EFFECTIVE CACHING OF WEB OBJECTS USING ZIPF’S LAW

D.N. Serpanos

Dept. of Computer Science
University of Crete

G. Karakostas

Dept. of Computer Science
Princeton University

W.H. Wolf

Dept. of Electrical Eng.
Princeton University

Heraklion, Crete Princeton, NJ 08544 Princeton, NJ 08544
Greece USA USA
ABSTRACT cache-everywhere policy. Cache-everywhere makes sense

Web accesses follow Zipf’s law with a good approximation,
as measurements and observations indicate. This property
provides an important tool in the design of web caching
architectures, because it allows designers to calculate ap-
propriate cache sizes to achieve the desired hit ratios. The
appropriate cache size combined with an LFU replacement
policy achieves high cache hit rates. However, LFU re-
places objects based on frequency measurements of past ac-
cesses. Thus, the system achieves high hit rates only after
these measurements are reliable and converge to the final
Zipf distribution. In this paper, we provide an analysis us-
ing Chernoff’s bound and a calculation of an upper bound
of the number of initial requests that need to be processed in
order to obtain measurements of popularity with high confi-
dence and a measured Zipf distribution which converges to
the correct one.

1. INTRODUCTION

This paper describes new results that help us more efficiently
cache Web objects. Efficient caching is particularly impor-
tant for multimedia data on the Web—because audio and
video objects are large, they present different challenges for
Web caching than do simple text pages. Zipf’s law helps
us select which objects to cache, but to use it we must be
able to experimentally measure the popularity of cacheable
objects in our system. This paper describes the conditions
under which we can reliably apply Zipf’s law to a collection
of objects.

Traditional Web caching methods assume that the ob-
jects are small, such as the typical HTML page, which is
often less than 1 KB in size. For example, the Harvest/Squid
system [2] is the best-known Web caching system. It is or-
ganized as a hierarchy of proxy caches, with requests to
uncached objects being passed up the hierarchy as far as
necessary to retrieve the requested object. When the object
is retrieved, it is cached at every intermediate proxy cache
between the source and destination—this is often called a

when the objects are relatively small.

However, many multimedia objects are relatively large.
As a result, excessive caching burns up two important re-
sources: cache disk space and bandwidth. Video files are
sufficiently large that caching even a moderate amount of
video can fill up most practical caches. Furthermore, trans-
mitting large files consumes bandwidth that might be better
used if another object that is more likely to be requested
could be transmitted in its place. Kozuch and Wolf [5] de-
veloped algorithms and heurisitcs for placing large multi-
media objects in a hierarchical cache structure to optimize
the usage of disk space and bandwidth; however, this work
did not consider how to choose which objects should be
cached.

One rule for choosing which objects to cache that is re-
ceiving increasing attention is Zipf’s law, which has been
applied in a number of disciplines. Zipf’s law predicts that
the probability of access for an object is a function of its
popularity: the nt* most popular object will be accessed
with a probability proportional to 1/n. (Because this series
does not sum to 1, the 1/n factor must be weighted to create
a probability.) Bestavros et al [4] showed that Web accesses
can be modeled by Zipf’s law. Serpanos and Wolf [6] calcu-
lated the size of a cache that is required to achieve a desired
hit ratio using Zipf’s law caching. This work showed that
high hit rates can be achieved using Zipf’s law caching. This
work was independently verified by Breslau et al. [3].

Zipf’s law, however, does not directly directly tell us
how to select which objects to cache. In a realistic Web
caching system, we do not have a priori knowledge of doc-
ument popularities; we must instead deduce the relative im-
portance of documents by observing Web traffic. In this
paper, we derive new confidence bounds for determining
the Zipf’s law distribution for a Web cache. Our results give
the number of observations of Web requests that must be
observed to obtain a Zipf’s law ranking of objects with a
desired confidence. For simplicity, we concentrate on the
single Web cache case site in the Web, as indicated in Fig-

ure 1. In this model, one site, which contains many users is
attached to a single cache (gateway) which serves the whole
population of users (clients). The cache is receiving data
(objects) potentially from all servers attached to the Inter-
net.

In Section 2 we describe the system environment we
consider and introduce the notation used throughout the pa-
per. In Section 3 we describe the Zipf distribution of the
clients’ requests and calculate the sizes of the caches re-
quired to achieve high cache hit rates. In Section 4, we
calculate the bound on the number of client requests that
is necessary for the cache to accumulate before it considers
the Zipf distribution “reliable” for use for LFU.

2. MODEL AND NOTATION

Figure 1: Network Model

Figure 1 shows a typical configuration of a site, which pro-
vides a cache in the gateway between the enterprise (or cam-
pus) network and the Internet. In this model, clients make
requests for objects that reside on any of the servers shown
in the figure; we denote the sequence of requests from the
clients with R. The gateway, which caches objects, serves a
request if the requested object is stored in cache, otherwise
it forwards the request to the appropriate server.

Considering the observations that Internet accesses (ob-
ject requests) follow a Zipf (or Zipf-like) distribution, we
assume that the stream of client requests R is a series of
independent trials drawn from a Zipf (or Zipf-like) distribu-
tion over a set of N possible items (web pages or sites, in
our case). Specifically, we use the following assumptions
and notation:

1. there is a set S of N objects, S = {0; |1 <i < N},
which will be accessed by a group of users during a
time interval ¢7;

2. there is a known popularity of the N objects, i.e. which
one it the most popular, the 2-nd most popular, etc.,
and that the index ¢ in the notation O; indicates this
popularity (the Zipf rank).

10 —

T 1
o 50 100 150

Figure 2: Zipf’s function

3. ZIPF’S LAW AND CACHING

Given the set of [V objects used by a set of clients, Zipf’s law
allows one to calculate the number of accesses (uses) to each
object based on its popularity. Specifically, Zipf’s function
quantifies the probability that an access is made to object
O;: P, = %, where a is a constant. Constant a is easily
calculated, since the sum of all probabilites is equal to 1:
Zi]\ilPi: l=axHy=1=a= HLN% = where
Hpy is the N-th harmonic number, which is approximated
with In N. Thus,

b=-= ey

HNXi

a 1
)

Figure 2 plots the probabilities for N = 10%, where 2 <
1< b.

Then, one can calculate the number of accesses of the
k most popular objects O1, Oa, ..., Oy as follows. If
a number of accesses N4 is directed to the set of the N
objects and N4 is large enough, then, in general, object O;,
1 <4 < N, will be accessed P; x IV 4 times, based on Zipf’s
law. So, the total number of accesses to the k£ most popular
objects is:

k k H,
NaxP= N Pi= Nax 2k 2
; A X P AX; AXHN (2)

This implies that, if we have a “hot” cache that serves the
requests, which stores only the £ most popular objects, then
the cache hit rate is:

Nagls Hi

h = = —
Ny Hy

3

Based on the above, we can calculate k, the number of
objects in the cache, which can achieve a given hit-ratio h,
from Equation 3:

Hk:thNilnk:thNﬁkzthHN (4)

The calculations indicate that the given cache hit ratio h will
be observed (measured) under the following two conditions:

1. Zipf’s law holds for the set of accesses and objects
measured;

2. the time interval during which measurements are made
is large enough.

Note that, one can certainly develop scenarios where the ac-
cesses are in such an order that the cache hit rate becomes
significantly lower than the expected h for short time inter-
vals (e.g., when many consecutive accesses are targeted to
the least popular objects). However, the cache hit ratio is
the expected h for long enough intervals, i.e. long enough
request streams. In the following, we calculate an upper
bound for the minimum length of the request stream, so that
the measured object popularities are reliable (with high con-
fidence) and the Zipf distribution estimated up at that point
converges to the final one.

4. THE CONFIDENCE BOUND

Considering that the request stream R is a series of indepen-
dent trials drawn from a Zipf distribution over the set S of
N possible objects, at any point in R, the next request will
be the i-th most popular of the N objects with probability
P(i) = %, where a = 7— = . For the purposes of our
analysis, we consider the environment closed, i.e. that the
set S of the IV objects does not change (none of the objects
“dies” or changes, and no new objects are born).

In order to perform our analysis, we introduce the con-
cept of a past, P, of a stream request R: P is a prefix of R.
We define as np(7) the number of appearances in P of the
i-th most popular object (in R). It follows that the expected
value of np (i) is:

P
Einp(i)] = -0 ®)

where | P | is the length of P. For simplicity, we denote
this value as E(7) in the following.

Given the concept of a past in a request stream, the prob-
lem we solve is the following: given a random R, how long
should the past P be, so that the access frequencies in P
render reliable measurements of object popularities that re-
flect exactly the distribution of the IV objects for the entire
R with very high probability?

The answer to this question provides information about
the convergence of P to the real (final) Zipf distribution. We
can provide theoretical upper bounds by taking advantage of
the knowledge of the distribution in R and the assumption
of independence between the requests in R. These assump-
tions are very strong, but experimental results support their
validity [3].

In order to quantify the concept of confidence described
above, we introduce the metric of difference, D(3), for every
object O;:

N . ¢ | P]
DG@)=E@G)—E(i+1) = D

(6)

Using D(), we characterize a past P as a good past, as
follows.

Definition 4.1 (Good past) A past P of a random stream
of requests R is a good past of R if the following condition
is met:

np(i), the number of appearances of O; in P, is

within distance %i) of its expected value, i.e. the

following holds:

D(i)
2

If condition (7) holds for all objects, then the objects

have exactly the same popularity ordering in P as they have
in R. This can be easily deduced:

np(i) — E(i))
E(+1)—np(i+ 1) } -

D)+ D(i+1) (6
(z)+2(2+)(>)0

D(i)

A

2 —
_D(+1)
2 —

= np(’t) - nP(i + 1) 2 _D(Z) o

for all i.

Effectively, the definitions of difference and good past
allow us to specify a confidence radius around the expected
value of each O; in such a way so that, if the number of
appearances falls into their confidence intervals, the objects
retain their ordering in R (which is the same as the order-
ing of the E(7)’s), because the confidence intervals do not
intersect. Based on the above, our problem becomes: how
long should P be, so that it is a good past with very high
probability?

Theorem 4.1 For any € > 0, a past P of R of length
2N2(N + 1)?In* NIn % is a good past with probability
at least 1 — e.

Proof: In our analysis we use the following Chernoff
bound [1]:

Lemma 4.1 (Chernoff bound) Let X, Xs,...,X, be
mutually independent random variables such that

PriX;=1]=p
PriX;=0=1-p

for somep € [0,1]. Let X = X1 + Xo + ...+ X,, and
E[X] = pn. Then

Pr|X —pn| > 6] < 2% ®)
Sfor any 6 > 0.

We define the following sequence of random variables
for each O;:

w; (i) = { (1)’

Then given that w;(7)’s are mutually independent for all j,
nw (i) = Y1 wi(i) and Priw;(i) = 1] ~ iy, due
to Zipf’s function. Thus, we can apply Lemma 8 with p =

1 _ D@ ..
TN and 0 = >~ obtaining

if j-th request of R is O;

otherwise L i=1,..., W

Dbfi)
2

P
] < Qe 22G+1)2IN

Prllnp(i) — E(1)| >

< 92e 2N2(N+Ij)2 In2 N(9)

Note that

Pr[P is not good past] = Pr[(7) not true for Oy

V' (7) not true for O3 V.. .]
< vazl Pr|[(7) not true for O;]

) - pr_

< 2Ne 2N2(N+1)2m2 N (10)
If our ‘confidence’ parameter is € with 0 < ¢ < 1, then

it must be true that

Pr|[P is not a good past] < €

But then from (10) we get that we must pick P so that

P >2N*(N +1)?In* NIn g
O
Notice that this bound is relatively large in terms of N,
especially under the assumption that during this period the
system is closed. The size of the bound is due to the very
strong condition we want to satisfy (condition (7)) to obtain
a good past.

5. CONCLUSIONS

This paper has introduced new results on the experimental
determination of a Zipf’s law distribution for a set of objects
based upon a stream of requests for those objects. Our re-
sults allow a Web cache that takes advantage of Zipf’s law
to accurately determine the usage distribution of the objects
it should cache based upon observed usage patterns for the
objects.

Efficient caching is very important to the development
of Web-based multimedia applications. Multimedia objects
are sufficiently large that they can consume unacceptable
amounts of both disk space and bandwidth when cached
indiscriminately. Zipf’s law holds the promise of more
effective use of network caching resources for multime-
dia objects. We are presently constructing an experimental

caching system based on Zipf’s law. Advanced multime-
dia caches can help with the distribution of both streaming
and non-streaming multimedia objects. We believe that the
effective use of Zipf’s law will be an import component of
next-generation multimedia caching systems.

6. REFERENCES

[1] N. Alon, J.H. Spencer, and P. Erdos. The Probabilistic
Method. John Wiley and Sons, 1992,

[2] C.M. Bowman, P.B. Dantzig, D.R. Hardy, U. Manber,
and ML.F. Schwartz. The Harvest Information Discov-
ery and Access System. Computer Networks and ISDN
Systems, 28:119-125, 1995.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web Caching and Zipf-like Distributions: Evidence
and Implications. In In Proceedings of IEEE INFO-
COM’99, New York, NY, USA, March 21-25 1999,

[4] C.R. Cunha, A. Bestavros, and M.E. Crovella. Char-
acteristics of WWW Client-based Traces. Technical
Report BU-CS-95-010, Computer Science Department,
Boston University, July 1995.

[5] M. Kozuch, W. Wolf, and A. Wolfe. An Approach to
Network Caching for Multimedia Objects. In Proceed-
ings, ICCD ’97. IEEE Computer Society Press, 1997.

[6] D.N. Serpanos and W. Wolf. Caching Web Objects us-
ing Zipf’s Law. In Multimedia Storage and Retrieval
Systems. SPIE, 1998.

