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Abstract—We consider a forwarding game on directed graphs
where nodes need to send certain amount of flow (packets) to
specific destinations, possibly through several relay nodes. All
nodes in the network act selfishly and will forward packets
only if it is to their benefit. The model assumes that each node
receives some utility from sending it flow to the predetermined
destinations and from receiving flow. However each node has
to decide whether to relay flow as an intermediate node from
other sources, as relaying has an associated cost. This model
assumes that there is no payment scheme. Somewhat surprisingly,
this game has possibly several strategies that allow a significant
amount of the flow to be routed while all nodes have a positive
outcome, which suggest that in this model the nodes have indeed
incentives to relay flow even if payments are not explicitly
allocated. Although previous theoretical work establishes the
existence of these strategies (Nash equilibrium solutions), it is
not known how often networks have such solutions, and what
percentage of flow is actually relayed through the network.
In this work we simplify the original network model, and
provide the first experimental evaluation of these equilibria for
various classes of graphs. We provide clear evidence that these
equilibrium solutions are indeed significant and establish how
these equilibria depend on various properties of the network
such as average degrees and flow demand density.

I. INTRODUCTION

We consider the scenario of a connected network, mod-
elled as a directed unweighted graph. In this network we
have a number of designated origin-destination pairs s, t,
each associated with a positive parameter ds,t. These origin-
destination pairs describe the network flow demands in the
network: source node s wants to send an amount of flow
ds,t to its target node t. Each node might be a designated
source (and therefore would like to send flow to specific
destinations), or a destination (and therefore would like to
receive flow from predetermined source nodes), or, in most
cases, it is both a source and a destination. Nodes receive
utility from all flow successfully delivered from a source to a
destination. All nodes need to pay a cost which is proportional
to the amount of traffic they need to transmit. If a source
node can communicate directly with its target then of course
it is to the benefit of both to have this communication. If
however there is no direct connection, then an intermediate
node, or several intermediate nodes must be used as relays, or
forwarding nodes. These nodes can decide to relay traffic and
therefore pay the cost of transmission themselves for someone
else’s traffic. Although this seems counterintuitive, it has been
established very recently that there exist cases where it is the
node’s overall benefit to relay someone else’s traffic., although

not necessarily all of the traffic requests. Therefore assuming
that each node plays strategically, there exist cases where it
is the benefit of every node in the network to relay traffic for
others, even though everyone is selfish (tries to maximize its
own utility) and there are no payments allocated.

The recent work of Karakostas et al. [1] establishes theo-
retically that these solutions exist in instances of this network
traffic problems, however those results do not give any insight
whether such solutions exist often, and whether they are
realistic. For example, it is possible that only an infinitesimal
fraction of the network instances actually have such solutions.
Or it might be the case, that in the only such solutions, only
an infinitesimal amount of the original flow finds its way to
its destination.

In this paper we provide a conclusive experimental in-
vestigation of this model. We show that these solutions are
realistic, in the sense that random network instances have
non-trivial solutions with high probability, and those flow
solutions carry a significant fraction of the total flow. We also
establish how these equilibrium solutions depend on various
network parameters. Our work includes minor modifications
and simplifications to the model used in previous work [1]. Our
main contribution is establishing the fact that the equilibrium
strategies exist very often, carry a significant amount of flow,
and also showing how the strategies are affected by different
parameters of the network.

The paper is organized as follows. We start with an overview
of related work and background required in section II. We pro-
ceed in section III with a formal definition of the network flow
problem. We present a simplified version of the model and
describe the the theoretical results derives for this simplified
model in section IV. Then we give an experimental evaluation
of this model in section V, concluding in section VI.

II. BACKGROUND AND RELATED WORK

In multi-hop networks, selfish behaviour is a frequent and
reasonable assumption that captures the behaviour of self-
interested entities that need to coexist and possibly cooperate
in a common environment. A selfish node in a network will
choose an action that maximizes its own utility (or payoff)
without any concern about the result of its decisions to the
rest of the nodes. Selfish behaviour has been studied using
game theoretic techniques in many different areas and problem
settings, including wireless ad-hoc multi-hop networks [2]. For
a wireless sensor network for example, every node needs to
preserve its battery life, as it is usually a scarce resource.



However, if nodes choose to refuse to relay traffic, the network
will cease to function. This will lead to no flow being delivered
to its destination and all utilities being equal to zero for
all nodes1. This creates a kind of worst case equilibrium (a
standstill) in the network: the strategy of a node not relay for
anyone results in their own flow not being relayed. Naturally
the following question arises: does there exist a strategy, where
nodes do relay flow for others (and therefore do pay the cost
for someone else’s flow) which which relieve the network
from the trivial, no-flow standstill situation mentioned above?
Several recent papers [1], [3], [4], [5] show that indeed these
strategic solutions do exist for relatively natural network relay
models. There are cases where it is to the benefit of everyone
involved to relay traffic, because this will lead to a better utility
outcome for themselves [1]. There are many ways to avoid
the trivial solution of zero-relaying, which is a form of the
well-known “tragedy of the commons”. Payment schemes is
a common way to provide incentives to intermediate nodes
to relay packets. Reputation-based protocols are based on
keeping records of the past actions of neighbors: each node
keeps track of the amount of traffic its neighbors has forwarded
in the past and follows a specific protocol to decide the amount
of traffic it will route in each round. The decisions can be
local [2], [6], [7] (each node decides according to its own
private information about the past actions of its neighbors)
or centralized (a central authority collects all information as
a central repository, and decisions are based on the statistics
from the entire network) [8], [4].

We focus on the work related to connectivity in such
networks based on reputation systems, following the analysis
of [1]. The main result we focus on, shows that equilibrium
forwarding strategies do exist, without any payment or actual
explicit reputation system. In fact the main theoretical results
shows that such equilibrium forwarding strategies exist that
route a non-zero fraction from every source-destination pair.
This is a surprising and interesting result that raises many
immediate questions about the practical properties of such
equilibrium strategies. Note that the result does not guaran-
tee that such equilibrium strategies exist for every network
instance. Far from that, there are several simple networks that
certainly do not have any such equilibrium strategies except
trivial ones (the ones that connect only neighboring source-
destination pairs and therefore has no relaying involved). The
natural question to ask is how often do these networks have
such equilibrium flows, and how significant these solutions
are. The theoretical results guarantee that if an equilibrium
exists, a non-zero amount of flow is routed for every source-
destination pair, however it may be possible that the fraction
of the flow routed is insignificant. In this work we answer both
these questions, giving positive answers that show the practical
importance of this model as well as the already established
theoretical one.

Similar Nash equilibrium solutions for relay games are also

1Here we ignore flow demands between source-destination pairs that can
communicate directly. These flows will always be successful in our model,
and form what we will refer to as a trivial solution, or trivial equilibrium.

explored experimentally in by Félegyhźi et al. [9]. The relay
game in that work is not using payments or any other explicit
incentive for relaying nodes, but it is based on reputation.
The game is modelled as a repeated game and conditions
for the existence of equilibrium solutions are established
theoretically. The authors also present experiments to establish
the probability that a random network will indeed allow an
equilibrium relay solution. However the experimental results
are used mainly to explore particular strategies for the repeated
game, or check whether specific conditions hold.

III. DEFINITIONS

We describe a model here that is significantly simplified
compares to that presented previously [1] but still captures
an important sub-class of the forwarding game, where only
successful flows are routed in the network. We will explain
this distinction in more detail further on. Let G = (V,E)
be a directed graph, representing a connected network that
consists of nodes that are elements of the set V . If nodes
nodes u ∈ V can communicate directly by sending data to
node v ∈ V , then there is a directed edge (u, v) ∈ E. The
special case were G is undirected is the a reasonable model
for wireless ad-hoc networks, when communication links are
undirected. We are also given a set of source-destination pairs
(si, ti) ∈ V for i = 1..k, and flow demands di ≥ 0 for
each pair. We will call each such pair a commodity. The i-
th commodity, would like to send its flow demand di from
the source si to the target ti. Each commodity can choose
to split the flow along any number of paths from si to ti.
The set of all paths2 between si and ti is denoted by Pi. The
amount of flow that commodity i assigns on edge e = (u, v)
is denoted by f ie or f iuv . The general model in [1] allows
intermediate nodes to decide to drop a certain amount of flow
(decide not to relay). Therefore on a connection e = (u, v)
the node v might transmit a certain amount of flow f ie, but
node u may decide to only retransmit, for example half of it
on the next edge towards it destination. In this case there an
amount of flow is not successful: it is transmitted by a source
node, but it never reaches its destination. One of the theoretical
results in [1] is that some networks have equilibrium flow
solutions that use only successful flows. That is a node never
transmits more flow that is actually relayed to its destination.
We focus on this particular case for our experiments3. Note
that the model we define here is different and significantly
simplified compared to the one in [1]. However there is no
loss in generality of the model for the particular case we
are interested in (equilibrium solutions with successful flows
only). For every edge e = (u, v) there are two “strategic”
parameters associated with the decision of how much flow the

2Note that we describe the model using these sets of paths as it is more
intuitive and easier to formulate our results. This formulations would be
exponential in size and would not be useful in practice, and it is often used in
related literature. Later on in this work, we show how to formulate his model
in terms of the graph edges so that all formulations are polynomial in size.

3Note that there are also equilibrium solutions with unsuccessful flows
according to [1] but those are more complex and less practical to work with
as it NP-hard to compute them, or to check if they exist.



edge should carry. The receiving node v needs to decide how
much flow from this edge, it will be willing to relay further.
Note that an edge e = (u, v) will carry “through flow” (flow
that needs to be relayed by v to some destination) and “arriving
flow” (flow with destination v). The maximum amount of flow
of the edge e = (u, v) that v is going to tolerate is denoted by
βe. This means that v is simply not going to relay anything
more than this limit. The limit βe needs to be decided by node
v and is one of the main strategic variables in the model. On
the same edge, u also has a certain threshold that shows its
own tolerance of dropped flow from v. If v is dropping a lot
of flow (βe is too low) then u might decide not to send any
flow, by cutting off the edge e. Note that this is an important
decision that can hurt v because the edge e also carries flow
with destination v. In other words, u will send two kinds of
flow to v, flow to relay further, and flow with destination v.
If v does not relay enough then u can cut off the edge, and v
will lose the flow with destination v it received through that
edge. For every edge e = (u, v), the node u has a strategic
variable αe that denotes the minimum amount of through-flow
that v is expected to relay. If v relays less then the edge e
is automatically cut- off. So, whenever βe < αe the edge e
will be cut off. Cutting off an edge this way is part of the
model definition. An edge e = (u, v) can be cut off either by
u, by increasing its expectation αe above v’s limit, or it can
be cut off by v lowering the flow it relays (reducing βe). This
completes the description of the main parameters and variables
of the network.

Now we need to define the utility function for the players
(network nodes). The utility function we introduce here is
a simple generalization of the one in [1]. A natural way to
measure the utility of a node in this model is roughly the
following. A node u gets utility from receiving flow (that has
destination the node u), and by the fact that flow with origin u
actually arrives to its destination. On the other hand, a node u
will incur cost (negative utility) whenever it needs to transmit4

flow (its own or relayed traffic). We define the utility of a node
y in the following equation.

U(v) = ws

∑
e∈out(v)

x∈V

fvxe +

wr

∑
e∈in(v)
x∈V

fxve −

∑
e∈out(v)
x,y∈V

fxye

(1)

The parameters ws ≥ 2 and wr ≥ 1 can be used to model
the utility of successful flow, and also the trade-off between
successful flow utility and cost of transmission. The parameter
ws is used for the flow that is sent from a node, and wr is used
for the utility of arriving flow. We assume that ws ≥ 2 since

4We do not explicitly associate cost with receiving flow because this can be
easily modelled in the utility function by choosing the weights appropriately.

we need to have some utility from sending flow to a destination
after subtracting the cost of transmission (if ws = 1 then it
does not make any sense to transmit any flow). The paramters
ws, wr depend on the application and also other details of
the model. Determining values for this parameters can be a
difficult task. Our results consider the general case

We have now defined all the ingredients of the this game
theoretic model. There is a player for each node, with the
utility function defined in equation (1). Each player (node
v) needs to decide on its own strategy, which incudes the
following variables:
• αe: The tolerance values for each out going edge e =

(v, x). If the target neighbor x on the edge e is not
relaying at least αe then the edge is cut off

• βe: The drop thresholds for each incoming edge e =
(x, v). v will relay at most βe of flow coming from e.

• fvxe : The flow assignment that v will route towards all of
its assigned targets x.

The strategy profile of a node σv contains all of the above
parameters: all values αe for out-going edges, all βe for
incoming edges and all flow assignments fvxe for all edges
in the graph and all destination nodes x.

Each node will choose to relay traffic in a way that
maximizes it own utility as defined by equation (1). In order
to maximize its utility it needs to pick a strategy profile
σv wisely. A Nash equilibrium in this network game, is a
complete strategy profile for all nodes σ = (σv1 , σv2 , . . . , σvn)
such that no node has a unilateral incentive to change its own
strategy. In other words, assuming that the nodes are using
the strategies in σ, no node v can increase its own utility by
changing only its own parameters σv in the strategy profile σv .
This is the standard definition of Nash equilibrium, adapted for
the network game we have defined here. We will refer to such
a strategy profile as the Nash equilibrium or the equilibrium
solution.

Now recall that the network instance includes many source-
destination pairs, and for each pair there is some amount of
demand (maximum amount of flow available to be sent to the
destination). In fact every node will be part of some such pair
otherwise there is no reason for being part of the network in
the first place. It is easy to see that if the source node u of a
source-destination pair u, v is connected directly to the target
v (there is a directed edge (u, v) in the graph) then it is always
beneficial for both nodes for u to send all of its duv demand to
v. Therefore there is a trivial equilibrium solution, where only
neighbor demands are routed in the network and no other flow
is sent. We will call this the trivial Nash equilibrium or simply
the trivial solution. Obviously we are interested in non-trivial
equilibria and in what follows. We say that a flow assignment
is connected if it routes a non-zero amount of flow for each
commodity. A connected non-trivial Nash equilibrium solution
is what we are interested in. In what follows, whenever we
refer to an equilibrium solution we mean a connected non-
trivial Nash equilibrium solution, unless we explicitly want to
make a reference to trivial solutions or commodities with zero
flow routed.



IV. EXISTENCE OF EQUILIBRIUM SOLUTIONS

Looking at the definition of the model we see that the
equilibrium solution depends heavily on the choice of the α
and β parameters. A node would rather relay as little through-
traffic as possible: through traffic only incurs cost for really
node. However if the node starts reducing the amount of flow
it is supposed to relay, then incoming edges will eventually
be cut off and this will stop the node from receiving flow
destined for it and therefore lose utility by that fact. Therefore
the decision to relay less traffic needs to be balance with the
traffic we expect to receive from each edge. This is precisely
the point that is used to characterize the equilibrium solutions
in this network game. Following the analysis of [1] we can
extend the main theorem regarding successful flows to our
network model that has slightly generalized utility function.
The main difference in the utility function we introduce here,
is the use of the scaling parameters ws and wr.

So far we have described the flow assignments in terms of
edges. We now switch to path flows as this formulation makes
the description of the theorem and flow splits more intuitive.
Everything can be described in terms of edges and in fact we
do use the edge based formulation in our experiments.

For every source destination pair (ui, vi) we denote the set
of all possible paths connecting ui to vi by Pi. We also denote
by P the set of all relevant paths in the network, P = ∪iPi

Recall that each node is essentially trying to optimize the
amount of flow it will get to its destination, but it will also
need to make sure the assignment it proposes makes sense
for the nodes it needs to use as relays. We can indeed write
this joint optimization problem as a linear program, and for
ws = 2 we get the following.

maximize
∑
P∈P

fP (2)

subject to : ∑
P3e

through
edge

fP − wr ·
∑
P3e
final
edge

fP ≤ 0 ∀e ∈ E

∑
P∈Pi

fP ≤ duivi ∀i

fP ≥ 0 ∀P ∈ P
Note that the size of this linear program is exponential in the

number of nodes since it is formulated using paths. However
we can easily convert this to a linear program written on the
network edges that has size polynomial in the size of the
network.

We define D to be the total demand in the network between
neighboring nodes. A trivial equilibrium solution will route a
total flow equal to D. The following theorem describes the
non-trivial equilibrium solutions [1].

Theorem 1: A network game has non-trivial equilibrium
solutions with only successful flows if and only if the linear
program described in (2) has a solution f∗P with objective
value

∑
P∈P f

∗
P > D.

The complete proof of this theorem is analogous to the proof
of theorem 2 in [1].

V. EVALUATION

In this section, we present an extensive set of experiments
to evaluate the forwarding model presented above. Our main
goals are the following:

1) The theoretical results state that equilibria solutions may
exist for some networks. How often do these network
games actually have such equilibrium solutions? Are
these solutions practically significant?

2) These equilibrium solutions route non-zero fraction of
the available flow potentially from every commodity. But
is this routed fraction significant or very close to zero?

We answer both these basic questions by analysing random
families of graphs with randomly chosen source-destination
pairs and demands. For these random graphs we solve the
linear program (2) and find the equilibrium flow assignments.

Graphs are generated according to the Erdös-Renýi model
(Gnm), and the Barabasi-Albert powerlaw model. Various
edge densities are used. self loops and multi-edges are not
allowed. Commodity pairs are chosen uniformly at random.
Flow demands are chosen uniformly at random from 1 to a
predetermined maximum value. All demands are integers. This
ensures that all flows are integral as well. We choose wr = 1
for our experiments. As discussed above, the parameter should
be greater or equal to 1 in general. The boundary case of
wr ≥ 1 means that arriving flow is worth as much as the cost
to transmit it.

Given a randomly generated instance (graph plus commodi-
ties) we solve the linear program (2) and compare the total
routed flow at equilibrium with the best possible solution. The
optimal solution is the case that all flow is routed (complete
cooperation). Note that trivial flow, which is the flow between
source-destination pairs that happen to be neighbors, will
always be routed so when we compute the ratio of equilibrium
flow versus optimal, we subtract the trivial flow. In order
to understand the efficiency of the equilibrium solution, we
define the equilibrium flow ratio, to be (equilibrium flow -
trivial flow) divided by (optimal flow - trivial flow). This ratio
will be always between 0 and 1. Our experiments explore
the equilibrium flow ratio for varying values of edge density,
commodity density, and graph type. The experiments are done
on a 16-processor Intel Xeon 2.27GHz machine with 24GB of
memory. The linear program is solved by the CPLEX solver,
using IBM’s OPL Studio. Results are also presented on the
running time of the LP solver.

Figure 1 shows two series of histograms. On the left we
see a series of histograms that plot the resulting equilibrium
flow ratio distribution for 100 different experiments for in-
creasing edge density. On the right we have a similar series of
histograms for increasing commodity density. Each histogram
also shows the average and standard deviation of the plotted
values. We see that for a relatively sparse network with average
degree 4 (top left histogram), the equilibrium solution will
route just below 14% of the available flow. For a network



Fig. 1. Percent of available flow routed at equilibrium for Erdös-Renýi graphs
as a function of edge density, and commodity density

with average degree 10 however, the equilibrium solution is
expected to route close to 70% of the available flow. For
average degree 12 the equilibrium flow is over 85% of the total
available (bottom left histogram). We see a similar but slightly
more modest increase as the commodity density increases.
Figure 1 shows that equilibrium flows carry non-negligible
flow in the network and they increase significantly when the
network becomes more dense, or when the flow demands
in the network become more dense. This is an interesting,
typically game theoretic result: the more overloaded the net-
work becomes, the more efficient are the equilibrium flows.
In other words, the incentives become stronger for nodes to
relay when the network is more dense with flow demands, or
with possible flow paths. Going back to the description of the
equilibrium constraints of this game, we see that essentially
an equilibrium flow solution is looking for cases where a node
has an incentive to relay flow in order to keep edges open, that
carry flow towards that node. In some sense, these open edges
are a kind of deal between nodes across an edge e = (u, v):
u will only continue to send v flow with destination v (and
therefore flow that v wants to receive) provided that v relays
enough flow further in the network. Increasing the edge density
by adding more edges in the network, increases the probability
that there are such deals to be made across edges for each
flow demand. If the network is sparse then the existing paths
may not bring together nodes whose interests are aligned. The
same holds true for increasing density of commodities. The
more source-destination pairs we add to the network the more
likely it becomes that edges will remain open as the interests of
the two nodes on those edges are aligned. Figure 1 also shows
that edge density has a stronger impact on the equilibrium flow

Fig. 2. Percent of available flow routed at equilibrium for powerlaw graphs
as a function of edge density (left) and demand density (right).

routed. A dense network is likely to reach a very good level
of efficiency, routing almost all available flow.

For powerlaw graphs we see a different picture. We gen-
erate powerlaw graphs using the Barabasi-Albert preferential
attachment model. Figure 2 shows how the routed equilibrium
flow changes when edge density increases and when demand
density increases. For similar values of edge density and
commodity density, we see that the expected equilibrium flow
is significantly lower than what we see in Erdös-Renýi graphs.
However we still see that increased density has a positive result
(expected amount of flow routed is still increasing) but at a
more modest rate. We also observe that increasing edge density
has a marginally more positive effect on the flow routed at
equilibrium. The equilibrium flows are calculated by solving
the linear program from equation (2). The generated linear
program has a size that grows fast with the graph size. For a
graph with n nodes, m edges, c commodities, the number of
constraints is bounded by O(n ·m+m2 ·c). This is a generous
over-estimate as the expected node degree is smaller than what
is used for the calculation of the upper bound (maximum
possible degree is O(m), the number of edges in the graph).
The expected size of the linear program is O(n · d + d2 · c)
where d is the maximum of the average out-degree and average
in-degree. In practice the solve-time can vary greatly with
different LP instances. The running time is shown in figure
3 for powerlaw graphs. The results show that the variance
increases for as the number of edges (edge density) and the
number of commodities increase.

Figure 4 compares the percent of available flow routed at
equilibrium as a function of increasing commodity density.
The results for Erdös-Renýi (Gnm) graphs are on the left side



Fig. 3. Solve time for finding the flow routed at equilibrium for powerlaw
graphs as a function of edge density (left) and demand density (right).

and the results for powerlaw (Barabasi-Albert) graphs are on
the right. We see clearly that the equilibrium solution has a
stronger dependence on the available commodity flow pairs
for Gnm graphs rather than for powerlaw graphs. Powerlaw
graphs exhibit a small strongly connected nodes with a long
tail of less connected nodes. This makes it easier for the
highly connected nodes to route their flow, if both source and
destination nodes are in the highly-connected components. For
the rest of the nodes (in the loosely connected tail) relaying
does not happen as easily. This is consistent with the results for
sparse graphs that we have shown above. As the commodity
density increases, the size of the highly connected component
does not change. Therefore most of the added commodity pairs
will naturally fall in the loosely connected tail and therefore
will have less chances of finding willing relaying nodes.
This results in the effect that we see, where the increasing
commodity density does not have a strong impact in the routed
traffic at equilibrium.

VI. CONCLUSION

We considered a natural relaying problem modelled as
a game theoretic problem. We focused on a recent game
theoretic model that established the existence of equilibrium
flows that are based on natural incentives for relaying as
opposed to payments. We experimentally established that these
equilibrium solutions can carry a significant fraction of the
available flow. Our experiments show that the efficiency of the
equilibrium solution increases with edge density and demand
density in the network. In addition, we give strong evidence
that powerlaw networks are less efficient in the sense that the
equilibrium solution is expected to route a smaller fraction of
the available flow compared to Erdös-Renýi type of graphs
with similar characteristics.

Fig. 4. Percent of available flow routed at equilibrium for Erdös-Renýi graphs
and for Barabasi-Albert graphs as a function of commodity density
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