all dual constraints that correspond to the arcs (v0, v1), . . . , (vp−1, vp), deriving

αv0 + αvp+

p−1∑
i=1

yvi +

p−2∑
i=1

− ∑
S,a:(vivi+1)∈δ+(S)

βS,a +
∑

S:(vi,vi+1)∈γ(S)

βS,(vi,vi+1)

−

∑
S,a:vp−1vp∈δ+(S)

βS,a ≥
p−1∑
i=0

wvivi+1

or in other words that

αv0 + αvp +

p−1∑
i=1

yvi +
∑
S,a

βS,a
(
−
∣∣δ+(S) ∩ P

∣∣+ ξ(a ∈ P)
)
≥ w(P), (5)

where ξ(a ∈ P) is 1 if a ∈ P and 0 otherwise. We note then that if a ∈ P , then since P is a path
contract, there is at least one edge leaving S (if S is non empty), since all cuts S considered are subsets of
the facilitators R. It follows that − |δ+(S) ∩ P |+ ξ(a ∈ P) ≤ 0, and by our definition of χ, inequality (5)
implies that χ(P) ≥ w(P).

Finally, consider the grand coalition S = V . Clearly, χ(V) is the value of the dual (D2) which agrees
with the optimal value of the (P2). The latter is exactly the value of the grand coalition v(V), since we
assumed that the primal has integrality gap 1.

Note that Lemma 3.3 is a direct implication of Theorem 1.4. The reason is that any solution feasible to
(P1) can be converted to a feasible solution to (P2) (of equal objective value) as follows; for every uv ∈ A set

10

χuv = 1
2

∑
P∈P: uv∈P zP . It follows that the optimal value of (P1) is sandwiched between the value of the

cooperative game Γ(I), and that of (P2). Taking into consideration that (P2) restricted to integral values is
an exact formulation of our problem, if (P2) has integrality gap 1, so does (P1). Nevertheless, the important
observation is that unlike (P1), we know how to efficiently solve relaxation (P2). Furthermore, the proof of
Lemma 3.3 is constructive, and gives rise to an efficient algorithm to compute a core allocation.

Unfortunately, we will later see that there are example instances of GNB with non-empty core for which
(P2) has no integral optimal solution (see Lemma 3.6). There are, however, many natural instance classes
of GNB for which we are able to find core allocations if these exist via our LP. An example is a class of
multi-layered graphs where the nodes are partitioned in k layers L1, . . . , Lk, with (L1 ∪ L2) = T, (L2 ∪
L3 ∪ . . . ∪ Lk−1) = R, and arcs existing only between nodes in consecutive layers (i.e., if (u, v) ∈ E then
u ∈ Li, v ∈ Li+1 for some 1 ≤ i ≤ k − 1). Note that the only contracts allowed are paths from terminals
in L1 to terminals in Lk. Each feasible solution we get if we relax (P2) by removing constraints (4) can be
mapped to a single-commodity flow on the network we get if we connect all nodes in L1 to a source s and all
nodes in Lk to a sink t (with arcs of weight 0), and we give capacity 1 to all nodes. Each such flow can also
be mapped to a feasible solution of the relaxed (P2). Since the flow polytope is integral, the optimal solution
of the relaxed (P2) is also integral; it also satisfies constraints (4), and, therefore, it is also an integral optimal
solution for (P2).

3.2.2. Subtour Formulation

We now present yet another polynomial-time solvable relaxation for GNB. Once again, we will see that
the existence of an integral optimal solution implies non-emptiness of core for Γ(I), and that the reverse of
this statement is false. However, as we will see in Section 3.2.3, (P2) and this new LP are incomparable, and
one may have integer optimal solution when the other does not.

max
∑
a∈A

waxa (P3)

s.t. x(δ+(v)) + x(δ−(v)) ≤ 1 ∀v ∈ T
x(δ+(v)) ≤ 1 ∀v ∈ R
x(δ−(v))− x(δ+(v)) = 0 ∀v ∈ R
x(γ(S)) ≤ |S| − 1 ∀S ⊆ R
x ≥ 0

It can be easily seen that (P3) restricted on integral values models exactly the problem of computing the value
of the grand coalition in the associated coalition game (recall that contracts are all terminal-terminal paths).
Once again it is easily shown that (P3) is polynomial-time solvable, and once again we utilize the Ellipsoid
method. We observe that the function (|S| − 1) − x(γ(S)) is submodular. Separating the constraints of
type (4) then reduces to submodular function minimization, for which there are polynomial-time algorithms
(e.g., see [14]).

Similarly to the previous section, we show that (P3) can be used as a certificate that the core is non empty,
for some, but not all instances.

Lemma 3.4. If LP (P3) for GNB instance I has an integral optimal solution, then the core of Γ(I) is non-
empty.

11

Proof. We will use the dual of (P3), which has variables αv, yv, zv, and βS corresponding to the constraints
in (P3).

min
∑
u∈T

αu +
∑
u∈R

yu +
∑
S⊆R

(|S| − 1)βS (D3)

s.t. yv + zu − zv +
∑

S:(u,v)∈γ(S)

βS ≥ wuv ∀(u, v) ∈ γ(R)

αu + yv − zv ≥ wuv ∀(u, v) : u ∈ T, v ∈ R
αv + zu ≥ wuv ∀(u, v) : u ∈ R, v ∈ T
αv + αu ≥ wuv ∀(u, v) ∈ γ(T)

α, y, β ≥ 0

Suppose that x is an optimal integral solution to (P3) and α, β, y, z the corresponding dual solution of
(D3). Let P be the collection of simple (directed) paths from T to T corresponding to x. Note that it follows
from complementary slackness that βS > 0 only if the corresponding constraint in (P3) is tight. Hence, we
obtain the following immediate claim.

Claim 3.5. A dual variable βS is non-zero only if S is the set of facilitator vertices of a contiguous subpath
of a path in P .

We will now show that the following assignment χ is in the core:

χu :=

{
αu, if u ∈ T
yu +

∑
S:u∈S

|S|−1
|S| βS , if u ∈ R

To see this, let p be a directed path contract (not necessarily in P) with vertex set V (p) = {v0, . . . , vq},
where v0 and vq are terminals, and all other vi are facilitator vertices. Just like in the proof of Lemma 3.3,
we sum the dual constraints corresponding to arcs on p, and obtain

αv0 + yv1 − zv1 +

q−2∑
i=1

yvi+1 + zvi − zvi+1 +
∑

S:(vi,vi+1)∈γ(S)

βS

+ αvq + zvq−1 ≥ w(p).

Collecting terms, and rearranging gives

αv0 + αvq +

q−1∑
i=1

yvi +
∑
S

βS |γ(S) ∩ p| ≥ w(p), (6)

where γ(S) ∩ p denotes the set of (facilitator,facilitator) arcs of p that lie entirely in S. Now note that

q∑
i=0

χvi = αv0 + αvq +

q−1∑
i=1

yvi +
∑
S

|S ∩ {v1, . . . , vq−1}|
|S| − 1

|S|
βS . (7)

12

It is now easy to lower-bound the coefficient of βS :

|S ∩ {v1, . . . , vq−1}|
|S| − 1

|S|
≥ |S ∩ {v1, . . . , vq−1}| − 1 ≥ |γ(S) ∩ p|,

and hence, with (6) and (7), it follows that χ(p) ≥ w(p) as wanted. Finally, note that

χ(V) =
∑
v∈T

αv +
∑
v∈R

yv +
∑
S

|S| |S| − 1

|S|
βS ,

which is exactly the dual objective value, and hence χ(V) = v(V), and χ is in the core.

Similarly to (P2), Lemma 3.4 is a direct consequence of Theorem 1.4. The proof we provided is con-
structive and gives rise to an efficient algorithm for computing core allocations. Finally note that Lemmata
3.3 and 3.4 prove Theorem 1.6.

Lemma 3.6. There are instances for which the C is non empty, still the integrality gap of both (P2) and (P3)
is bigger than 1.

Proof. Consider terminals t1, t2 and facilitators f1, f2, f3, f4, with edges connecting them (along with
weights) as seen in Figure 2. One of the optimal solutions is the path t1f2, f2f4, f4t2 of value 11. A

Figure 2: The optimal contract. Figure 3: The fractional LP solution.

core assignment would give xt1 = xt2 = 11
2 , and 0 to all facilitators. This can be seen to be in the core since

contracts are always paths connecting t1, t2, and none of them has cost more than what both terminals earn
together.

Finally, we argue how to fool both (P2) and (P3). For this we invent three flows; the path t1f2, f2f4, f4t2,
the path t1f1, f1f3, f3t2 and the cycle f1f2, f2f4, f4f3, f3f1 (depicted in Figure 3) all with value 1/2. A
claim that can be easily checked is that the proposed values satisfy both LPs, while the objective value in
both cases is 12, which is strictly bigger than the integral optimal.

3.2.3. The two flow formulations are incomparable

In this section we study the performance of (P2) and (P3) on two different instances of GNB with non-
empty core, for which we show that exactly one of the relaxations has integrality gap 1. This shows that the
two formulations are incomparable.

Lemma 3.7. There are instances for which the C is non empty, still the integrality gap of (P2) is bigger than
1.

13

Proof. We consider an instance on terminals t1, t2, t3 and facilitators f1, f2, f3, as depicted in Figure 4.
Edges between facilitators have weight 2, while edges between facilitators and terminals have weight 1. The
optimal contract has weight 6, connecting two of the terminals and utilizing all three facilitators (depicted
with the solid edges in Figure 4).

Figure 4: The optimal contract. Figure 5: Part of the fractional LP solution.

Now we define an outcome in the C by setting xti = 0 and xfi = 2, i = 1, 2, 3. Note that the sum of
all earnings is 6, exactly as the value of the optimal contract. Any other valid contract will use either one
or two facilitators. If only one is used, then the optimal contract will have value 2, exactly as much as the
facilitator earns. If the contract has two facilitators, then the contract has value 4, which is again as much as
the participating agents earn. Overall, this shows that x ∈ C.

Our next claim is that the (P2) has value strictly larger than 6, introducing an integrality gap strictly more
than 1. For this we define the following fractional flow: from every terminal we send two equal flows of
value 1

6 to the other two terminals by utilizing all three facilitators, once with a clockwise and once with a
counterclockwise flow. The two flows leaving terminal t2 are shown in Figure 5. Next, we set the value of
each edge to be its accumulated flow we defined above, and we claim that this is a feasible to (P2).

Indeed, from every terminal we have a total of 2
6 incoming and 2

6 outgoing flow, and hence the first
constraint is satisfied. Next, we observe that for every facilitator we have a total outgoing flow of 6

6 , and so
the second constraint is satisfied as well. The third constraint requires flow conservation which is obvious
from our construction. Finally, for the third constraint we need to consider subsets of facilitators of size
either 2 or 3. In both cases we have total outgoing flow 2

6 which is no less than the total flow on every
internal edge. This concludes feasibility. The lemma then follows by observing that the value of (P2) is
8.

Lemma 3.8. There are instances for which the C is non empty, still the integrality gap of (P3) is bigger than
1.

Proof. Consider two terminals t1, t2 and facilitators f1, f2, f3, as seen in Figure 6. Edges between the
facilitators have weight 1, terminal-facilitator edges have weight 0, and finally the unique terminal-terminal
edge has weight 2. The optimal solution (which is not unique) is the contract connecting directly t1 with t2
(and is depicted with the solid edge in Figure 6, along with the weight on all edges.)

Next we set xt2 = xt1 = 1, and xf1 = xf2 = xf3 = 0, and we claim that x ∈ C, something that can be
easily verified. To prove the lemma, we just need to show a feasible LP solution that exceeds the value 2.

14

Figure 6: The optimal contract. Figure 7: The fractional LP solution.

To that end, we propose an LP solution that consists of two flows, as shown in Figure 7. The direct
flow connecting the terminals has value 1, while the cyclical flow within the facilitators gives value 2/3
to each directed edge. The latter assignment satisfies the subtour constraint tightly, as well as all other LP
constraints. Still the value of the objective is 4.

One may observe that the instance of Figure 6 fooling (P3) does not elude from the last constraints of
(P2), which together with our similar observation about the instance of Figure 4 and (P3), shows that the
relaxations (P2) and (P3) are actually incomparable. Since both relaxations are defined over the same set
of variables, the possibility of characterizing non empty C with the intersection of the polytopes cannot be
precluded in principle. Still Lemma 3.6 shows that this is indeed the case.

4. Conclusion

In this paper, we introduce the class of generalized bargaining games as a natural extension of network
bargaining. We show that many of the known results for network bargaining extend to the new setting.
For example, we show that an instance I of GNB has a balanced outcome whenever it has a stable one. We
define a cooperative game Γ(I) for every GNB instance I and present an LP (P1) that has an integral optimal
solution iff the core of Γ(I) is non-empty.

Several interesting open questions remain: (1) In the case where the set of contracts is implicitly given
as all terminal-terminal paths in the underlying graph, is it hard to solve (P1) efficiently? (2) In the same
setting, can we give a good characterization of the class of graphs (possibly via excluded minors) that have
stable solutions?

References

[1] J. Nash, The bargaining problem, Econometrica 18 (1950) 155–162.

[2] J. M. Kleinberg, É. Tardos, Balanced outcomes in social exchange networks, in: Proceedings, ACM
Symposium on Theory of Computing, 2008, pp. 295–304.

[3] M. Bateni, M. Hajiaghayi, N. Immorlica, H. Mahini, The cooperative game theory foundations of
network bargaining games, in: Proceedings, Int. Colloq. on Automata, Languages and Processing,
2010, pp. 67–78.

15

[4] U. Faigle, W. Kern, J. Kuipers, An efficient algorithm for nucleolus and prekernel computation in some
classes of TU-games, Technical Report 1464, U. of Twente, 1998.

[5] L. S. Shapley, M. Shubik, The assignment game : the core, International Journal of Game Theory 1
(1971) 111–130.

[6] D. Granot, F. Granot, On some network flow games, Math. Oper. Res. 17 (1992) 792–841.

[7] X. Deng, T. Ibaraki, H. Nagamochi, Algorithmic aspects of the core of combinatorial optimization
games, Math. Oper. Res. 24 (1999) 751–766.

[8] X. Deng, Q. Fang, Algorithmic cooperative game theory, in: Pareto Optimality, Game Theory And
Equilibria, Springer Optimization and Its Applications, Volume 17, Springer, 2008, pp. 159–185.

[9] G. Chalkiadakis, E. Elkind, M. Wooldridge, Computational Aspects of Cooperative Game Theory,
Morgan & Claypool Publishers, 2011.

[10] H. Meinhardt, An lp approach to compute the pre-kernel for cooperative games, Computers & OR 33
(2006) 535–557.

[11] V. Conitzer, T. Sandholm, Complexity of constructing solutions in the core based on synergies among
coalitions, Artif. Intell. 170 (2006) 607–619.

[12] U. Faigle, W. Kern, S. P. Fekete, W. Hochstättler, On the complexity of testing membership in the core
of min-cost spanning tree games, Int. J. Game Theory 26 (1997) 361–366.

[13] M. Grötschel, L. Lovász, A. Schrijver, The ellipsoid method and its consequences in combinatorial
optimization, Combinatorica 1 (1981) 169–197.

[14] A. Schrijver, Combinatorial optimization, Springer, New York, 2003.

16

	Introduction
	Generalized network bargaining
	Our results

	Computing balanced outcomes
	Characterizing the core
	The core via linear programming
	Implicitly given contracts
	Cycle-free Flow Formulation
	Subtour Formulation
	The two flow formulations are incomparable

	Conclusion

