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Abstract

We initiate the study of a problem on searching and fetching, motivated by real-life surveillance
and search-and-rescue operations where unmanned vehicles, e.g. drones, search for victims in areas of
a disaster. In treasure-evacuation, we are interested in designing algorithms that minimize the time it
takes for a treasure (a victim) to be discovered and brought (fetched) to the exit (shelter) by any of two
robots (rescuers) which are performing in a distributed environment (the case of searching and fetching
with 1 robot has been previously considered in [27]). The communication protocol between the robots
is either wireless, where information is shared at any time, or face-to-face, where information can be
shared only if the robots meet. For both models we obtain upper bounds for fetching the treasure to
the exit. Our algorithms make explicit use of the distance between the treasure and the exit, which is
assumed to be known in advance, showing this way how partial information of the unknown input can
be beneficial. Our main technical contribution pertains to the face-to-face model. More specifically,
we demonstrate how robots can exchange information without meeting, effectively achieving a highly
efficient treasure-evacuation protocol which is minimally affected by the lack of distant communication.
Finally, we complement our positive results above by providing a lower bound in the face-to-face model.

1 Introduction

We introduce the study of a distributed problem on searching and fetching called treasure evacuation. Two
robots are placed at the center of a unit disk, while an exit and a treasure lie at unknown positions on the
perimeter of the disk. Robots search with maximum speed 1, and they detect a point of interest (either the
treasure or the exit) only if they pass over it. The exit is immobile, while the treasure can be carried by any
of the robots. The goal of the search is for at least one of the robots to bring (fetch) the treasure to the exit,
i.e. evacuate the treasure, in the minimum possible completion time. The robots do not have to evacuate,
they only need to co-operate, possibly by sharing information, so as to learn the locations of the points of
interest and bring the treasure to the exit. Contrary to previous work, this is the first time an explicit ordering
on the tasks to be performed is imposed on two moving robots. This makes the problem inherently different
in nature and more difficult than similarly looking results.
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Special to our problem is also the underlying advice-model we consider, i.e. that even though the
locations of the exit and the treasure are unknown, their distance is known and is considered part of the input.
Interestingly, finding an optimal algorithm turns out to be a challenging task even when the robots have this
knowledge. We propose treasure-evacuation protocols in two communication models. In the wireless model
robots exchange information instantaneously and at will, while in the face-to-face model information can be
exchanged only if the robots meet. We aim at incorporating the knowledge of the exact distance between the
exit and the treasure into our algorithm designs. We offer algorithmic techniques such as planning ahead,
timing according to the explicit task ordering, and retrieval of unknown information through inference and
not communication.

Our problem is motivated by real-life surveillance and search-and-rescue operations where unmanned
vehicles, e.g. drones, search for victims in areas of a disaster. Indeed, consider a group of rescuer-mobile-
agents (robots), initially located strategically in a central position of a domain. When alarm is triggered and
a distress signal is received, robots need to locate a victim (the treasure) and bring her to safety (the exit).
Our problem shares similarities also with classic and well-studied cops-and-robbers games; robots rest at a
central position of a domain (say, in the centre of a disk as in our setup) till an alarm is triggered by some
“robber” (the treasure in our case). Then, robots need to locate the stationary robber and subsequently bring
him to jail (the exit). Interestingly, search-and-fetch type problems resemble also situations that abound in
fauna, where animals hunt for prey which is then brought to some designated area, e.g. back to the lair. As
such, further investigation of similar problems will have applications to real-life rescue operations, as well
as to the understanding of animal behavior, as it is common in all search problems.

1.1 Problem Definition & Contributions

A treasure and an exit are located at unknown positions on the perimeter of a unit-disk and at arc distance
α (in what follows all distances will be arc-distances, unless specified otherwise). Robots, denoted by R1,
R2, start from the center of the disk, and can move anywhere on the disk at constant speed 1. Each of the
robots detects the treasure or the exit only if its trajectory passes over that point on the disk. Once detected,
the treasure can be carried by a robot at the same speed. We refer to the task of bringing the treasure to the
exit as treasure-evacuation. We use the abbreviations T,E for the treasure and the exit, respectively. For
convenience, in the sequel we will refer to the locations of the exit and the treasure as points of interest (PoI).
For a PoI I on the perimeter of the disk, we also write I = E (I = T ) to indicate that the exit (treasure) lies
in point I . For a point B, we also write B = null to denote the event that neither the treasure nor the exit is
placed on B.

We focus on the following online variants of treasure-evacuation with 2 robots, where the exact distance
α between T,E is known, but not their positions:
- In 2-TEw (Section 2), information between robots is shared continuously in the time horizon, i.e. messages
between them are exchanged instantaneously and at will with no restrictions and no additional cost or delays.
- In 2-TEf2f (Section 3), the communication protocol between the robots is face-to-face (non-wireless)—
abbreviated F2F (or f2f), where information can be exchanged only if the robots meet at the same point
anywhere.

Part of our contribution is that we demonstrate how robots can utilize the knowledge of the arc-distance
α between the points of interest. We propose protocols that induce worst case evacuation time 1 + π − α+
4 sin (α/2) for the wireless model and 1 + π − α/2 + 3 sin (α/2) for the face-to-face model. The worst
case cost for the two problems becomes 1 + 2

√
3 + π

3 ≈ 5.5113 (when α = 2π
3 ≈ 2.0944) and 1 + 2

√
2 +

π − sec−1(3) ≈ 5.73906 (when α = 2 sec−1(3) ≈ 2.46192), respectively. The upper bound in the face-to-
face model, which is our main contribution, is the result of a non-intuitive evacuation protocol that allows
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robots to exchange information about the topology without meeting, effectively bypassing their inability to
communicate from distance. Note that our results induce upper bounds with respect to competitive analysis
as well. Indeed, the optimal solution, given that the input is known, equals optα = 1 + 2 sin (α/2), hence
the competitive ratio we achieve, for fixed α, can be computed by scaling the worst case performance we
achieve by optα. In both cases, the worst case competitive ratio becomes 1 + π, for α → 0. Finally, we
complement our results above by showing that any algorithm in the face-to-face model needs time at least
1 + π/3 + 4 sin (α/2), if α ∈ [0, 2π/3] and at least 1 + π/3 + 2 sin (α) + 2 sin (α/2), if α ∈ [2π/3, π]. A
graphical comparison of our results can be seen in Figure 1.
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Figure 1: Comparison between the performance of the wireless algorithm (yellow curve), the performance
of the f2f algorithm (blue curve) and the provided lower bound (green curve) depicted on the vertical axis,
as a function of α (horizontal axis).

1.2 Problem and Model Motivation

From a technical perspective, our communication models are inspired by the recent works on evacuation
problems [18, 19, 20]. Notably, the associated search problems are inherently different than our problem
which is closer in nature to search-type, treasure-hunt, and exploration problems. Also, our mathematical
model features (a) a distributed setting (b) with objective to minimize time, and (c) where different commu-
nication models are contrasted. None among (a),(b),(c) are well understood for search games, and, to the
best of our knowledge, they have not been studied before in this combination.

Specific to the problem we study are the number of robots (2 and not arbitrarily many - though our
results easily extend to swarms of robots), the domain (disk), and the fact the robots have some knowledge
about the PoI. Although extending our results to more generic situations is interesting in its own right, the
nature of the resulting problems would require a significantly different algorithmic approach. Indeed, our
main goal is to study how limitations in communication affect efficiency, which is best demonstrated when
the available number of robots, and hence computation power, is as small as possible, i.e. for two robots. In
fact, it is easy to extend our algorithms for the n-robot case.

Notably, search-and-fetch problems are challenging even for 1 robot as demonstrated in [27]. In par-
ticular, the work of [27] implies that establishing provably optimal evacuation protocols for 2-robots is a
difficult task, even when the domain is the disk. Indeed, the best-known trajectory for 1 robot in [27], which
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is also conjectured to be optimal, exhibits delicate “jumps” that effectively save an almost negligible amount
of the termination time, still they improve upon the naive approach. Nevertheless, we view the disc domain
that we study as natural. Indeed, a basic setup in search-and-rescue operations is that rescuer-robots inhabit
in a base-station, and they stay inactive till they receive a distress signal. As it is common in real-life situa-
tions, the signal may only reveal partial information about the location of a victim, e.g. its distance from the
base-station, along with the distance between the points. When there are more than one PoI to be located,
this kind of information suggests that the points lie anywhere on co-centric circles. When the points are
equidistant from the base-station, robots need only consider a disk, as it is the case in our problem. We
believe that with enough technical and tedious work, our results can also extend to non-equidistant points,
however the algorithmic significance of the proposed distributed solutions may be lost in the technicalities.

Finally, specific to our problem is the underlying advice model. Indeed, robots have access to partial
information (the exact distance of the hidden objects) about the unknown input (the exact locations of the
hidden objects). Partial knowledge of the input is interesting due to efficiency-information tradeoffs that are
naturally induced by online problems, and which are commonly studied in competitive analysis, e.g. see [29,
21] and [27]. In our search-and-fetch problem, the partial information of the distance of the hidden objects
demonstrates that robots with primitive communication capabilities are in fact not much less powerful than
in the wireless model.The reader may also view this piece of advice as an algorithmic challenge in order
to bypass the uncertainty regarding the locations of the PoI. Notably, our algorithms adapt strategies as a
function of the distance of the PoI, trying to follow protocols that would allow them to detect the actual
positions of the points without necessarily visiting them. As an easy example, note that if a robot has
explored already a contiguous arc of length α+ε, the discovery of a PoI reveals the location of the other α-arc
distant away PoI (our algorithm makes use of distance α in a much more sophisticated way). As a result, had
we assumed that distances are unknown, robots may not be able to deduce such important information about
the topology using partial exploration, and the problem would require an inherently different algorithmic
approach.

1.3 Related Work

Traditional search is concerned with finding an object with specified properties within a search space.
Searching in the context of computational problems is usually more challenging especially when the en-
vironment is unknown to the searcher(s) (see [1, 4, 40]). This is particularly evident in the context of
robotics whereby exploration is taking place within a given geometric domain by a group of autonomous
but communicating robots. The ultimate goal is to design an algorithm so as to accomplish the requirements
of the search (usually locating a target of unknown a priori position) while at the same time obeying the
computational and geographical constraints. The input robot configuration must also accomplish the task in
the minimum possible amount of time [11].

Search has a long history. There is extensive and varied research and several models have been proposed
and investigated in the mathematical and theoretical computer science literature with particular emphasis
on probabilistic search [40], game theoretic applications [4], cops and robbers [12], classical pursuit and
evasion [38], search problems as related to group testing [1], searching a graph [36], and many more. A
survey of related search and pursuit evasion problems can be found in [17]. In pursuit-evasion, pursuers
want to capture evaders who try to avoid capture. Examples include Cops and Robbers (whereby the cops
try to capture the robbers by moving along the vertices of a graph), Lion and Man (a geometric version of
cops and robbers where a lion is to capture a man in either continuous or discrete time), etc. Searching for
a motionless point target has some similarities with the lost at sea problem, [28, 31], the cow-path problem
[9, 10], and with the plane searching problem [7]. This last paper also introduced the “instantaneous contact
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model”, which is referred to as wireless model in our paper. When the mobile robots do not know the
geometric environment in advance then researchers are concerned with exploring [2, 3, 25, 30]. Coordinating
the exploration of a team of robots is a main theme in the robotics community [14, 41, 42] and often this is
combined with the mapping of the terrain and the position of the robots within it [35, 39].

Evacuation for grid polygons has been studied in [26] from the perspective of constructing centralized
evacuation plans, resulting in the fastest possible evacuation from the rectilinear environment. There are
certain similarities of our problem to the well-known evacuation problem on an infinite line (see [6] and the
recent [15]) in that the search is for an unknown target. However, in this work the adversary has limited pos-
sibilities since search is on a line. Additional research and variants on this problem can be found in [24] (on
searching with turn costs), [34] (randomized algorithm for the cow-path problem), [33] (hybrid algorithms),
[8] (searching with different speeds), and many more.

A setting similar to ours is presented in the recent works [18, 21, 19, 20, 37, 13, 16] where algorithms
are presented in the wireless and non-wireless (or face-to-face) communication models for the evacuation
of a team of robots. The “search domain” in [18, 21, 19, 16] is a unit circle (while in [20] the search domain
is a triangle or square), however, unlike our search problem, in these papers all the robots are required to
evacuate from an unknown exit on the perimeter. Moreover, in none of these papers is there a treasure to be
fetched to the exit. Finally, in some more recent papers [23, 22], Czyzowicz et al. considered the problem
of evacuating a distinguished (as in our case) mobile (unlike our case) robot.

The problem we consider is a direct generalization of the search-and-fetch problem of [27] with 1 robot.
Unlike in our problem, searching only with 1 robot requires an almost orthogonal approach in order to
improve upon the naive strategies. Indeed, the best known trajectory of [27] employs alternating moves
along chords and arcs whose lengths depend on the distance of the hidden items. The induced gain is
comparable to the difference between the length of an arc and its corresponding chord, and even though
this quantity is not significant, it is conjectured that it is indeed the best one can achieve. In contrast, when
searching with 2 robots there are more significant gains by carefully synchronizing the moves of the robots.

Our work is also an attempt to analyze theoretically search-and-fetch problems that have been studied
by the robotics community since the 90’s, e.g. see [32]. A scenario similar to ours (but only for 1 robot)
has been introduced by Alpern in [5], where the domain was discrete (a tree) and the approach/analysis
resembled that of standard search-type problems [4]. In contrast, our problem is of distributed nature, and
our focus is to demonstrate how robots’ communication affects efficiency under the assumption that partial
information about the input is known.

2 Wireless Model

As a warm-up we present in this section an upper bound for the wireless model, which will also serve as a
reference for the more challenging face-to-face model. The algorithmic solution we propose is simple and
it is meant to help the reader familiarize with basic evacuation trajectories that will be used in our main
contribution pertaining to the face-to-face model.

Theorem 2.1. For every α ∈ [0, π], problem 2-TEw can be solved in time 1 + π − α+ 4 sin (α/2).

To prove Theorem 2.1, we propose Algorithm 1 that achieves the promised bound. Intuitively, our
algorithm follows a greedy like approach, adapting its strategy as a function of the distance α of the PoI. If
α is small enough, then the two robots move together to an arbitrary point on the disk and start exploring
in opposing directions. Otherwise the two robots move to two antipodal points and start exploring in the
same direction. Exploration continues till a PoI is found. When that happens, the robot that can pick up the
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treasure and fetch it to the exit in the fastest time (if all locations have been revealed) does so, otherwise
remaining locations are tried exhaustively. Detailed descriptions of the evacuation protocol can be seen in
Algorithm 1, complemented by Figure 2.

Noticeably, the performance analysis we give is tight, meaning that for every α ≥ 0, there are configura-
tions (placements of the PoI) for which the performance of the algorithm is exactly 1 +π−α+ 4 sin (α/2).
Most importantly, the performance analysis makes explicit that two specific naive algorithms that do not
adapt strategies together with α are bound to perform strictly worse than our upper bound. Also, the
achieved upper bound should be contrasted to the upper bound for the face-to-face model (which is achieved
by a much more involved algorithm), which at the same time is only α/2 − sin (α/2) more costly than the
bound we show in the wireless model.

Algorithm 1 takes advantage of the fact that robots can communicate to each other wirelessly. This also
implies that lack of message transmission is effectively another method of information exchange. In what
follows point A will always be the starting point of R2, and A′ denotes its antipodal point. For the sake
of the analysis and w.l.o.g. we will assume that R2 is the one that first finds a PoI I = {E, T}, say at

time x :=
_
AI . We call B,C the points that are at clockwise and counter-clockwise arc-distance α from I

respectively. Figure 2 depicts the PoI encountered.

𝛼𝛼 

𝑂𝑂 

𝐵𝐵 

𝐴𝐴 

𝐶𝐶 𝛼𝛼 

𝐼𝐼 𝛼𝛼 

𝑂𝑂 

𝐵𝐵 

𝐴𝐴 

𝐶𝐶 

𝛼𝛼 

𝐼𝐼 

𝐴𝐴′ 

𝛼𝛼 ≤ 2𝜋𝜋/3 𝛼𝛼 > 2𝜋𝜋/3 

Figure 2: The points of interest for our Algorithm 1.

The description of Algorithm 1 is from the perspective of the robot that finds first a PoI, that we always
assume is R2. Next we assume that the finding of any PoI is instantaneously observed by the two robots.
Also, if at any moment, the positions of the PoI are learned by the two robots, then the robots attempt a
“confident evacuation” using the shortest possible trajectory. This means for example that if the treasure is
not picked up by any robot, then the two robots will compete in order to pick it up and return it to the exit,
moving in the interior of the disk.

Correctness of Algorithm 1 is straightforward, since the two robots follow a “greedy-like evacuation
protocol” (still, they use different starting points depending on the value of α). Also, the performance
analysis of the algorithm, effectively proving Theorem 2.1, is a matter of a straightforward case-analysis.
We note that our worst-case analysis is tight, in that for every α ≥ 0 there exist configurations in which the
performance of Algorithm 1 is exactly as promised by Theorem 2.1. Moreover, we may assume that α > 0
as otherwise the problem is solved when one PoI is found.

Note that our algorithm performs differently when α ≤ 2π/3 and when α > 2π/3. Let x :=
_
AI be the

time that R2 has spent searching till first PoI I is discovered. Then it must be that x ≤ α/2 and x ≤ π − α
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Algorithm 1 Wireless Algorithm

Step 1. If α ≤ 2π/3, the two robots move together to an arbitrary point on the ring and start exploring in
opposing directions, else they move to arbitrary antipodal points A,A′ on the cycle and start moving
in the same direction.

Step 2. Let I be the first PoI discovered byR2, at time x :=
_
AI . LetB,C be the points that are at clockwise

and counter-clockwise arc-distance α from I , respectively.
Step 3. If x ≥ α/2 then robots learn that the other PoI is in B, else R2 moves to B, R1 moves to C.
Step 4. Evacuate

for the cases α ≤ 2π/3 and α > 2π/3 respectively (see also Figure 2). This will be used explicitly in the
proof of the next two lemmata. We also assume that R2 always moves clockwise starting from point A.
R1 either moves counter-clockwise starting from A, if α ≤ 2π/3, or it moves clockwise starting from the
antipodal point A′ of A, if α > 2π/3. In every case, the two robots move along the perimeter of the disk till
time x when R2 transmits the message that it found a PoI.

The performance of Algorithm 1 is described in the next two lemmata which admit proofs by case
analyses. Each of them examines the relative position of the starting point of robot R2 (which finds a PoI
first) and the two PoI.

Lemma 2.2. LetA be the starting point ofR2 which is the first to discover a PoI I . Let also the other PoI be

at C, where
_
CI= α. If A lies in the arc

_
CI , then the performance of Algorithm 1 is 1+π−α+4 sin (α/2),

for all α ∈ [0, π].

Proof. For the case analysis, we refer to Figure 3. Note that robots spend time 1 to reach the periphery of
the disk. Below we calculate the remaining time until evacuation. At time x the cases are as follows.

(I = E,B = null, C = T & α ≤ 2π/3): Let R1 be at point D, i.e.
_
DA= x, see also Figure 3i. Then R1

moves along the chord CD, it locates the treasure and returns it to the exit I , with total cost

_
DA +DC + CI =x+ 2 sin (α/2− x) + 2 sin (α/2)

(Lemma A.1g)
≤ π − α+ 4 sin (α/2) .

(I = E,B = null, C = T & α > 2π/3): Let R1 be at point D, i.e.
_
DA′= x, see also Figure 3ii. Then R1

moves along the chord CD, it locates the treasure and returns it to the exit I , with total cost

_
DA′ +DC + CI ≤x+ 2 sin (π − α− x/2) + 2 sin (α/2)

(x≤π−α)
≤ π − α+ 4 sin (α/2) .

(I = T,B = null, C = E & α ≤ 2π/3): WhenR2 finds the treasure, it picks it up, and start moving along
chord IB, see also Figure 3iii. Meanwhile, R1 at time x is at some point, say, D, and crosscuts
through CD to check the possible point C. When R1 visits C, R2 learns where the exit is, so starting
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Figure 3: The performance of the wireless algorithm, when the starting point A lies in the arc
_
CI of the two

PoI. The trajectory of R2 is depicted with the dotted purple curve, while the trajectory of R1 with the solid
red curve.

from point, say, K, it moves along the line segment KC and evacuates. Note that K lies always in
the the line segment IB, since CD ≤ CI = IB). The total cost then is

_
AI +IK +KC =

_
AI +CD +KC

≤
_
AI +CD + max{CI,CB}

= x+ 2 sin (α/2− x) + max{2 sin (α/2) , 2 sin (α)}
(Lemma A.1i)

≤ x+ 2 sin (α/2− x) + 2 sin (α)
(Lemma A.1g)

≤ π − α+ 4 sin (α/2) .

(I = T,B = null, C = E & α > 2π/3): WhenR2 finds the treasure, it picks it up, and start moving along
chord IB, see also Figure 3iv. Meanwhile, R1 at time x is at some point, say, D, and crosscuts
through CD to check the possible point C. When R1 visits C, R2 learns where the exit is, so starting
from point, say K, it moves along the line segment KC and evacuates. Note that K lies always in the
the line segment IB, since

CD =2 sin (π/2− α/2− x)
(Lemma A.1f)

≤ 2 sin (α/2) =
_
IB .
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In return, the cost becomes

_
AI +IK +KC =

_
AI +CD +KC

≤
_
AI +CD + max{CI,CB}

= x+ 2 sin (π/2− α/2− x) + max{2 sin (α/2) , 2 sin (α)}
(Lemma A.1i)

≤ x+ 2 sin (π/2− α/2− x) + 2 sin (α/2)
(Lemma A.1h)

≤ π − α+ 4 sin (α/2) .

Lemma 2.3. Let A be the starting point of R2 which is the first to discover a PoI I . Let also the other PoI

be at B, where
_
IB= α. If A lies outside the arc

_
IB, then the performance of Algorithm 1 is 1 + π − α +

4 sin (α/2), for all α ∈ [0, π].

Proof. For the case analysis below, we rely on Figure 4. As before, robots spend time 1 to reach the
periphery of the disk. Below we calculate the remaining time until evacuation. At time x the cases we
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𝛼𝛼 ≤ 2𝜋𝜋/3 𝛼𝛼 > 2𝜋𝜋/3
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Figure 4: The performance of the wireless algorithm, when the starting point A lies outside the arc
_
IB of

the two PoI. The trajectory of R2 is depicted with the dotted purple curve, while the trajectory of R1 with
the solid red curve.

consider are as follows.

(C = null & α ≤ 2π/3): After R2 discovers I it will move along chord IB to discover the other PoI, see
also Figure 4i. In particular, since I is visited before C we have x ≤ α/2. If the treasure is in B, then
the total cost would be

_
AI +2IB =x+ 2 sin (α/2)

≤α/2 + 4 sin (α/2)
≤π − α+ 4 sin (α/2) ,

(since α ≤ 2π/3), while if the treasure is in I , then the cost would be π − α+ 2 sin (α/2).
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(C = null & α > 2π/3): After R2 discovers I it will move along chord IB to discover the other PoI, see
also Figure 4ii. In particular, since I is visited before C we have that x ≤ π − α. If the treasure is
in B, then the two robots are competing as to which will reach the treasure first. Even if R2 reaches

the treasure first, the cost would be
_
AI +2IB = x+ 2 sin (α/2) ≤ π−α+ 4 sin (α/2) , while if R1

reaches the treasure first, the total time will be even less than our promised upper bound. Finally, if
the treasure is I , then the cost would be by 2 sin (α/2) less than our promised upper bound.

It follows from Lemmata 2.2, 2.3 that, for all α ∈ [0, π], the overall performance of Algorithm 1 is no
more than 1 + π − α+ 4 sin (α/2) concluding Theorem 2.1.

3 Face-to-face Model

The main contribution of our work pertains to the face-to-face model and is summarized in the following
theorem.

Theorem 3.1. For every α ∈ [0, π], problem 2-TEf2f can be solved in time 1 + π − α/2 + 3 sin (α/2).

Next we give the high-level intuition of the proposed evacuation-protocol, i.e. Algorithm 2, that proves
the above theorem (more low level intuition, along with the formal description of the protocol appears in
Section 3.1).

Denote by β the upper bound provided by the theorem above. It should be intuitive that when the
distance of the PoI α tends to 0, there is no significant disadvantage due to lack of communication. And
although the wireless evacuation-time might not be achievable, a protocol similar to the wireless case should
be able to give efficient solutions. Indeed, our face-to-face protocol is a greedy algorithm when α is not too
big, i.e. the two robots try independently to explore, locate the PoI and fetch the treasure to the exit without
coordination (which is hindered anyways due to lack of communication). Following the worst case analysis,
it is easy to observe that as long as α does not exceed a special threshold, call it α0 (which we define formally
later and which is approximately 1.22353), the evacuation time is β, and the analysis is tight.

When α exceeds the special threshold α0, the lack of communication has a more significant impact on
the evacuation time. To work around it, robots need to exchange information which is possible only if they
meet. For this reason (and under some technical conditions), robots agree in advance to meet back in the
center of the disk to exchange information about their findings, and then proceed with fetching the treasure
to the exit. Practically, if the rendezvous is never realized, e.g. only one robot reaches the center up to some
time threshold, that should deduce that PoI are not located in certain parts of the disk, potentially revealing
their actual location. In fact, this protocol works well, and achieves evacuation time β, as long as α does not
exceed a second threshold, which happens to be 2π/3.

The hardest case is when the two PoI are further than 2π/3 apart. Intuitively, in such a case there is
always uncertainty as to where the PoI are located, even when one of them is discovered. At the same
time, the PoI, hence the robots, might be already far apart when some or both PoI are discovered. As such,
meeting at the center of the disk to exchange information would be time consuming and induces evacuation
time exceeding β. Our technical contribution pertains exactly to this case. Under some technical conditions,
the treasure-finder might need to decide which of the two possible exit-locations to consider next. In this
case, the treasure-holder follows a trajectory not towards one of the possible locations of the exit, rather a
trajectory closer to that of its peer robot aiming for a rendezvous. The two trajectories are designed carefully
so that the location of the exit is revealed no matter whether the rendezvous is realized or not.
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3.1 Algorithm & Correctness

In our main Algorithm 2, robots R1, R2 that start from the centre of the circle, move together to an arbitrary
point A on the circle (which takes time 1). Then they start moving in opposing directions, say, counter-
clockwise and clockwise respectively till they locate some PoI.

In what follows we describe only the trajectory of R2 which is meant to be moving clock-wise (R1
performs the completely symmetric trajectory, and will start moving counter clock-wise). In particular all
point references in the description of our algorithm, and its analysis, will be from the perspective of R2’s
trajectory which is assumed to be the robot that first visits either the exit or the treasure at position I . By

B,C,D we denote the points on the circle with
_
DC=

_
CI=

_
IB= α (see Figure 5). As before, and in what

follows, I ∈ {E, T} represents the position on the circle that is first discovered in the time horizon by any
robot (in particular by R2), and that holds either the treasure or the exit. Finally, O represents the centre of
the circle, which is also the starting point of the robots.

𝛼𝛼 

O 

B 

A 
C 

D 

𝛼𝛼 𝛼𝛼 

I 

𝛼𝛼 

O 

D 

A 

C 

B 
𝛼𝛼 

𝛼𝛼 

I 

Figure 5: The points of interest from the perspective ofR2, when α ≤ 2π/3 on the left, and when α ≥ 2π/3
on the right.

According to our algorithm, R2 starts moving from point A till it reaches a PoI I at time x :=
_
AI .

At this moment, our algorithm will decide to run one of the following subroutines with input x. These
subroutines describe evacuation protocols, in which the treasure must be brought to the exit. Occasionally,
the subroutines claim that robots evacuate (with the treasure) from points that is not clear that hold an exit.
As we will prove correctness later, we comment on these cases by writing that “correctness is pending”.

A1(x) (Figure 6 i): If I = T , pick up the treasure and move to B along the chord IB. If B = E evacuate,
else go to C along the chord BC and evacuate.
(Figure 6 ii): If I = E move to B along the chord IB. If B = T , pick up the treasure, and return to
I along the chord BI and evacuate. If B = null, then go to C along the chord BC. If the treasure is
found at C, pick it up, and move to I along the chord CI and evacuate (else abandon the process).

A2(x) (Figure 6 iii): At the moment robots leave point A, set the timer to 0.
If I = T , pick up the treasure and go to the centre O of the circle. Wait there till the time t0 :=
max{x, α−x+2 sin (α/2)}+1. IfR1 arrives atO by time t0, then go toC and evacuate (correctness
is pending). Else (ifR1 does not arrive atO by time t0) go toB and evacuate (correctness is pending).
(Figure 6 iv): If I = E, move to B along the chord IB. If B = T , pick up the treasure, and return to
I along the chord BI and evacuate. If B = null, then go to the centre O and halt.
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A3(x) (Figure 6 v): If I = T pick up the treasure. If R1 is already at point I go to C and evacuate
(correctness pending). If R1 is not at point I , then move along chord ID for additional time y :=
α/2 − x + sin (α/2) + sin (α), and let K be such that IK = y. If R1 is at point K, then go to B
and evacuate (correctness is pending), else (if R1 is not at point K) go to C and evacuate (correctness
pending).
(Figure 6 vi): If I = E, move to B along the chord IB. If B = T , pick up the treasure, and return to
I along the chord BI and evacuate. If B = null, then move along chord BC until you hit C (or you
meet the other robot- whatever happens first) and halt at the current point, call it K.

𝑂𝑂 

𝐴𝐴 
𝐼𝐼 

𝑂𝑂 

𝐵𝐵 

𝐴𝐴 𝐶𝐶 𝐼𝐼 

𝑂𝑂 

𝐴𝐴 
𝐼𝐼 

𝐵𝐵 

𝐼𝐼 = 𝑇𝑇 

B = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
𝐶𝐶 = 𝐸𝐸 

𝐶𝐶 

𝐵𝐵 = 𝐸𝐸 
𝐶𝐶 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  

𝐵𝐵 

𝐶𝐶 
𝐼𝐼 = 𝐸𝐸 

B = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
𝐶𝐶 = 𝑇𝑇 

𝐵𝐵 = 𝑇𝑇 
𝐶𝐶 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 

𝑂𝑂 

𝐵𝐵 

𝐴𝐴 𝐶𝐶 𝐼𝐼 

𝐵𝐵 

𝐴𝐴 
𝐶𝐶 𝐼𝐼 

𝐷𝐷 

𝐾𝐾 

𝐵𝐵 

𝐴𝐴 

𝐶𝐶 𝐼𝐼 

𝐷𝐷 

𝐾𝐾 

(Subfigure  𝑖𝑖) 

(Subfigure  𝑖𝑖𝑖𝑖) 

(Subfigure  𝑖𝑖𝑖𝑖𝑖𝑖) 

(Subfigure  𝑖𝑖𝑣𝑣) 

(Subfigure  𝑣𝑣) 

(Subfigure  𝑣𝑣𝑖𝑖) 

𝐷𝐷 

Figure 6: The non-wireless algorithm for two robots with performance 1 + π − α/2 + 3 sin (α/2).

It is worthwhile discussing the intuition behind the subroutines above. First note that if a robot ever
finds a treasure, it picks it up. The second important property is that each robot simulates A1 either till it
finds the treasure or till it fails to find the treasure after finding the exit. At a high level, A1 greedily tries
to evacuate the treasure. This means that if the treasure is found first, then the robot tries successively the
possible locations of the exit (using the shortest possible paths) and evacuates. If instead the exit is found,
then it successively tries the (at most) two possibilities of the treasure location, and if the treasure is found,
it returns it to the exit.
A2 and A3 constitute our main technical contribution. Both algorithms are designed so that in some

special cases, in which the exact locations of the PoI are not known, the two robots schedule some meeting
points so that if the meeting (rendezvous) is realized or even if it is not, the treasure-holder can deduce the
actual location of the exit. In other words, we make possible for the two robots to exchange information
without meeting. Indeed after finding the treasure, in A2, R2 goes to the centre of the ring and waits some
finite time till it makes some decision of where to move the treasure, while inA3,R2 moves along a carefully
chosen (and non-intuitive) chord, and again for some finite time, till it makes a decision to move to a point
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on the ring. If instead the exit is found early, then the trajectories inA2,A3 are designed to support the other
robot which might have found the treasure in case the latter does not follow A1.

The next non-trivial and technical step would be to decide when to trigger the subroutines above. Of
course, once this is determined, i.e. once the trajectories are fixed, correctness and performance analysis is
a matter of exhaustive analysis.

We are ready to define our main non-wireless algorithm. We remind the reader that the description is for
R2 that starts moving clockwise. R1 performs the symmetric trajectory by moving counter-clockwise.

Our main algorithm uses parameter x(α) := 3α/2 − π − sin (α/2) + 2 sin (α) , which we abbreviate
by x whenever α is clear from the context. By Lemma A.1a, α0 ≈ 1.22353 is the unique root of x(α) = 0,
while x is positive for all α ∈ (α0, π), and negative for all α ∈ [0, α0).

Algorithm 2 Non-Wireless Algorithm

Step 1. Starting from A, move clockwise until a PoI I is found at time x :=
_
AI .

Step 2. Proceed according to the following cases:

• If α > 2π/3 and I = T and α > x ≥ α− x, then run A3(x).
• If α > 2π/3 and I = E and x ≤ x, then run A3(x).
• If α0 ≤ α ≤ 2π/3 and I = T and α > x ≥ α− x, then run A2(x).
• If α0 ≤ α ≤ 2π/3 and I = E and x ≤ x, then run A2(x).
• In all other cases, run A1(x).

Lemma 3.2. For every α ∈ [0, π], Algorithm 2 is correct, i.e. a robot brings the treasure to the exit.

Proof. First, observe that the treasure is always picked up. Indeed, if the first PoI I that is discovered (by
any robot) is the treasure, then the claim is trivially true. If the first PoI I found, say, by R2 is an exit, then
R2 (in all subroutines) first tries the possible location B for the treasure, and if it fails it tries location C
(in other words it always simulates A1 till it fails to find the treasure after finding the exit). Meanwhile R1
moves counter-clockwise on the ring, and sooner or later will reach C or B. So at least one of the robots
will reach the treasure first. In what follows, let R2 be the one who found first the treasure (and picks it up).
We examine three cases.

If R2 is following subroutineA1, then the treasure is brought to the exit. Indeed, in that case R2 expects
no interaction from R1 and greedily tries to evacuate (see subcases i,ii in Figure 6).

If R2 is following subroutine A2, then it must be that α0 ≤ α ≤ 2π/3, and α − x ≤ x < α, and that
it has not found any other PoI before (by Lemma A.1a we have α − x < α and x > 0, for all α > α0).
Figure 6 subcase iii depicts this scenario, where I = T . Note that from R2’s perspective, the exit can be
either in B or in C, and R2 chooses to go to the center. This takes total time x + 1. If the exit was at point
C, then R1 would have found it in time α − x ≤ x and that would make it to follow A2. So, R1 would
first check point D (where the treasure is not present), and that would make it to go to the centre arriving at
time α − x + 2 sin (α/2) + 1 (an illustration of this trajectory is shown in Figure 6 subcase iv, if R1 was
moving clockwise). R2 is guaranteed to wait at the center till time t0 (which is the maximum required time
that takes each robot to reach the centre). In that case, R2 meets R1 at the center (because R1 did find the
exit in C), and R2 correctly chooses C as the evacuation point. Finally, if instead the exit was not in C, then
R1 would not make it to the centre by time t0. That can happen only if the exit is at point B, and once again
R2 makes the right decision to evacuate from B.
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In the last case, R2 is following subroutine A3, and so it must be that α > 2π/3, that α − x ≤ x < α,
and that it has not found any other PoI before. Figure 6 subcase v depicts this scenario. Note that the exit
could be either in C or in D.

If the exit is in C, then α − x ≤ x, and R1 would follow A3 too. This means, R1 would go to point
D (where there is no treasure), and that would make it travel along the chord DI (an illustration of this
trajectory is shown in Figure 6 subcase vi, if R1 was moving clockwise). If R1 reaches I , it waits there,
and when R2 arrives in I , R2 makes the right decision to evacuate from C. Otherwise R1 does not reach
I , and it moves up to a certain point on the chord ID similarly to R2. Note that the meeting condition on a

point K on the chord, with y = IK, would be that
_
AI +IK =

_
CA +CD + (DI − IK), which translates

into y = x + sin (α/2) + sin (α) − α/2, i.e. the exact segment of ID that R2 traverses before it changes
trajectory. The longest R2 could have traveled on the chord ID would be when x = α − x, but then IK
would be equal to α − π + 3 sin (α) ≤ 2 sin (α) = ID, for all α > 2π/3. Therefore, the two robots meet
indeed in somewhere on the chord ID. Note also that in this case, R2 makes the right decision and goes to
point C in order to evacuate.

If instead the exit is in B, then again R2 travels till point K (which is in the interior of the chord ID).
But in this case, R1 will not meet R2 in point K as it will not follow A3. Once again, R2 makes the right
decision, and after arriving at K it moves to point B and evacuates.

3.2 Algorithm Analysis

In this section we prove that, for all α ∈ [0, π], the evacuation time of Algorithm 2 is no more than 1 +
π − α/2 + 3 sin (α/2), concluding Theorem 3.1. In the analysis below we provide, whenever possible,
supporting illustrations, which for convenience may depict special configurations. In the mathematical
analysis we are careful not to make any assumptions for the configurations we are to analyze.

It is immediate that when a robot finds the first PoI at time x ≥ α after moving on the perimeter of the
disk, then that robot can also deduce where the other PoI is located. In that sense, it is not surprising that, in
this case, the trajectory of the robots and the associated cost analysis are simpler.

Lemma 3.3. Let x be the time some robot is the first to reach a PoI I ∈ {E, T} from the moment robots
start moving in opposing directions. If x ≥ α, then the performance of the algorithm is at most 1 + π −
α/2 + 3 sin (α/2). Also, x ≥ α is impossible, if α > 2π/3.

Proof. Note that 1 is the time it takes both robots to reach a point, say A, on the ring. So we will tailor our
analysis to the evacuation time from the moment robots start moving (in opposing directions) from point A.

Let x be the time after which R2 (without loss of generality) is the first to find a PoI I ∈ {E, T}. Let
also B be the other PoI {E, T} \ I . For R2 to reach first I , it must be the case that R1 does not have enough
time to reach B, and hence x ≤ 2π − α − x, that is x ≤ π − α/2. Since also x ≥ α, we conclude that
α ≤ 2π/3.

Next we examine the following cases. For our analysis, the reader can use Figure 5 as reference (al-

though A is depicted in the interior of the arc CI , we will not use that
_
AI≤ α).

Case 1 (I = T ): R2 picks up the treasure and moves along the chord IB = 2 sin (α/2). The worst case
treasure-evacuation time then is maxα≤x≤π−α/2 {x+ 2 sin (α/2)} = π − α/2 + 2 sin (α/2) .

Case 2 (I = E): According to the algorithm, R2 moves towards the treasure point B along the chord IB,
and reaches it in time x + 2 sin (α/2). R1 moves counter-clock wise and will reach the position of
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the treasure in time 2π − α − x. Whoever finds the treasure first will evacuate from the exit, paying
additional time 2 sin (α/2). Hence, the total cost can never exceed

min {x+ 2 sin (α/2) , 2π − α− x}+ 2 sin (α/2)
≤π − α/2 + 3 sin (α/2) . (by Lemma A.1b)

Observe that in both cases, the cost of the algorithm is as promised.

By Lemma 3.3 we can focus on the (much more interesting) case that R2, which is the first robot that

finds a PoI, arrives at I at time x :=
_
AI< α. A reference for the analysis below is Figure 6 which is

accurately depicting point A at most α arc-distance away from I . For the sake of better exposition, we
examine next the cases α ≤ 2π/3 and α ≥ 2π/3 separately. Note that in the former case robots may run
subroutines A1 or A2, while in the latter case robots may run subroutines A1 or A3. For the lemma below,
the reader may consult Figures 5 and 6.

Lemma 3.4. Let x be the time some robot is the first to reach a PoI I ∈ {E, T} from the moment robots
start moving in opposing directions. If x < α, then the performance of the algorithm is at most 1 + π −
α/2 + 3 sin (α/2), for all α ∈ [0, π].

Proof. As before, we omit in the analysis below the time cost 1, i.e. the time robots need to reach the
periphery of the disk. We examine the following cases for R2, which is the robot that finds I .

(I = T,B = E,C = null): If R2 runsA1, then it must be that x ≤ α−x, so the cost is x+ 2 sin (α/2) ≤
α− x+ 2 sin (α/2) ≤ π − α/2 + 3 sin (α/2) (see Figure 6 i).

If R2 runs A2, then it must be that α− x ≤ x < α and α ≤ 2π/3, and the robot goes to the centre in
order to learn where the exit is (see Figure 6 iii). Independently of where the exit is, and by Lemma 3.2,
R2 makes the right decision and evacuates in time 1 + maxα−x≤x<α{x, α− x+ 2 sin (α/2)}+ 1 ≤
max{α, x + 2 sin (α/2)} + 2 which, by Lemma A.1c, is at most π − α/2 + 3 sin (α/2), for all
α ≤ 2π/3. Note that the analysis of this case is valid, even if I = T is not the first PoI that is
discovered, and it is from the perspective of the robot that finds the treasure.

If R2 runs A3, then it must be that α − x ≤ x < α and α > 2π/3. Then the trajectory of R2 is as in
Figure 6 v, and the exit is found correctly due to Lemma 3.2. For the sake of the exposition, we will
do the worst case analysis for both cases B = E and C = E now (i.e. we only insist in that I = T
and that R2 runs A3).

The total time for the combined cases is
_
AI +IK + max{KB,KC}, where IK = y (see definition

of A3). Since as we have proved, K lies always in chord ID, and since
_
DB= 3α− 2π we have that

BK ≤max{BI,BD}
≤max{2 sin (α/2) , 2 sin (3α/2− π)}
≤2 sin (α/2) .

We also have that KC ≤ CI = 2 sin (α/2). So the cost becomes no more than

x+ y + 2 sin (α/2) = α/2 + 3 sin (α/2) + sin (α)
≤π − α/2 + 3 sin (α/2) , (by Lemma A.1d)

for all α ∈ [0, π].
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(I = T,B = null, C = E): Since I is found first, we must have x ≤ α/2, hence both robots run A1, see
Figure 6 i. Robot R2 that finds the treasure will evacuate in time no more than x + 2 sin (α/2) +
2 sin (α) ≤ α/2 + 2 sin (α/2) + 2 sin (α) < π − α/2 + 3 sin (α/2), for all α ∈ [0, π].

(I = E,B = T,C = null): If R2 is the first to find the treasure, then this case is depicted in Figure 6
i. This happens exactly when x + 2 sin (α/2) ≤ 2π − x − α, so that the total evacuation time is
x+ 4 sin (α/2) ≤ π − α/2 + 3 sin (α/2), for all α ∈ [0, π].
Otherwise x > π − α/2− sin (α/2), and R1 is the robot that reaches the treasure first. If R1 decides
to run A1, then the cost would be 2π − x − α + 2 sin (α/2) < π − α/2 + 3 sin (α/2), for all
α ∈ [0, π]. Finally, if R1 decides to run A2 or A3, then we have already made the analysis in case
I = T,B = E,C = null above.

(I = E,B = null, C = T ): Note that in all cases, both robots will run the same subroutine. In particular, if
robots run either A2 or A3, then we have already done the analysis in case I = T,B = E,C = null
above.

Finally, if both robots run A1, it must be either because α ≤ α0, or because x ≥ x, while the cost is
always α− x+ 2 sin (α/2) + 2 sin (α) (the case is depicted in Figure 6 ii, with reverse direction). If
α ≤ α0, then the evacuation cost would be at most α+ 2 sin (α/2) + 2 sin (α) which by Lemma A.1e
is at most π − α/2 + 3 sin (α/2), for all α ∈ [0, α0]. If x ≥ x, then the cost would be at most
α− x+ 2 sin (α/2) + 2 sin (α) = π − α/2 + 3 sin (α/2).

Note that Lemmata 3.3, 3.4 imply that the performance of Algorithm 2 is, in the worst case, no more
than 1 + π − α/2 + 3 sin (α/2), concluding also Theorem 3.1.

4 Lower Bounds

We conclude the study of treasure evacuation with 2 robots by providing the following lower bound pertain-
ing to distributed systems under the face-to-face communication model.

Theorem 4.1. For problem 2-TEf2f , any algorithm needs at least time 1 + π/3 + 4 sin (α/2) if 0 ≤ α ≤
2π/3, or 1 + π/3 + 2 sin (α) + 2 sin (α/2) if 2π/3 ≤ α ≤ π.

For the proof, we invoke an adversary (not necessarily the most potent one), who waits for as long as
there are three points A,B,C with AB = BC = α on the periphery such that at most one of them has been
visited by a robot. Then depending on the moves of the robots decides where to place the PoI.

Proof of Theorem 4.1. Since the robots start from the center, they’ll need time 1 to reach the periphery. The
adversary (not necessarily the most potent one, but with this weaker adversary we still get a (weaker) lower
bound) will wait for as long as there are three pointsA,B,C withAB = BC = α on the periphery such that
at most one of them has been visited by a robot. Observe that this will be true for as long as less than 2π/3
of the periphery has been explored; this will be done by the 2 robots after time at least (2π/3)/2 = π/3.
Hence, after time at least 1 + π/3 there are such points A,B,C with only one of these points visited by
a robot. For convenience, we assume that robot 1 is the first to visit a point at time t and robot 2 visits a
different point next at time t+ ε (if this doesn’t happen, then the optimal algorithm would be behaving like
the case of only one robot, which is clearly suboptimal for the adversary moves below). It will be apparent

16



below that the lower bound becomes weaker for ε = 0, so that’s what we will assume from now on. We
distinguish the following cases:
Case 1 (Robot 1 at A, Robot 2 at C): If the adversary places T → B,E → A or C, then recovery needs at
least time 4 sin (α/2) (if robot 1 or 2 respectively evacuates T by itself). If it places T → A,E → C, then
recovery needs at least time 2 sin (α) (a robot evacuates T by traversing AC). Any other placement of T,E
by the adversary gives either the same or a worse (lower) bound, and, therefore, it’s discarded. It is clear
that, in this case, the adversary goes with the first option, for a lower bound of 4 sin (α/2).
Case 2 (Robot 1 at A, Robot 2 at B): If the adversary places T → C,E → A, then recovery needs at least
time min{2 sin (α/2) + 2 sin (α) , 4 sin (α)} (if robot 2 or 1 respectively evacuates T by itself). If it places
T → C,E → B, then recovery needs at least time min{4 sin (α/2) , 2 sin (α) + 2 sin (α/2)} (if robot 2 or
1 respectively evacuates T by itself). Any other placement of T,E by the adversary gives either the same
or a worse (lower) bound, and, therefore, it’s discarded. It is clear that, in this case, the adversary goes with
the option that maximizes the lower bound, for a lower bound of

max
{

min{2 sin (α/2) + 2 sin (α) , 4 sin (α)},
min{4 sin (α/2) , 2 sin (α) + 2 sin (α/2)}

}
.

By taking the minimum of Cases 1,2 above, the lower bound of the theorem follows.

5 Conclusion

In this paper we introduced a new problem on searching and fetching which we called treasure-evacuation
from a unit disk. We studied two online variants of treasure-evacuation with two robots, based on different
communication models. The main point of our approach was to propose distributed algorithms by a col-
laborative team of robots. Our main results demonstrate how robot communication capabilities affect the
treasure evacuation time by contrasting face-to-face (information can be shared only if robots meet) and
wireless (information is shared at any time) communication.

There are several open problems in addition to sharpening our bounds, and in particular to giving lower
bounds that would effectively separate the two communication models. Other variations of our problem
include the consideration of different 1) number of robots, 2) geometric domains (discrete or continuous),
3) robot starting positions, 4) number of hidden objects, 5) communication models, 6) robots’ speeds, 7) a
priori knowledge of the topology or partial information about the targets (e.g. a bound on the distance of
the hidden items or no information at all), etc. In each case, the challenging task is to establish either tight
bounds, or to separate closely related problems, e.g. the problem in which either the exact distance vs a
bound on the distance of the hidden items is known.

When it comes to searching with multiple robots, our 2-robot algorithms can be easily extended to the n-
robot case. Assuming that n is even (otherwise we ignore one robot) we split the robots into pairs, defining
points in intervals of length 4π/n on the cycle, assigning each pair of robots to each such poin. Then, we
let them run the corresponding 2-robot algorithm. Would that strategy be improvable? We anticipate that
nearly optimal algorithms for small number of robots, e.g. for n = 3, 4, or any other variation of problem
we consider will require new and significantly different algorithmic ideas than those we propose here, still
in the same spirit.
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A Trigonometric Inequalities

Lemma A.1. a) There exists some α0 ∈ (0, π) such that 3α/2 − π − sin (α/2) + 2 sin (α) is positive for
all α ∈ (α0, π), and negative for all α ∈ [0, α0). In particular, α0 ≈ 1.22353.

b) min {x+ 2 sin (α/2) , 2π − α− x}+ 2 sin (α/2) ≤ π − α/2 + 3 sin (α/2) , ∀α ∈ [0, π].

c) max{α, x+ 2 sin (α/2)}+ 2 ≤ π − α/2 + 3 sin (α/2) for all α ∈ [0, 2π/3].

d) α+ sin (α) ≤ π for all α ∈ [0, π].

e) α/2 + 2 sin (α) ≤ π − α+ 2 sin (α/2) , ∀α ∈ [0, 2π/3]. .

f) max0≤x≤π−α{sin (π/2− α/2− x)} ≤ sin (α/2) , ∀α ∈ [2π/3, π]

g) max0≤x≤α/2{x+ 2 sin (α/2− x)}+ 2 sin (α) ≤ π − α+ 4 sin (α/2) , ∀α ∈ [0, 2π/3].
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h) max0≤x≤π−α{x+ 2 sin (π/2− α/2− x)} ≤ π − α+ 2 sin (α/2) , ∀α ∈ [2π/3, π]

i) sin (α) ≤ sin (α/2) , ∀α ∈ [0, 2π/3], and
sin (α) ≥ sin (α/2) , ∀α ∈ [2π/3, π].

Proof of A.1a We observe that
∂

∂α
x(α) = ∂

∂α
(3α/2− π − sin (α/2) + 2 sin (α))

=3/2− cos (α) + cos (α/2) .

Observe that the above quantity remains positive for α < 2π/3, while it is negative for α > 2π/3.
Since x(0) < 0 and x(2π/3) > 0, it follows that there is a unique root α0 ∈ (0, 2π/3) (which
numerically can be estimated to α0 ≈ 1.22353). Finally, we see that x(π) = π − 1 > 0, so x(α)
remains positive for α ∈ [2π/3, π].

Proof of A.1b We observe that min {x+ 2 sin (α/2) , 2π − α− x} attains its maximum when x+2 sin (α/2) =
2π − α− x, in which case its value becomes π − α/2 + 3 sin (α/2).

Proof of A.1c First we claim that 3α/2−2 sin (α/2) ≤ π−2 forα ≤ 2π/3. This is because ∂
∂α (3α/2 + 2 sin (α/2)) =

3/2+cos (α/2) > 0, hence 3α/2−2 sin (α/2) ≤ π−
√

3/2 ≤ π−2. This claim immediately shows
that α+ 2 ≤ π − α/2 + 3 sin (α/2) for all α ∈ [0, 2π/3].
Now we show that x+2 sin (α/2)+2 ≤ π−α/2+3 sin (α/2) for all α ∈ [0, 2π/3]. For this it suffices
to check that α+sin (α)−sin (α/2) ≤ π−1. To that end we see that ∂

∂α (α+ sin (α)− sin (α/2)) =
1 + cos (α) − cos (α/2) /2 ≥ 0 for all α ≤ 2π/3. Hence α + sin (α) − sin (α/2) ≤ 2π/3 ≤
2π/3 +

√
3/2−

√
3/2 ≤ π − 1 as wanted.

Proof of A.1d We see that ∂
∂α (α+ sin (α)) = 1 + cos (α) ≥ 0, for all α ∈ [0, π]. hence, α + sin (α) ≤

π + sin (π) = π.

Proof of A.1e We observe that
∂

∂α
(3α/2 + 2 sin (α)− 2 sin (α/2))

=3/2 + 2 cos (α)− cos (α/2) .

From the monotonicity of cosine in [0, 2π/3], we see that the above derivative preserves non negative
sign when α ∈ [0, 2π/3]. Hence, the maximum of

3α/2 + 2 sin (α)− 2 sin (α/2) ≤ π

is attained when α = 2π/3, and its value is π as wanted.

Proof of A.1f We have that

max
0≤x≤π−α

{sin (π/2− α/2− x)}

= max
0≤x≤π−α

{cos (α/2 + x)}

≤ cos (α/2) ,

since cosine is monotonically decreasing in [0, π]. But also for all α ∈ [2π/3, π] we have that
cos (α/2) ≤ sin (α/2), concluding what we need.
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Proof of A.1g We have that

max
0≤x≤α/2

{x+ 2 sin (α/2− x) + 2 sin (α)}

≤α/2 + sin (α/2) + sin (α)

where the first inequality is true due to the monotonicity of x, sin (α/2− x) w.r.t. x ≤ α/2 and
for all α ∈ [0, 2π/3], and the last inequality since again α ≤ 2π/3. The claim now follows from
Lemma A.1e.

Proof of A.1h Follows immediately since x ≤ π − α, and by Lemma A.1f.

Proof of A.1i Observe that sin (α/2)− sin (α) is convex in α ∈ [0, 2π/3], so it attains its maximum either
at α = 0 or at α = 2π/3. In both cases, its value is 0. Also, sin (α/2) − sin (α) is monotonically
increasing for α > 2π/3, implying what was promised.
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