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Abstract

We examine how the selfish behavior of heterogeneous
users in a network can be regulated through economic dis-
incentives, i.e., through the introduction of appropriate
taxation. One wants to impose taxes on the edges so that
any traffic equilibrium reached by the selfish users who
are conscious of both the travel latencies and the taxes
will minimize the social cost, i.e., will minimize the to-
tal latency. We generalize previous results of Cole, Dodis
andRoughgarden that held for a single origin-destination
pair to the multicommodity setting.

Our approach, which could be of independent inter-
est, is based on the formulation of traffic equilibria as
a nonlinear complementarity problem by Aashtiani and
Magnanti [1]. We extend this formulation so that each
of its solutions will give us a set of taxes that forces the
network users to conform, at equilibrium, to a certain
prescribed routing. We use the special nature of the pre-
scribedminimum-latency flow in order to reduce the diffi-
cult nonlinear complementarity formulation to a pair of
primal-dual linear programs. LP duality is then enough
to derive our results.

1. Introduction

In the selfish routing setting, we are given a directed
network G = (V,E) and a set of k classes of users
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(commodities), each with its own origin and destina-
tion, and with a fixed total demand (traffic) rate per
class di > 0, i = 1, . . . , k. Individual users are thought
as carrying each an infinitesimal amount of a commod-
ity. We are also given a nonnegative latency function
lP describing the delay experienced by users wishing
to travel on the path P as a function of the total flow
through the edges of the path. In this work we assume
that the additivemodel holds, i.e., for every edge e there
is a latency function le(fe) that describes the latency
on this edge due to the flow fe that crosses it. Then the
latency for a path is defined as lP (f) :=

∑
e∈P le(fe).

Each user tries to selfishly route his flow so that his
path cost is minimized. A traffic equilibrium is an as-
signment of traffic to paths so that no user can unilater-
ally switch her flow to a path of smaller cost. Wardrop’s
principle [12] for selfish routing postulates that

at equilibrium, for each origin-destination
pair the travel costs on all the routes actu-
ally used are equal, or less than the travel
costs on all nonused routes.

A natural question then is, can one use Wardrop’s prin-
ciple in order to design a network that, at equilibrium,
will force the user routes to follow a prescribed pat-
tern? Although it may be possible to design such a
network by designing the topology, or the latency func-
tions, we will assume that these parameters are already
fixed. Another possibility is to use economic disincen-
tives in the form of taxation on the edges of the net-
work, so that the users’ path cost has both a travel
time and a budgetary component. Without taxation,
users experience only their own traffic delay as their
cost. With taxation users are also charged for the right
to use a path. This technique has been studied by the



traffic community for a long time (cf. [3] and the ref-
erences therein), and will be the focus of this work as
well. Our goal will be to design edge taxes that im-
pose to the users a routing that optimizes the network
performance. The measure of this performance in this
paper is the social cost (or total latency), defined as∑

path P fP lP (f) =
∑

e∈E fele(fe) for a flow f that
routes fP units of traffic through path P .

Although it must obey Wardrop’s principle at equi-
librium, the unregulated choice of paths by individ-
ual users may incur a social cost which in general can
be higher than the social optimum. In fact the latency
of an equilibrium with no taxation can be arbitrarily
larger than the social optimum [11]. Through appropri-
ate edge taxation, we would like to force all equilibria
on the network to induce flow that minimizes the social
cost

∑
e∈E fele(fe). We refer to a set of edge taxes that

achieves this as optimal taxes. This definition of opti-
mal taxes is stricter than the definition in [3], where
the optimal taxes are just required to force some equi-
librium flow to minimize the social cost. The difference
is significant: we will need strict monotonicity of the
edge latency functions to fulfill the stricter definition,
and simple monotonicity to fulfill the weaker one. In [3]
the authors can also meet the stricter definition of op-
timal taxes under the same assumption of strict mono-
tonicity. Each selfish user of class i using path P will
experience the following path cost:

path cost(P ) := latency(P ) + a(i) · taxation(P ).

The taxation(P ) is the sum of taxes along the edges
of the path. The factor a(i) > 0, denotes the sensitiv-
ity of user class i to the taxes. In the homogeneous case
all user classes have the same sensitivity to the taxa-
tion (i.e., a(i) = 1, for all i), while in the heterogeneous
case a(i) can take different positive values for differ-
ent classes.

The homogeneous case has been extensively stud-
ied. Optimal taxes can be defined using the so-called
marginal cost pricing [2]. Various ramifications, exten-
sions and related computational results have been ob-
tained over the years. See [3] for a wealth of related ref-
erences. Cole, Dodis and Roughgarden [3] were the first
to consider the natural generalization into the hetero-
geneous case. The heterogeneity expresses the fact that
different users trade off money and time in a different
manner. A small value of a(i) corresponds to a large
sensitivity to time and a large value indicates sensitiv-
ity to money. The main result of [3] is that for an in-
stance where all users share the same origin-destination
pair, there is an optimal set of taxes. Such a set can
be efficiently computed if a flow that minimizes the so-

cial cost is efficiently computable or more generally if
it is given [3].

The general setting of selfish routing assumes mul-
tiple origin-destination pairs for the selfish users. Ex-
tending the results of [3] to this multicommodity set-
ting is therefore a natural question which was also
stated in [3] as an open problem. In this work we re-
solve this open problem. Specifically we show that op-
timal taxes exist while generalizing the work in [3] in
two ways:

1. The commodities (user classes) can have different
origin-destination pairs.

2. The latency functions le do not have to be contin-
uous for the optimal taxes to exist. We only as-
sume that a flow f̂ of minimum total latency ex-
ists.

Similarly to [3] the set of optimal taxes is computable
in polynomial time if f̂ is given. We focus on the case
where the number of user classes is finite, in other
words the function a takes only finitely many distinct
values. In fact the main proof of [3] is given for the fi-
nite case and then a limiting argument is used to ap-
proximate the infinite case. We leave this issue for fu-
ture work. We believe that the finite case captures what
is important about the problem.

The proof of existence in [3] relied on a fixed-point
theorem tailored to the intricate combinatorial struc-
ture of the problem at hand. In contrast, our approach
for showing the existence of optimal taxes uses only
general tools from mathematical programming, like lin-
ear programming duality and the formulation of the
traffic (Wardrop) equilibrium as a nonlinear comple-
mentarity problem in [1]. We extend the latter formu-
lation in order to express the constraint that optimal
taxes are part of the solution. In fact, the new formula-
tion is a special case of a more general formulation for
the setting of the problem with side constraints, as de-
scribed in [7]. In general, the existence of solutions to a
nonlinear complementarity formulation is a very diffi-
cult problem. We use the fact that the prescribed flow f̂
optimizes the social cost, to reduce the nonlinear com-
plementarity problem at hand to a linear one, that is
easy to solve. In fact this linear complementarity prob-
lem corresponds to the complementary slackness condi-
tions for a pair of primal-dual linear programs. LP dual-
ity is then enough, not only to prove that optimal taxes
exist, but also to compute them (in [3] LP-duality was
also used for the constructive part of computing the
optimal taxes in the single-commodity case). This ‘lin-
earization’ technique is our main technical contribu-
tion. Although in this work it derives its power from
the special nature of f̂ as a global optimizer of the so-



cial cost, it may be useful in pricing networks that in-
duce other prescribed flows to their selfish users, see
Section 5 for a discussion.

The complementarity formulation we employ is pow-
erful enough to allow the demands to be elastic. In this
case the flow rate for each class is not constant, but is
given by a function of the cost of the paths used by
the users. This topic has received considerable atten-
tion in the transportation literature (see, e.g., [5]). This
setting captures the more realistic scenario, where the
destination-client of a commodity adjusts its demand
according to the transfer time from the origin-server.
For example, the download volume from a Web server
by a client depends on whether there is a quick con-
nection to the server or not. We outline possible ex-
tensions of our work in the elastic demand setting and
propose some relevant open problems in Section 4.

The main result of this work together with several
extensions were also discovered independently by Fleis-
cher, Jain, and Mahdian [4], and appear also in these
proceedings.

2. Preliminaries

The model: Let G = (V,E) be a directed network
(possibly with parallel edges but with no self-loops),
and a set of users, each with an infinitesimal amount of
traffic (flow) to be routed from an origin node to a des-
tination node of G. Moreover, each user α has a posi-
tive tax-sensitivity factor a(α) > 0. We will assume that
the tax-sensitivity factors for all users come from a fi-
nite set of possible positive values. We can bunch to-
gether into a single user class all the users with the
same origin-destination pair and with the same tax-
sensitivity factor; let k be the number of different such
classes. We denote by di,Pi, a(i) the total flow of class
i, the flow paths that can be used by class i, and the
tax-sensitivity of class i, for all i = 1, . . . , k respectively.
We will also use the term ‘commodity i’ for class i. Set
P .= ∪i=1,...,kPi. Each edge e ∈ E is assigned a latency
function le(fe) which gives the latency experienced by
any user that uses e due to congestion caused by the
total flow fe that passes through e. In other words, as
in [3], we assume the additive model in which for any
path P ∈ P the latency is lP (f) =

∑
e∈P le(fe), where

fe =
∑

e3P fP and fP is the flow through path P . If
every edge is assigned a per-unit-of-flow tax βe ≥ 0, a
selfish user in class i that uses a path P ∈ Pi experi-
ences total cost of∑

e∈P

le(fe) + a(i)
∑
e∈P

βe

hence the name ‘tax-sensitivity’ for the a(i)’s: they
quantify the importance each user assigns to the taxa-

tion of a path.
Let f̂ be a flow that minimizes the total latency∑
e fele(fe). Note that, although in certain cases (e.g.,

when the functions fele(fe) are convex) the flow f̂ can
be computed efficiently, for more general latency func-
tions it may be extremely difficult to compute f̂ (see
Section 4 in [3]). We will assume that f̂ is given to us
off-line and that it induces finite latency on every edge.

Given edge latency functions le, we define a set of
new path latency functions

l′P (f) :=
lP (f)
a(i)

=
∑

e∈P le(fe)
a(i)

, ∀P ∈ Pi,∀i. (1)

A function g(x) is positive if g(x) > 0 when x > 0. We
assume that the functions le are strictly increasing, i.e.,
x > y ≥ 0 implies le(x) > le(y), and that le(0) ≥ 0.
This implies that le(fe) > 0 when fe > 0, i.e., the func-
tion le is positive. We only need the strict monotonic-
ity for Corollary 1 to hold, see Remark 1. For the rest
of the paper it is enough for the le functions to be non-
decreasing and positive. Similar assumptions on mono-
tonicity are made in [3].

In what follows we will use heavily the notion of
a nonlinear complementarity problem. Let F (x) =
(F1(x), F2(x), . . . , Fn(x)) be a vector-valued function
from the n-dimensional space Rn into itself. Then the
nonlinear complementarity problem of mathematical
programming is to find a vector x that satisfies the fol-
lowing system:

xT F (x) = 0, x ≥ 0, F (x) ≥ 0.

3. Existence and computation of opti-
mal taxes

The traffic (or Wardrop) equilibria1 for a network
can be described as the solutions of the following math-
ematical program (see [1] p. 216):

(TP (f)− ui)fP = 0 ∀P ∈ Pi, i = 1 . . . k

TP (f)− ui ≥ 0 ∀P ∈ Pi, i = 1 . . . k∑
P∈Pi

fP − di = 0 ∀i = 1 . . . k

f, u ≥ 0

where TP is the cost of a user that uses path P , fP is
the flow through path P , and u = (u1, . . . , uk) is the
vector of shortest travel times (or generalized costs)
for the commodities. The first two equations model

1 [3] uses the term Nash equilibria.



Wardrop’s principle by requiring that for any origin-
destination pair i the travel cost for all paths in Pi with
nonzero flow is the same and equal to ui. The remain-
ing equations ensure that the demands are met and
that the variables are nonnegative. Note that the for-
mulation above is very general: every path P ∈ Pi for
every commodity i has its own TP (even if two com-
modities share the same path P , each may have its own
TP ).

If the path cost functions TP are positive, [1] shows
that the system above is equivalent to the following
nonlinear complementarity problem (Proposition 4.1
in [1]):

(TP (f)− ui)fP = 0 ∀i, ∀P ∈ Pi (CP)
TP (f)− ui ≥ 0 ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0 ∀i∑
P∈Pi

fP ≥ di ∀i

f, u ≥ 0

In our case the costs TP are defined as∑
e∈P

le(fe) + a(i)
∑
e∈P

be, ∀i, ∀P ∈ Pi,

where be is the per-unit-of-flow tax for edge e, and a(i)
is the tax sensitivity of commodity i. In fact, it will be
more convenient for us to define TP slightly differently:

TP (f) := l′P (f) +
∑
e∈P

be, ∀i, ∀P ∈ Pi,

where l′P (f) is defined in (1). It is easy to see that
there is a one-to-one correspondence between the so-
lution sets of (CP) with the two path cost defini-
tions (solution (fP1 , . . . , fP|P| , u1, . . . , uk) of (CP)
with the first definition of TP corresponds to solu-
tion (fP1 , . . . , fP|P| ,

u1
a(1) , . . . ,

uk

a(k) ) with the second
definition of TP , and vice-versa).

Let f̂ be a flow that satisfies the users’ de-
mands and minimizes the social cost

∑
e∈E fele(fe) =∑

i

∑
P∈Pi

fP lP (f), i.e., f̂ is a solution of the follow-
ing mathematical program:

min
∑
e∈E

fele(fe) s.t. (MP)∑
P∈Pi

fP = di ∀i

fe =
∑

P∈P:e∈P

fP ∀e ∈ E

fP ≥ 0 ∀P

Note that (MP) in general may be very difficult (or im-
possible) to solve efficiently, but we will assume that a
solution f̂ has already been computed and given to us.

Our main result is to show that there is a set of
per-unit taxes b which forces the users of the non-
cooperative setting of (CP) to induce on the edges the
same edge flow as f̂ , i.e. we show the following

Theorem 1 Consider the selfish routing game with the
latency function seen by the users in class i being

TP (f) :=
∑
e∈E

le(fe) + a(i)
∑
e∈P

be, ∀i, ∀P ∈ Pi.

If for every edge e ∈ E le is a strictly increasing function
with le(0) ≥ 0, then there is a vector of per-unit taxes b ∈
R|E|

+ such that, if f̄ is a traffic equilibrium for this game,
f̄e = f̂e, ∀e ∈ E,. Therefore f̄ minimizes the social cost∑

e∈E fele(fe).

In order to prove Theorem 1, it is enough to prove the
following

Theorem 2 If ∀e ∈ E the functions le(·) are strictly
monotone and le(0) ≥ 0, then there is b ∈ R|E|

+ , such that
if f̄ solves (CP) with2

TP (f) := l′P (f) +
∑
e∈P

be, ∀i, ∀P ∈ Pi,

then f̄e = f̂e, ∀e ∈ E.

Our plan for proving Theorem 2 will be to find b
such that

• all solutions of (CP) induce the same edge flow

• there is at least one solution of (CP) with edge
flow f̂e, ∀e ∈ E

The first goal is easy to achieve, due to the following
uniqueness result of [1]:

Theorem 3 (Theorem 6.2 in [1]) Suppose that the
functions TP in (CP) are defined as follows:

TP (f) :=
∑
e∈P

tie(f), ∀P ∈ Pi, ∀i,

where tie(f) is the cost function for edge e and commodity
i,

tie : R|P|
+ → R+.

If t is strictly increasing, then for all solutions of (CP) the
vector u and the vector of induced edge flows are unique.3

2 Note that we changed the definition of TP to the more conve-
nient one. This will not affect our computations, as discussed
above.

3 Note that we may still have solutions with different path flows.
This uniqueness result concerns only the edge flows.



In our case, tie(f) = le(fe)
a(i) + be, which is strictly in-

creasing (le(·) is strictly increasing, and be is a positive
constant). Therefore we get the following corollary:

Corollary 1 All solutions of (CP) induce the same edge
flow.

Remark 1 The uniqueness result of Corollary 1 is the
only place where the strict monotonicity of the latency
functions is needed. We note that if we follow the defi-
nition of optimal taxes by Cole et al. [3], then we do not
need this uniqueness property, and our results hold for
nondecreasing le; in what follows we show that for the
set of taxes whose existence we prove, there is some so-
lution (f∗, u∗) of (CP) with f∗e = f̂e, ∀e ∈ E. On
the other hand, according to our definition of optimal
taxes, all solutions of (CP) must induce the optimal
edge flow, therefore Corollary 1 is needed.

Note that the uniqueness result of Corollary 1 holds
independently of our choice of b. Hence we can con-
centrate our efforts on finding a b that will steer the
(unique) edge flow of a solution of (CP) towards f̂ . In
order to achieve this, we include it in (CP) as a require-
ment. Hence we get the following nonlinear comple-
mentarity problem, in which we require that the edge
flow of any solution is at most f̂e:

fP (TP (f)− ui) = 0 ∀i, ∀P ∈ Pi (BIG CP)
TP (f) ≥ ui ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0 ∀i∑
P∈Pi

fP ≥ di ∀i

be(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

fP , be, ui ≥ 0 ∀P, e, i

If (f∗, b∗, u∗) is a solution of (BIG CP) then (f∗, u∗)
also solves (CP) with

TP (f) := l′P (f) +
∑
e∈P

b∗e, ∀P ∈ Pi, ∀i.

The crucial observation is that this solution not only
satisfies all the demands, but also induces the same
edge flow as f̂ :

Lemma 1 Let (f∗, b∗, u∗) be any solution of (BIG CP).
Then

∑
P∈Pi

f∗P = di, ∀i and f∗e = f̂e, ∀e ∈ E.

Proof: The proof of the first part is essentially the
same as the proof by contradiction of Proposition 4.1
in [1]. Suppose that

∑
P∈Pi

f∗P > di ≥ 0 for some i.
Then u∗i (

∑
P∈Pi

f∗P − di) = 0 ⇒ u∗i = 0 and there
is a path P ∈ Pi such that f∗P > 0. Since f∗P 6= 0,

the TP () function is positive, TP (f∗) > 0 = u∗i . Be-
cause (f∗, b∗, u∗) is a solution of (BIG CP), we have
that f∗P (TP (f∗) − u∗i ) = 0 ⇒ f∗P = 0, a contradic-
tion. Hence

∑
P∈Pi

f∗P = di, ∀i.
Since f∗ is part of a solution for (BIG CP), f∗e ≤

f̂e, ∀e ∈ E. The following claim is a result of the spe-
cial nature of f̂ as a minimizer of the social cost:

Claim 1 Let f̄ be a flow that satisfies the following set
of constraints:∑

P∈Pi

fP = di ∀i ∈ {1, . . . , k}

fe =
∑

P∈P:e∈P

fP ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

fP ≥ 0 ∀P ∈ P

Then f̄e = f̂e, ∀e ∈ E.

Proof of Claim: By the definition of f̂ through (MP),
we have that ∑

e∈E

f̂ele(f̂e) ≤
∑
e∈E

f̄ele(f̄e) (2)

Since f̄e ≤ f̂e and le(·) is increasing we obtain that
le(f̄e) ≤ le(f̂e). Since le(·) is nonnegative for all e ∈ E,
we obtain that

f̄ele(f̄e) ≤ f̂ele(f̂e), ∀e ∈ E.

If for some e, f̄e < f̂e, then because le(·) is increasing
0 ≤ le(f̄e) ≤ le(f̂e); because le(·) is positive le(f̂e) 6= 0.
From these two facts

f̄ele(f̄e) < f̂ele(f̂e)

and then
∑

e∈E f̄ele(f̄e) <
∑

e∈E f̂ele(f̂e) which con-
tradicts (2). 2

Since f∗ satisfies the constraints of Claim 1, we
have that f∗e = f̂e, ∀e ∈ E. 2

Lemma 1 implies that if there is a solution
(f∗, b∗, u∗) for (BIG CP), then we can use b∗ as the
per-unit taxes to ensure that (f∗, u∗) is also a solu-
tion to the (CP). The fact that f∗e = f̂e, ∀e together
with the edge flow uniqueness property of Corol-
lary 1 will imply Theorem 2, provided that such a
(f∗, b∗, u∗) exists.

In general, it is quite difficult to prove existence
of solutions to nonlinear complementarity problems
(see [8], [9], [10]), and usually these results do not ap-
ply to the complementarity problem at hand, or they
hold for special cases of the latency functions le. We



note that these latency functions le are actually the
source of nonlinearity for (BIG CP). Surprisingly, the
special nature of f̂ will help us ‘linearize’ (BIG CP),
and show it equivalent to a primal-dual pair of linear
programs (LP). Then the well-understood duality the-
ory of LP will give us the existence result we are look-
ing for.

The key observation is again Lemma 1. Since for ev-
ery solution (f∗, b∗, u∗) of (BIG CP) we have f∗e =
f̂e, ∀e, and le(fe) depends only on fe, the set of solu-
tions for (BIG CP) will not change if we replace le(fe)
with le(f̂e) in (BIG CP) to get the following linear com-
plementarity problem (BIG CP′) :

fP (
∑
e∈P

le(f̂e)
a(i)

+
∑
e∈P

be − ui) = 0 ∀i, ∀P ∈ Pi

∑
e∈P

le(f̂e)
a(i)

+
∑
e∈P

be ≥ ui ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − di) = 0 ∀i∑
P∈Pi

fP ≥ di ∀i (BIG CP′)

be(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

fP , be, ui ≥ 0 ∀P, e, i

Lemma 2 (BIG CP) is equivalent to (BIG CP′).

Proof: If (f∗, b∗, u∗) is a solution of (BIG CP), then it
is also a solution of (BIG CP′) due to Lemma 1. Con-
versely, if (f̄ , b̄, ū) is a solution of (BIG CP′), then we
can prove the equivalent to Lemma 1 for (BIG CP′)
(we only have to notice that le(f̂e) ≥ le(f̄e) > 0 when-
ever f̄e > 0, hence if there is P ∈ Pi such that f̄P > 0,
then

∑
e∈P

le(f̂e)
a(i) +

∑
e∈P b̄e > 0). 2

Proof of Theorem 2: Due to the complementary
slackness conditions, (BIG CP′) is equivalent to the fol-
lowing primal-dual pair of LPs:

min
∑

i

∑
P∈Pi

fP l′P (f̂) s.t. (LP)∑
P∈Pi

fP ≥ di ∀i ∈ {1, . . . , k}

fe =
∑

P∈P:e∈P

fP ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

fP ≥ 0 ∀P

max
∑

i

diui −
∑
e∈E

f̂ebe s.t. (DP)

ui −
∑
e∈P

be ≤ l′P (f̂) ∀i, ∀P ∈ Pi

be, ui ≥ 0 ∀e ∈ E,∀i

The objective function of (LP) is bounded from below
by 0 and there is a feasible solution (f̂), therefore dual-
ity theory implies that there is a solution (f∗, b∗, u∗) to
this pair of LPs, which is also a solution of (BIG CP)
due to Lemma 2. Then for per-unit taxes b := b∗, The-
orem 2 holds.

2

Fleischer et al. [4] use directly the (LP)-(DP) pair to
prove the equivalent of Theorem 1. Note that if there
are more than one solutions to (LP)-(DP), each one
of them can be used to define a selfish routing game
for which Theorem 1 holds. Also, note that since ev-
ery solution f∗, (b∗, u∗) of (LP)-(DP) is also a solution
of (BIG CP), (f∗, u∗) is a solution of (CP) when b∗

is used as the tax set. Therefore, for the set of taxes
whose existence and calculation come from (LP)-(DP),
the corresponding selfish routing game has at least one
equilibrium.

Computation of optimal taxes: If we are given f̂ ,
the computation of a set of optimal per-unit taxes in-
volves just the solution of the linear program (DP).
Similar results can be also found in [3] for the single
origin-destination pair case.

4. Elastic demands

If the demands in (CP) are not the constants di but
are given by functions Di(u) of the generalized costs
u, then these demands are called elastic. The comple-
mentarity formulation of the traffic equilibria of [1] in
its full generality allows for the demands to be elas-
tic. Using this insight we formulate the analogous com-
plementarity problems to the ones in Section 3. The
main complication is that the minimum-latency flow f̂
cannot be considered a priori given before some selfish
routing game starts. At an equilibrium the ui achieve
some concrete value which in turn fixes the demands.
These demands will then determine the corresponding
minimum-latency flow f̂ .



In this general case (CP) becomes:

(TP (f)− ui)fP = 0 ∀i, ∀P ∈ Pi (CPE)
TP (f)− ui ≥ 0 ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP −Di(u)) = 0 ∀i∑
P∈Pi

fP −Di(u) ≥ 0 ∀i

f, u ≥ 0

In this section we study linear latency functions
le(fe) = αefe +βe, ∀e ∈ E, where αe > 0, βe ≥ 0, ∀e ∈
E. Suppose that we are given a vector u∗ of general-
ized costs. Then the social optimum f̂∗ for the partic-
ular demands Di(u∗) is the solution of the following
quadratic program:

min
∑
e∈E

αef̂
2
e + βef̂e s.t. (QP)∑

P∈Pi

f̂P ≥ Di(u∗) ∀i

f̂e =
∑

P∈P:e∈P

f̂P ∀e ∈ E

f̂P ≥ 0 ∀P

By Theorems 3.1, 3.3 of [6] f̂∗ solves QP iff f̂∗ solves
the following linear program:

min
∑
e∈E

(2αef̂
∗
e + βe)f̂e s.t. (LP2)∑

P∈Pi

f̂P ≥ Di(u∗) ∀i

f̂e =
∑

P∈P:e∈P

f̂P ∀e ∈ E

f̂P ≥ 0 ∀P

The dual of (LP2) is:

max
∑

i

Di(u∗)µi s.t. (DP2)

µi ≤
∑
e∈P

(2αef̂
∗
e + βe) ∀i, ∀P ∈ Pi

µi ≥ 0 ∀i

Note that if the functions Di(u) are bounded, and

K1 := k ·max
i

max
u≥0

{Di(u)}

then the solutions f̂∗, µ∗ of (LP2), (DP2) are upper
bounded as follows:

f̂∗P ≤ Di(u∗) ≤ K1, ∀P ∈ Pi

µi ≤
∑
e∈P

(2αef̂
∗
e + βe) ≤

∑
e∈P

(2αeK1 + βe), ∀i

The Karush-Kuhn-Tucker conditions for (LP2)-(DP2)
imply that (f̂∗, µ∗) is a pair of primal-dual solutions
iff they are solutions of the following complementarity
problem:

(
∑
e∈P

(2αe

∑
P3e

f̂P + βe)− µi)f̂P = 0 ∀i, ∀P ∈ Pi∑
e∈P

(2αe

∑
P3e

f̂P + βe)− µi ≥ 0 ∀i, ∀P ∈ Pi

µi(
∑

P∈Pi

f̂P −Di(u∗)) = 0 ∀i∑
P∈Pi

f̂P −Di(u∗) ≥ 0 ∀i

f̂ , µ ≥ 0

By incorporating this complementarity problem into
the analogue of (BIG CP) we get the following comple-
mentarity problem (recall that le() are now linear):

fP (TP (f)− ui) = 0 ∀i,∀P ∈ Pi

(GENERAL CP)
TP (f) ≥ ui ∀i,∀P ∈ Pi

ui(
∑

P∈Pi

fP −Di(u)) = 0 ∀i∑
P∈Pi

fP −Di(u) ≥ 0 ∀i

be(fe − f̂e) = 0 ∀e ∈ E

fe ≤ f̂e ∀e ∈ E

(
∑
e∈P

(2αef̂e + βe)− µi)f̂P = 0 ∀i,∀P ∈ Pi∑
e∈P

(2αef̂e + βe)− µi ≥ 0 ∀i,∀P ∈ Pi

µi(
∑

P∈Pi

f̂P −Di(u)) = 0 ∀i∑
P∈Pi

f̂P −Di(u) ≥ 0 ∀i

fP , be, ui, f̂P , µi ≥ 0

where f̂e =
∑

P3e f̂P .
The framework that is in place now is similar to the

setting in Section 3. Let (f, u) be a solution to (CPE).
Under the assumptions that the le(·), D(·) functions
are both strictly monotone and positive the results in
[1] establish that the solution u is unique and that
f induces a unique edge flow. The missing part of
the puzzle is an existence result for (GENERAL CP).
Let (f∗, b∗, u∗, f̂∗, µ∗) be such a hypothetical solution.
Then f̂∗ is a minimum latency flow solution for the de-
mand vector D(u∗). Moreover f∗e ≤ f̂∗e , ∀e ∈ E. The



analogue of Theorem 2 would establish that after set-
ting b = b∗ in (CPE), any solution (f̄ , ū) would sat-
isfy f̄e = f∗e and u = u∗. Therefore f̄e ≤ f̂∗e , ∀e ∈ E.
Under the existing assumptions on le(·), we would ob-
tain that any equilibrium flow f̄ for the selfish routing
game where the users are conscious of the modified la-
tency

TP (f) := lP (f) +
∑
e∈P

b∗e, ∀i, ∀P ∈ Pi,

is a minimum-latency solution for the demand vector
reached in the same equilibrium. Therefore the b∗ vec-
tor would be the vector of the optimal taxes. The het-
erogeneity of the user classes can be handled in a man-
ner similar to Section 3. We pose the existence of a so-
lution to (GENERAL CP) and the handling of more
general latency functions as open problems.

5. Further applications and discussion

The formulation of Wardrop equilibria as solutions
to a (nonlinear) complementarity problem introduced
by Aashtiani and Magnanti [1] provides us with a very
general setting for tackling network design problems
for non-cooperative users. It can handle diversity on
the disutility functions (TP ’s) of the users, elastic de-
mands, and a wide variety of edge latency functions
(le), even non-continuous ones. In this work we have
made only a limited usage of this generality: our TP ’s
are the specific disutility functions dictated by the het-
erogeneous taxation-sensitivity problem tackled by [3],
and in the elastic case we considered only linear edge la-
tency functions. We believe that this approach can be
used in many other settings as well.

The ‘linearization’ of the nonlinear complementarity
problem (BIG CP) also seems to have further implica-
tions for network design. Note that the crucial obser-
vation was Lemma 1 and especially the simple fact of
Claim 1. We can use the same arguments for other flows
f̂ with nice properties, provided f̂ is a global optimizer
for the social cost objective function

∑
e∈E fele(fe). For

example, suppose that we would like to impose on our
network a set of taxes, so that the users will be com-
pelled to induce a flow that will minimize the maxi-
mum path latency over all paths in P. Let B̂ be the
solution of the following program:

min B subject to:∑
P∈Pi

fP = di ∀i ∈ {1, . . . , k}

fe =
∑

P∈P:e∈P

fP ∀e ∈ E∑
e∈P

le(fe) ≤ B ∀P ∈ P

fP ≥ 0 ∀P

We assume again that the le’s are strictly monotone
and positive. Let F be the set of flows that achieve the
optimum B̂ in the program above. If we pick f̂ ∈ F
to be a flow in F that also minimizes

∑
e∈E fele(fe)

over all flows in F , then Lemma 1 holds (proof sketch:
if there is flow f with fe ≤ f̂e,∀e ∈ E and fe < f̂e

for some e, then f would be in F and still achieve a
smaller social cost, a contradiction). Hence, if we are
given f̂ , then we can compute a set of per-unit edge
taxes that will minimize the maximum latency of all
paths.

The independent work of [4] makes explicit several
such applications in various settings.
Acknowledgement: We thank Jiming Peng for read-
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