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Abstract—We consider a type of game theoretic dynamics in a
network model where all nodes act selfishly and will forward
packets only if it is to their benefit. The model we present
assumes that each node receives utility from successfully sending
its own flow to its destination(s) and from receiving flow, while
it pays a cost (e.g., battery energy) for its transmissions. Each
node has to decide whether to relay flow as an intermediate
node from other sources, as relaying incurs only costs. To
induce nodes into acting as intermediaries, the model implements
a reputation-based mechanism which punishes non-cooperative
nodes by cutting off links to them, a decision that is made in a
very local fashion. In our setting, the nodes know only the state
of the network in their local neighborhood, and can only decide
on the amount of the flow on their outgoing edges, unlike the
previously considered models where users have full knowledge of
the network and can also decide the routing of flow originating
from them. Given the opportunistic nature of the nodes and their
very limited knowledge of the network, our simulations show the
rather surprising fact that a non-negligible amount of non-trivial
flow (flow over at least two hops) is successfully transmitted.

I. INTRODUCTION

In wireless networks such as sensor networks, a major con-
cern is the battery life of each node. Each node is transmitting
bits using its battery energy, but these transmitted bits have
different intrinsic value for the node: bits that are transmitted
because the node wants to communicate with another node
should count as gain, while bits that the node forwards in order
to facilitate the communication of other nodes should count as
loss, since the energy spent for this purpose doesn’t serve the
self-interest of the node. Usually the nodes of a network are
seen as part of a greater scheme that is not concerned with
their self-interest. In this work we study networks of nodes
that act as selfish agents, i.e., there is no central coordinator
that imposes a certain behavior on the nodes, but each node
has its own decision variables that decide the nature of its
participation in the network, and its own utility function which
is a measure of the network service to its self-interest (gain
or loss). The main motivation for building such networks with
selfish nodes is the apparent fact of life that certain agents
are willing to participate in a greater scheme (the network)
only if they see a reward for their effort. For example, such a
network protocol may allow the build-up of a wireless ad-hoc
network in a city using citizens’ smartphones; unlike a sensor
network where the sensors are machines dedicated to a single
purpose (and therefore have no self-interests), a smartphone
network cannot be enforced upon the phone users; still, it

could possible that users who are far away from a WiFi hotspot
can use other smartphones to connect to, say, the Internet,
through a user who is close to a hotspot, if a network of
selfish agents can be built. Unfortunately, the latter may not
be possible at all, a situation unlike that of the usual wireless
networks with selfless nodes which can always be enforced
into being (provided the nodes do not fail, etc.). The possibility
of existence for wireless networks with selfish nodes and their
performance is the subject of this study.

Although energy concerns are a good motivation for the
study of networks with selfish nodes, they may not be the
only ones. Therefore we cast the problem we study in a more
general framework of network flows. The network itself can
be modeled as a directed unweighted graph, where the nodes
are the agents and the edges are the potential links between
agents. Note that for this work, the terms node and agent are
interchangeable. As will become apparent in the following,
we call these links potential because they may or may not
be present in the network, depending on the behavior of the
agents adjacent to the link. In this network we have a number
of designated Origin-Destination (O-D) pairs of agents; each
O-D pair s, t is associated with a positive parameter ds,t which
is the transmission rate of the connection that s and t want
to establish. We formulate this transmission requirement as
a network flow commodity, with source s, sink t and flow
demand ds,t. Note that each node may be the source and/or
the sink of more than one commodities. For simplicity, we
will assume that there is only a single commodity associated
with a particular O-D pair.

Game-theoretical concepts are suitable for capturing the
selfish nature of the agents. A node receives utility from all
flow successfully delivered and for which the node is either
the origin or the destination. All nodes need to pay a cost
which is proportional to the amount of flow they need to
transmit, whether they are the origin of that flow, or they
simply relay someone else’s commodity. In fact, we assume
that a node needs to pay this cost even for the amount of
flow it attempts to transmit, but never reaches its destination;
this captures the fact that transmission (whether successful or
not) always requires resources. The total gain (or loss) of a
node is its total utility (or payoff). Each node controls a set of
decision variables that determine its behavior, and therefore
there is a range of potential values for these variables that
the node can chose; every permissible combination of values



the node can chose is a strategy. Apparently, each node is
going to switch between strategies in its strategy space if
such a switch is beneficial, i.e., if its total utility increases. In
particular, a strategy that maximizes this utility if we assume
that no other node switches at the same time, is called a best
response. Eventually, the system may reach a state where no
such switches, done unilaterally (i.e., assuming that nobody
else switches strategies at the same time), can be beneficial;
in this case the system has reached a Nash equilibrium. This
process of reaching such a stable state (i.e., the dynamics of
the game that models our network problem) is the main subject
of this work.

Initially it seems unlikely that even a single node may be
willing to collaborate by forwarding flow. Obviously, if an O-
D pair for a commodity is connected by a link, then it is to the
benefit of both the origin and the destination to go ahead with
this communication. If, however, there is no direct connection,
then an intermediate node, or several intermediate nodes must
be used as relays, or forwarding nodes, and such nodes have
no a priori reasons to cooperate (after all, a commodity that
they only forward means only additional costs without any
benefits). There are two general methods for inducing these
intermediate nodes into doing at least some forwarding: (i)
they can be rewarded by the O-D pairs they help with some
kind of credit, that they in turn can use in order to pay nodes
that relay their own commodities, or (ii) they can be punished
by their neighbors for not being cooperative enough. In this
work we adopt the second approach. Namely, we follow in the
line of research of [1] and [2], and we propose a protocol that
gives a node the power to essentially cut its link to a neighbor
that is not cooperative enough, i.e., blocks more flow than the
node can tolerate. We depart from that work by simplifying
the strategy space for the nodes: Up to now, each node could
decide the routing of the flow for which it was the origin. In
order to do that, it had to know the current topology of the
whole network (i.e., which links are currently instantiated),
which is rather unrealistic, because it requires the continuous
gathering of network information by every node all the time.
In this work we propose a TCP/IP-like model, in which the
nodes collect initially information for the network topology
(as before), but they use this topology in order to calculate
the shortest-path (in number of hops) for each commodity.
These shortest paths are used to populate a routing table for
every node that maps commodities to neighbors and indicates
which link should be used by the node in order to forward
the flow of a particular commodity. After this initial stage
of setting up the routing tables, the (game) protocol starts
running for each node separately: each node has access only
to local information, and decides only local variables, i.e., it
decides only what happens to the edges incident to it, and
to the flow it sends/forwards/ on these edges. This localized
approach greatly simplifies the protocol, is more realistic, and
makes the computation of the best response by a node much
simpler. The price we pay for simplicity and practicality is the
lack of necessary and sufficient conditions for the existence of
non-trivial equilibria, i.e., equilibria other than the equilibrium

where the only commodities that are transmitted are the ones
with origin and destination both incident to a link; [1] and
[2] stated and took advantage of such conditions to study the
existence of equilibria.

Hence, with the lack of theoretical results for the existence
of non-trivial equilibria, we turn to the dynamics of the game.
We study experimentally the convergence of a best response
update rule for the nodes towards an equilibrium; in particular,
we are interested in the likelihood of reaching a non-trivial
equilibrium as well as in the efficiency of such an equilibrium,
measured by the percentage of the original total demand that
is eventually transmitted.

The paper is organized as follows. We start with an overview
of related work and background required in section II. We pro-
ceed in section III with a formal definition of the network flow
problem. We present a simplified version of the model and
describe the the theoretical results derives for this simplified
model in section IV. Then we give an experimental evaluation
of this model in section V, concluding in section VI.

II. BACKGROUND AND RELATED WORK

Selfish behavior is not new in multi-hop networks; it is
rather a frequent and reasonable assumption that captures
the behavior of self-interested entities that need to coexist
and possibly cooperate in a common environment. Selfish
behaviour has been studied using game theoretic techniques in
many different areas and problem settings, including wireless
ad-hoc multi-hop networks; as already mentioned, this work
is a continuation of the work in [1], [2], but the latter was in-
spired by the CONFIDANT protocol studied in [3]. Naturally
the following question arises: does there exist an equlibrium,
where nodes do relay flow for others (and therefore do pay the
cost for someone else’s flow) which which relieve the network
from the trivial equilibrium situation mentioned above? Sev-
eral papers [1], [4], [5], [6] show that, indeed, node strategies
that lead to non-trivial equilibria do exist for relatively natural
network relay models. There are cases where it is to the benefit
of everyone involved, or at least most, to relay traffic, because
this will lead to a better utility outcome for themselves [1],
[2]. Two ways to avoid the trivial solution of zero-relaying,
which is a form of the well-known “tragedy of the commons”,
were mentioned above. Payment schemes is a common way
to provide incentives to intermediate nodes to relay packets.
Reputation-based protocols are based on keeping records of
the past actions of neighbors: each node keeps track of the
amount of traffic its neighbors has forwarded in the past and
follows a specific protocol to decide the amount of traffic it
will route in each round. The decisions can be local [3], [7], [8]
(each node decides according to its own private information
about the past actions of its neighbors) or centralized (a central
authority collects all information as a central repository, and
decisions are based on the statistics from the entire network)
[9], [5].

In this work we study a reputation-based protocol. Nash
equilibria are also explored experimentally in [10], where
the relay game is also a reputation-based protocol, and it



is modeled as a repeated game. Conditions for the existence
of equilibrium solutions are established theoretically, and the
authors also present experiments to establish the probability
that a random network will indeed allow an equilibrium relay
solution. Their experimental results are used mainly to explore
particular strategies for the repeated game, or check whether
specific conditions hold, while we are concerned with the
dynamics of a single stage game and the particular strategies
we consider are best response ones.

III. DEFINITION OF THE MODEL

The protocol we describe here is significantly simpler to
that presented previously in [1], or even in [2] (which was
itself a simplified version of [1]). We will explain the main
differences in more detail further on. Let G = (V,E) be a
directed graph, representing a connected network that consists
of nodes that are elements of the set V , the set of agents. If
there can be a direct link that allows node u ∈ V to transmit
to node v ∈ V , then there is a directed edge (u, v) ∈ E.1 We
are also given a set of O-D pairs (si, ti) ∈ V for commodities
i = 1 . . . k, and flow demand di ≥ 0 for each commodity i;
commodity i would like to send its flow demand di from the
origin si to the destination ti. The set of all paths between si
and ti is denoted by Pi.

In [1], [2] each commodity is routed by its origin, which
can choose to split the commodity demand along any number
of paths from Pi. In what is a significant departure, the model
in this work allows only for unsplittable flows, i.e., each
commodity is routed through a single path. This path is not
a decision variable of the origin node anymore (therefore the
latter doesn’t have the flexibility of choosing the currently
most beneficial routing, but doesn’t need to know the current
state of the whole network, either). From now on, we assume
that the flow paths have been determined2, and every node is
aware of which of its outgoing edges it should use to forward
or transmit a particular commodity through, by using a routing
table. Obviously there must be a distributed protocol that runs
before our own, that will populate these routing tables with
the correct information; since such a protocol is not a study
object for this work, we will assume that the routing tables
are given.

Following the general model in [1], we allow intermediate
nodes to decide to drop a certain amount of flow (i.e., decide
not to relay). Therefore, on a connection e = (u, v), the node
v might transmit a certain amount of flow f ie, but node u may
decide to only retransmit, for example, half of it on the next
edge towards it destination. In this case there an amount of
flow is not successful: it is transmitted by a source node, but it
never reaches its destination. One of the theoretical results in
[1] is that some networks have equilibrium flow solutions that

1Note that the special case where G is undirected is often used to
model wireless ad-hoc networks, when communication links are bi-directional.
Clearly, each undirected edge can be replaced by two directed edges of
opposing directions.

2In our implementations, we use shortest paths (in terms of hops) as a
natural path selection.

use only successful flows, i.e., a node never transmits more
flow that is actually relayed to its destination. [2] focused on
this particular case for their experiments. Since in this work we
are interested only in the dynamics of a set of strategies defined
for every node that allows only partial information about the
network to be used, the distinction between successful and
unsuccessful flows doesn’t play a significant role for us and
we will not assume (as in [2]) that our flows belong only to
one of these categories.

For every edge e = (u, v) there are two ‘strategic’ parame-
ters associated with the decision of how much flow the edge
should carry. The receiving node v needs to decide how much
flow from this edge it is willing to relay further. Note that an
edge e = (u, v) will carry “through flow” (flow that needs to
be relayed by v to some destination) and “arriving flow” (flow
with destination v). The amount of flow βv

e that goes through
e and v doesn’t block (i.e., it allows it to go through v further
down its path) is a decision variable of v. On the same edge, u
also has a threshold THRu

e decision variable for the amount
of flow it sends to v through e and v blocks. If v is blocking a
lot of flow (the amount that v relays βv

e is so low that the flow
dropped becomes more than u’s threshold THRu

e ) then u ‘cuts
off’ (i.e., blocks all flow that goes through) edge e. Note that
this mechanism can hurt v, because edge e also carries flow
with destination v, which v values. This cutting off of an edge
is the punishment part of the protocol definition, it provides the
only incentive for a node to forward third-party commodities,
and its mechanism is based on a node’s ‘reputation’ as a ‘good
citizen’, measured by the amount of flow it blocks, i.e., it is
a reputation-based protocol. Note that if αv

e is the amount of
flow from e that v blocks, there are two ways of cutting an
edge (or, equivalently imposing the inequality THRu

e < αv
e):

either u decreases its threshold THRu
e , or v blocks more flow

by increasing αv
e .

To summarize, each player (node v) needs to decide on its
own strategy, i.e., a set of values for the following variables:

• THRv
e : The threshold of v for the amount of flow

blocked by the other side x of its outgoing edge e =
(v, x).

• βv
e : The total amount of through flow that v receives

from its incoming edge e = (x, v) and it forwards.
The rest is blocked, with the blocked flow distributed
equally (percentage-wise) to all commodities comprising
the through flow.

• fvx: The amount of flow v transmits for the commodity
with v, x as its O-D pair.

The strategy profile σv of a node v contains values for all
these variables.

The utility function for each node is a simple generalization
of the one in [1]. A node u gets utility from receiving flow
(that has destination the node u), and by the fact that flow
with origin u actually arrives to its destination. On the other
hand, a node u will incur cost (negative utility) whenever
it needs to transmit flow (its own or relayed traffic). We do
not explicitly associate cost with receiving flow because this



can be easily modelled in the utility function by choosing the
weights appropriately. We define the utility of v as follows:

U(v) = w·

(
flow sent by v and reached its

destination

)
+(

flow received
by v

)
−

(
flow forwarded

by v

)
−(

flow sent by v and didn’t
reach its destination

)
.

(1)

The parameter w is used in order to capture the trade-off
between the utility received by successful flow and the cost
of transmission. Note that w ≥ 1 implies that there is non-
negative utility derived from sending flow to a destination after
subtracting the cost of transmission; if w < 1 then it does not
make any sense to transmit any flow.

Each node will choose its strategy in a way that maximizes
its own utility, as defined by equation (1). A Nash equilibrium
in this network game is a complete set of strategies (or strategy
profile) σ = (σv1 , σv2 , . . . , σvn) (one for each node vi) such
that no node has a unilateral incentive to change its own
strategy. In other words, assuming that the nodes are using
the strategies in σ, no node v can increase its own utility by
changing only its own parameters σv in the strategy profile σ.

As mentioned above, it is easy to see that if the source node
u of a O-D pair u, v is directly linked to destination v, then it
is always beneficial for both nodes if u sends all duv demand
to v. Therefore there is a trivial equilibrium solution, where
only neighbor demands are routed in the network and no other
flow is sent. We will call this the trivial Nash equilibrium or
simply the trivial solution.

IV. DEFINITION OF A NETWORK DYNAMICS

In this section we define a process by which a network
of selfish agents such as the one described above evolves
over time. This process is determined by the rules each node
follows in order to update its strategy (i.e., the values for
its decision variables), given some (incomplete) information
about the current state of the network. This myopic character
of the nodes implies that our dynamics may not necessary
converge to a Nash equilibrium as defined above, because
the latter presupposes full knowledge of the strategies of all
other players. The advantage of this approach is that it is
more realistic: no network node can know the whole network
and have this information available in the blink of an eye.
Hence we are trading some of the theoretically descriptive
power of Nash equilibria (which allows, for example, to
prove the existence of non-trivial Nash equilibria with nice
connectivity properties in [1]) for a more realistic setting for
our experiments.

In order to define the network dynamics we need to define
two elements: the input to a node, and the set of update rules.

Node input: Each node is aware of the complete strategy
of each one of its neighbors in the network; it is also aware

of how much of the flow it sends to a destination actually
arrives (say, through ACK replies). Note that we have already
assumed that the routing table for each node is already set up,
and that a node has no (direct) information about the strategies
of the nodes beyond its neighborhood, or which edges are
currently cut off.

Strategy update: We would like to define the broadest set
of candidate strategies that its input allows to a node, and pick
out of them the best response strategy, i.e., the strategy that
maximizes the node’s utility. We assume that no other node(s)
update their strategies at the same time. While this assumption
may seem not realistic, it doesn’t affect the implementation
(but only the theoretical analysis), and it will not be far from
reality if the update algorithm for the node is fast. Then the
issue that arises is how to check for the best strategy, given the
fact that the set of potential strategies is infinite due to the real
(continuous) values that some of the node decision variables
take. The crucial observation that resolves this problem is the
following:

Theorem 1: The best response strategy is a member of a
finite set of strategies with size O(2d), where d is the degree
(together the in- and out-degrees) of the node in G.

Proof: Suppose that s∗ is the currently best response
strategy for node u, and U∗ its node utility. Then we can
modify this strategy, without changing u’s utility as follows:
First look at all incoming links e = (x, u) to u. If e is
cut-off by s∗ (i.e., THRx

e < αu
e ), then bue = 0, i.e., u

doesn’t forward anything coming from x, because otherwise
u could set bue := 0 without changing the network, and thus
increasing its utility, a contradiction. Similarly, if e is ‘alive’
(i.e., THRx

e ≥ αu
e ), then u has no reason to forward more than

bue = THRx
e amount of flow from x, since otherwise it could

reduce its bue without changing the network and thus increasing
its utility, a contradiction. Then look at all outgoing links
e = (u, x) from u. If e is cut-off by s∗ (i.e., THRu

e < αx
e ),

then fut = 0, for all destinations t whose path uses e, i.e., u
doesn’t send anything through x, because otherwise u could
set fut := 0 for some t without changing the network, and
thus increasing its utility (since it doesn’t pay to transmit flow
that never arrives at its destination), a contradiction. Similarly,
if e is ‘alive’ (i.e., THRu

e ≥ αx
e ), then it can reduce its

threshold to THRu
e := αx

e (a tiny amount more actually, so
e is not automatically cut off) without affecting the network
or its utility. From the amount of successful flow it can send
through e (which it knows due to the ACK signals), the amount
of flow for every commodity that x forwards (which it also
knows), and its own bu values (that have already been uniquely
determined), it can determine uniquely3 the optimal value for
its fut decision variables, together with the exact amount of
each commodity that it blocks in its incoming edges, in order
to maintain the network topology. In other words, we have
just proven that once we know which exactly of the edges
incident to u are cut off by s∗, we can determine values for

3Actually there may be more than one ways for doing this. We break these
ties by favoring the commodities in a lexicographic order when determining
how much flow to send.



u’s decision variables that achieve utility U∗ and respect the
network topology imposed by s∗. Hence, if we go over all
O(2d) possibilities of edges incident to u being ‘alive’ or not
and do the calculations above for each one of them, at least
one of these strategies will achieve utility U∗; the set of these
strategies is the set of the theorem statement.
Note that even if the size of the set of candidate best response
strategies depends exponentially on the node degree, in prac-
tice one doesn’t expect to encounter high-degree nodes often.
Therefore, the update rule based on Theorem 1 and described
in Algorihtm 1 should run very fast in typical cases.

Algorithm 1 Strategy update for a node u
1: boolean F [degree(u)]
2: current best s := ∅
3: current best util := −∞
4: for all combinations of F do
5: for all e = (x, u) : F [e] = 0 do
6: bue := 0
7: end for
8: for all e = (x, u) : F [e] = 1 do
9: bue := THRx

e

10: end for
11: for all e = (u, x) : F [e] = 0 do
12: fut = 0, ∀t s.t. (u, t)-path uses e
13: end for
14: for all e = (u, x) : F [e] = 1 do
15: Compute fut, flows blocked by u as in Theorem 1
16: end for
17: current s := (f, b, THR)
18: if U(current s) > current best util then
19: current best s := current s
20: current best util := U(current s)
21: end if
22: end for

V. EVALUATION

In this section, we present a set of experiments to evaluate
the forwarding model presented above. Our main goals are
the following: The theoretical results indicate that equilibria
solutions may exist for some networks, and that localized
dynamics may actually lead to an equilibrium solution. We run
experiments to establish that following the dynamics of this
game will lead to non-trivial equilibrium solutions for random
graphs. These equilibrium solutions route non-zero fraction
of the available flow potentially from every commodity. We
establish experimentally how the equilibrium solutions reached
by local, greedy, and selfish dynamics, depends on various
paramteres of the graph. We analyze random families of graphs
with randomly chosen source-destination pairs and demands.
For these random graphs we run a simulation of the game
dynamics described above. Graphs are generated according
to the Erdös-Renýi model (Gnm), and the Barabasi-Albert
powerlaw model. Various edge densities are used. Self loops
and multi-edges are not allowed. Commodity pairs are chosen

Fig. 1. Percent of available flow routed at equilibrium reached by network
dynamics for Erdös-Renýi graphs as a function of commodity density

Fig. 2. Minimum, maximum, and average percentage of available flow routed
at equilibrium as a function of commodity density, for w = 1

uniformly at random. Flow demands are chosen uniformly at
random between the predetermined minimum and maximum
values. The parameter w quantifies the utility of flow in the
network as a function of the amount of flow. We experiment
with various values of this parameter.

Given a randomly generated instance (graph plus commodi-
ties) we run the game dynamics simulation until it converges
to an equilibrium, and compare the total routed flow at equi-
librium with the best possible solution. The optimal solution
is the case that all flow is routed (complete cooperation).
Note that trivial flow, which is the flow between source-
destination pairs that happen to be neighbors, will always
be routed so when we compute the ratio of equilibrium
flow versus optimal, we subtract the trivial flow. In order
to understand the efficiency of the equilibrium solution, we
define the equilibrium flow ratio, to be (equilibrium flow -
trivial flow) divided by (optimal flow - trivial flow). This ratio
will be always between 0 and 1 (or 0 and 100% if expressed
as a precentage). Our experiments explore the equilibrium
flow ratio for varying values of commodity density, and the
parameter w, the utility to cost ratio of routed flow.

Figure 1 shows two series of values, for Erdos-Renyi graphs,
for w = 1 and w = 5. The figure shows how the percentage of
flow routed at the dynamic equilibrium depends on the density
of commidities in the graph (number of origin-destination
pairs). The figure shows the ratio of flow that is routed at
equilibrium reached by network dynamics, averaged over 10



Fig. 3. Standard deviation of the average percentage of flow routed at
equilibrium as a function of commodity density, for w = 1

Fig. 4. Minimum, maximum, and average percentage of available flow routed
at equilibrium as a function of the parameter w, for demands chosen in the
interval [1, 10]

runs. Figure 2 at the minimum, average, and maximum values
achieved for the flow routed at equilibrium over these runs.

We see that the gap between the minimum and maximum
values closes as the number of commodities increases. Indeed,
looking at Figure 3 the standard deviation of the equilibrium
flow ratio shows the same clear trend. This is an interesting
point about the network dynamics. As the number of origin
destination pairs increases, each user in the network finds it
slightly more difficult to find paths for all the destination.
There is slight decrease in overall routed flow as the number of
commodities increases. Note however, that these experiments
assign random demand values chosen from 1 to 10. This means
that there is a large difference in the amount of flow each
origin destination pair wants to send. An st pair demand may
require 10 times higher amount of flow than other pairs. We
can restrict this to see how it affect the dynamics. In the next
figures, we compare the equilibrium achieved when choosing
demands in the interval [1, 10], or in [8, 10]. In the second
case all demands are much more balanced in terms of amount
of flow they would like to route. The trend is still similar.
The spread of the values also decreases as the number of
commodities increases.

Figures 5 and 4 show the minimum, average and maximum
ratio of equilibrium flow over maximum possible, for mini-
mum demand 1 and minimum demand 8 (maximum demand
is always 10).

Fig. 5. Minimum, maximum, and average percentage of available flow routed
at equilibrium as a function of the parameter w, for demands chosen in the
interval [8, 10]

VI. CONCLUSION

We considered a natural relaying problem modelled as
a game theoretic problem. We focused on a recent game
theoretic model that established the existence of equilibrium
flows that are based on natural incentives for relaying as
opposed to payments. We experimentally established that these
equilibrium solutions can carry a significant fraction of the
available flow. Our experiments show that the efficiency of the
equilibrium solution increases with edge density and demand
density in the network.
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