
Maximizing throughput in queueing networks

with limited flexibility

Douglas G. Down ? George Karakostas ??

Department of Computing and Software
McMaster University

Hamilton, ON, Canada

Abstract. We study a queueing network where customers go through
several stages of processing, with the class of a customer used to indicate
the stage of processing. The customers are serviced by a set of flexible
servers, i.e., a server may be capable of serving more than one class of
customer and the sets of classes that the servers are capable of serving
may overlap. We would like to choose an assignment of servers that
achieves the maximal capacity of the given queueing network, where
the maximal capacity is λ

∗ if the network can be stabilized for all
arrival rates λ < λ

∗ and cannot possibly be stabilized for all λ > λ
∗.

We examine the situation where there is a restriction on the number of
servers that are able to serve a class, and reduce the maximal capacity
objective to a maximum throughput allocation problem of independent
interest: the Total Discrete Capacity Constrained Problem

(TDCCP). We prove that solving TDCCP is in general NP-complete,
but we also give exact or approximation algorithms for several important
special cases.

Keywords: Queueing networks, scheduling, approximation algo-
rithms.

1 Introduction

Consider a system (which we will henceforth call a queueing network), in which
discrete entities (or customers) progress through a series of operations (referred
to as classes). At each class, a processing step must be performed that requires
an amount of time that can be modelled as a random variable. There is infinite
waiting room in a queue at each class. Processing at a class is performed by one
or more servers. In a traditional queueing network, servers are dedicated to a
class. If the queue at a class is empty, the dedicated server(s) there is forced to
idle. In the operations research literature, there has been much recent interest
in a generalization of this model, in which the servers are flexible, i.e. the cus-
tomers progress through the network as before, but servers may be capable of
performing processing at more than one class (and as such, a decision must be

? E-mail: downd@mcmaster.ca. Research supported by NSERC grant 239150-2001.
?? E-mail: karakos@mcmaster.ca. Research supported by an NSERC Discovery grant.

made at each point in time as to where a server is located). A typical example
of this is a production system where the classes are machines performing manu-
facturing steps, customers are the parts being produced, and the flexible servers
are workers cross-trained to operate multiple machines (see Hillier and So [12],
for example). Such models also arise in areas such as power control for wireless
networks (Armony and Bambos [4]) and parallel computer systems (Squillante
et al. [17]). For an extensive overview of the literature, see Andradóttir et al. [3]
and Hopp and van Oyen [13]. A precise mathematical definition of the model is
given in the next section.

The design problem in which we are interested is to choose a (dynamic) as-
signment of servers to classes to address a particular performance objective. In
this paper, we are interested in determining the maximal capacity of a given
network, where we define the maximal capacity to be λ∗ if the network can
be stabilized for all arrival rates λ < λ∗ and cannot possibly be stabilized for
any λ > λ∗. A number of authors have examined flexible server systems with
throughput as a performance measure. In addition to [3] and [8], these include
Tassiulas and Ephremides [19], Tassiulas and Bhattacharya [18], Andradóttir,
Ayhan, and Down [2], Andradóttir and Ayhan [1], Bischak [6], Zavadlav, Mc-
Clain, and Thomas [20].

The above references do not constrain the number of servers that may be at
a class. This is not a realistic assumption for most settings, as for example, one
may have budgetary constraints for training and as a result, one would like to
restrict the amount of cross-training, but still achieve reasonable throughput (as
compared to a system with no such constraints). In order to address this issue,
we need a means to calculate the maximal capacity of a constrained network.
We believe that this is the first attempt to address such a problem.

In the area of queueing networks, the use of fluid limits to characterize sta-
bility is a standard technique, originating in the work of Rybko and Stolyar [15]
and Dai [7]. The central idea in this approach is that one can equate stability of
a (stochastic) queueing network with that of a related deterministic model (the
fluid model). We emphasize here that determining stability conditions for the
original stochastic queueing network is typically extremely difficult. The fluid
model approach provides a rigorous connection between the two models and one
hopes that the deterministic model is easy (or at the very least easier) to ana-
lyze. For the flexible server setting, the fluid limit methodology has been used
to break down the determination of maximal capacity to two steps (see [3] and
Dai and Lin [8]).

1. Determine the maximal capacity of the fluid model and an optimal allocation
of each server’s effort.

2. Use the allocation to construct a scheduling policy for the original network.

The framework in [3] gives a standard means by which to perform the second
step. Also, if there is no constraint on the number of servers that can be at a class
at any one time, it is shown in [3] that the first step reduces to solving a linear
programming problem, so as a result the entire problem has been reduced to one
that is very tractable. For the more realistic constrained problem considered here,

we find that the analysis of the deterministic fluid model is much more difficult.
We shall call such a problem the Total Discrete Capacity Constrained

Problem (TDCCP). For this problem, the second step in the above procedure
is unchanged. It is the first step in the procedure which sees the most significant
change, and the resulting optimization problem is the focus of this paper.

We show that this problem is NP-complete even for special cases. Hence
we look for approximation algorithms for such hard special cases and for the
general problem. We achieve an approximation factor of 1/10 for the important
case of service rates that depend only on the servers (and not on the classes)1,
and these approximation techniques extend also to the general case (but with a
worse approximation factor.) Even more importantly, some of these techniques
give exactly the same approximation factors for the budgetary constraint version
of the problem. In this generalization, a per service unit cost of assigning a
particular server to a particular class is given, as well as a budget that our
total assignment cost should not exceed. Some of our approximation algorithms
produce solutions that are within the previous approximation factors without
violating the budget.

2 Queueing Network Model

The model we consider is a generalization of that in Andradóttir, Ayhan, and
Down [3]. For completeness, we present the model in its entirety.

2.1 Network topology

Consider a network where the location of a customer is given by its class k.
We assume that there are K distinct classes, with a buffer of infinite size for
each class. Arrivals to a class may occur from inside or outside of the network.
Customers arriving from outside of the network do so according to an arrival
process with independent and identically distributed (i.i.d.) interarrival times
{ξ(n)}. The associated arrival rate is λ = 1/E[ξ(1)]. An arrival from outside

of the network is routed to class k with probability p0,k, with
∑K

k=1 p0,k = 1.
Within the network, customers circulate as follows. Upon completion of service
at class i, a customer becomes one of class k with probability pi,k. The customer

leaves the network with probability 1−
∑K

k=1 pi,k. We define the routing matrix
P to have (i, k) entry pi,k for i, k = 1, . . . , K and I to be the K × K identity
matrix. We assume that all customers eventually leave the network, which is
equivalent to (I − P ′) being invertible. (Note that the (i, k) entry of (I − P ′)−1

is the expected number of future visits to class k of a class i customer.)

For technical reasons, we assume that the interarrival times are unbounded
and spread out. For more details see [3].

1 In Section 4.1 we show that the special case of service rates which depend only on
the classes can be solved optimally.

2.2 Service mechanism

The network is populated by M servers which service customers within a class
according to First Come, First Served order. When switching from class i to class
k for the nth time, server j incurs a (possibly zero) switching time of ζj

i,k(n).

It is assumed that the sequence {ζj
i,k(n)} is i.i.d. for every j = 1, . . . , M and

i, k = 1, . . . , K. Further, we assume that {ζj
i,i(n)} is identically zero for all i and

j.
Several servers may be simultaneously at a class, in which case they work in

parallel. If server j is capable of working at class k, the service time of the nth
customer served by server j at class k is given by ηj,k(n), where the sequence
{ηj,k(n)} is assumed to be i.i.d. for each j and k. The associated mean service
time for server j at class k is mj,k = E[ηj,k(1)], with associated service rate
µj,k = 1/mj,k. If server j cannot work at class k, we set µj,k = 0. We only
consider nonpreemptive policies.

The difference between the model in [3] and that considered here is that we
put an upper limit, ck ≤ M , on the number of servers that can be assigned to a
class (a server is assigned to a class if it spends any time at class k).

3 Total Discrete Capacity Constrained Problem

We are first interested in computing the capacity. A network operating under a
service policy π is said to have capacity λπ if the system is stable for all values
of the arrival rate λ < λπ. We wish to calculate a tight upper bound on the
capacity that a given system can achieve (called the maximal capacity). In the
course of doing so, we identify a means to construct server assignment policies
that have capacity that is arbitrarily close to the maximal capacity.

3.1 The Allocation Program

First, we solve the traffic equations for the network, which give the total arrival
rate to class k, λk, if the network is stable. Here we have

λk = p0,kλ +

K
∑

i=1

pi,kλi,

for k = 1, . . . , K. This system of equations is known to have a unique solution if
(I − P ′) is invertible. If we let ai, 1 ≤ i ≤ K be the unique solution with λ = 1,
then λk = λak is the unique solution of the traffic equations for an arbitrary
value of λ.

Let δj,k be the proportion of time that server j is working at class k. These
proportions exist under the policies considered below. The resulting optimization
problem (with variables δj,k and λ) that will give us the assignment of servers
to classes is:

max λ (MP)

s.t.

M
∑

j=1

µj,kδj,k ≥ λak, k = 1, . . . , K (1)

K
∑

k=1

δj,k ≤ 1, j = 1, . . . , M, (2)

δj,k ≥ 0, k = 1, . . . , K, j = 1, . . . , M, (3)

M
∑

j=1

χ{δj,k > 0} ≤ ck, k = 1, . . . , K, (4)

where χ{·} is the indicator function. The constraints in (MP) have the following
interpretations. The first, (1), says that the service rate allocated to class k must
be greater than the arrival rate. The second and third constraints, (2) and (3),
prevent over allocations and negative allocations of a server, respectively. Finally,
the constraint (4) limits the flexibility, by only allowing ck servers to be assigned
to work at class k. Let a solution of (MP) be given by λ∗, {δ∗j,k}. We will see
that λ∗ is the desired maximal capacity and {δ∗j,k} is the set of proportional
allocations of server j to classes k required to achieve λ∗.

Obviously, the difficulty in solving (MP) comes from the integral con-
straints (4). Note that in these constraints, although the allocation variables
δj,k are fractional, the capacity each one is allocated is either 0 or 1 (depending
on whether δj,k is 0 or not). To the best of our knowledge, we are not aware of
other scheduling problems with such constraints. In Section 6 we show that even
a simpler variant of the problem is NP-complete. First we consider special cases
in Section 4: If the µj,k’s are independent of j, i.e., µj,k = µk for all j, then the
problem can be solved in polynomial time. If the µj,k’s are independent of k, i.e.,
µj,k = µj for all k, then the problem is NP-complete, but can be approximated
within a factor 1/10, or better under certain assumptions. For the general case,
we show in Section 5 that in polynomial time one can find a solution within a
factor 1/10wmax, where wmax := maxj maxk1,k2,µj,k2

6=0
µj,k1

µj,k2
. The bulk of the

remainder of the paper is concerned with how one can solve (MP). Before do-
ing this, we complete the connection between solving (MP) and the problem of
finding the maximal capacity in the original queueing network.

For the original queueing network, we consider the set of generalized round
robin policies. A generalized round robin policy π is given by a set of integers
{`π

j,k} and an ordered list of classes V π
j . Server j servers classes in V π

j in cyclic
order, with server j performing `π

j,k services at each class in V π
j (unless server j

idles, in which case the server moves to the next class in V π
j). If the classes in V π

j

are all empty, the server idles at an arbitrary class in V π
j . The details of how to

construct a generalized round robin policy π given a set of required proportional
allocations {δ∗j,k} is given in Section 3.3 of [3]. As this can be used directly, we
give no further discussion of the construction here.

Define Qk(t) to be the number of class k customers present at time t and Q(t)
be a vector with kth entry Qk(t). The following theorem gives the strong con-
nection between maximizing capacity in the queueing network and the solution
to (MP).

Theorem 1. (i) Any capacity less than λ∗ may be achieved. More specifically,
for an arrival process with rate λ < λ∗, there exists a dynamic server as-
signment policy such that the distribution of the queue length process {Q(t)}
converges to a steady-state distribution ϕ as t → ∞.

(ii) A capacity larger than λ∗ cannot be achieved. More specifically, for an ar-
rival process with rate λ > λ∗, as t → ∞, P (|Q(t)| → ∞) = 1.

The proof of this theorem is a trivial extension of that of Theorem 1 in [3] and is
thus omitted. The derivation of the additional constraint (4) is a straightforward
exercise, the remainder of the proof is unchanged.

Theorem 1 says that the difficult stochastic optimization problem can be
converted into a deterministic optimization problem. The mapping of the solu-
tion to the deterministic problem back to a solution to the original stochastic
problem does not depend on the complexity of the deterministic problem (it
simply uses the resulting solution). For the remainder of the paper, we thus fo-
cus on solving (MP). In [3], the deterministic problem is simply (MP), with the
constraint (4) removed. This is easily seen to be a linear programming problem,
and so there is the appealing result that a difficult stochastic problem becomes a
simple deterministic problem. However, in our case, the resulting deterministic
problem can also be difficult, as will be seen below. From this point, we refer
to the required deterministic optimization problem as the TOTAL DISCRETE
CAPACITY CONSTRAINED PROBLEM (TDCCP).

4 Solving TDCCP - special cases

It is instructive to first look at several special cases of TDCCP that give an idea
of the inherent complexity.

4.1 The case µj,k = µk for all j

Suppose that the service rates are independent of the server and that each server
is capable of working at every class, so µj,k = µk for j = 1, . . . , M . Here, (MP)
can be rewritten as

max λ s.t.
∑M

j=1 δj,k ≥ λak/µk, k = 1, . . . , K
∑K

k=1 δj,k ≤ 1, j = 1, . . . , M,
δj,k ≥ 0, k = 1, . . . , K, j = 1, . . . , M,

∑M
j=1 χ{δj,k > 0} ≤ ck, k = 1, . . . , K,

where χ{·} is the indicator function.

Proposition 1. If µj,k ≡ µk, the maximal capacity is

λ∗ = min

(

M
∑K

k=1 ak/µk

, min
1≤k≤K

ckµk

ak

)

.

The proof of Proposition 1 appears in the full version.

4.2 The case µj,k = µj for all k

Suppose now that the service rates depend only on the server and that each
server is capable of working at every class, so µj,k = µj for k = 1, . . . , K. In this
case (MP) can be written as

max λ s.t.
∑M

j=1 xj,k ≥ λak, k = 1, . . . , K
∑K

k=1 xj,k ≤ µj , j = 1, . . . , M
xj,k ≥ 0, k = 1, . . . , K, j = 1, . . . , M

∑M
j=1 χ{xj,k > 0} ≤ ck, k = 1, . . . , K

(MP′)

where we performed the substitution xj,k := µjδj,k, ∀j, k. This case is already
NP-complete, as is shown in Theorem 2 in Section 6.

(MP′) actually is an instance of the maximum concurrent multicommodity
k-splittable flow problem which can be stated as follows: Let G = (V, E) be a
directed or undirected graph with integral edge capacities ue > 0, for all e ∈ E.
There are l source-sink pairs (si, ti), i = 1, . . . , l, one for each of l different
commodities. For each commodity i there is also a demand di, and a bound ki

on the number of different paths allowed for this commodity. Then the maxi-
mum concurrent multicommodity k-splittable flow problem is asking for a flow
assignment to paths in G that respects the edge capacities and the splittability
bounds for the commodities, and routes the maximum possible fraction of all
commodity demands simultaneously. This, together with several other versions
of k-splittable problems, are studied in [5]. Also, when ki = 1, ∀i, then these
problems are called just unsplittable (instead of 1-splittable).

Problem (MP′) is a special case of the multicommodity k-splittable flow prob-
lem: the K classes can be seen as K commodities of demand ak, k = 1, . . . , K,
each with a splittability upper bound of 0 < ck ≤ M . These commodities are
routed on the network of Figure 1. All commodities have the same source s,
but commodity i has its own sink ti. Each of the vertices ti, i = 1, . . . , K is
connected to all vertices uj, j = 1, . . . , M , and s is connected to all vertices
vj , j = 1, . . . , M . The edge (vj , uj) has capacity µj for all j = 1, . . . , M , while
the rest of the edges have infinite capacity. Note that a solution to the maximum
concurrent multicommodity k-splittable flow problem on this instance will also
give a solution to our original problem (MP′), since every flow path that carries
flow f of commodity k through edge (vj , uj) corresponds to setting δj,k := f .
And vice versa, a solution to (MP′) gives us also a path flow assignment that
achieves the same value for the minimum fraction of commodity demand that is

∞

∞

.

.

.

.

.

.

.

∞

s

u1

uj

uM

v1

vj

vM

t1

tK

µ1

µj

µM

∞

∞

∞

∞
∞

∞

∞

Fig. 1. The graph for our special k-splittable flow instance.

satisfied in the maximum concurrent multicommodity k-splittable flow problem
above.

Baier et al. [5] show that any ρ-approximation algorithm for the maximum
concurrent unsplittable flow problem yields a ρ/2-approximation algorithm for
the maximum concurrent k-splittable flow problem. Dinitz et al. [9] present an
algorithm that achieves an approximation factor of ρ = 1/5 in running time
O(KM(K + M)), using ideas by Kolliopoulos and Stein [14]. Therefore the
solution we get for our problem has a guaranteed worst-case performance of at
least 1/10 of the optimum. Note that in our case, the usual balancing assumption

max demand ≤ min capacity

does not hold, hence the somewhat worse approximation ratios achieved, as
compared to the ratios achieved if this assumption holds.

A different approximation algorithm The previous algorithm cannot take
advantage of the better approximation factor of 2 for congestion in the unsplit-
table flow problem, because the balancing assumption doesn’t hold in our case.
Here we follow a different path, in order to provide an approximation algorithm
that under certain assumptions achieves a factor better than 1/10 for the case
µj,k = µj for all k. We will reduce our problem to the generalized assignment
problem, and then we will use the approximation algorithm by Shmoys and
Tardos [16].

The first step of the new algorithm is the same as before: we transform the
given problem into an exactly-k-splittable flow problem, with a loss of a factor
of 1/2. Hence commodity k is split into ck commodities (k, i), i = 1, . . . , ck, each
with demand ak/ck.

During the second step, we solve the following concurrent flow problem in
the network defined above, which in turn is a relaxation of the concurrent un-

splittable flow:
max λ s.t.

∑M
j=1 xj,(k,i) ≥ λak

ck
, ∀k, i

∑

(k,i) xj,(k,i) ≤ µj , ∀j

xj,(k,i) ≥ 0, ∀i, j, k

(LP-NEW)

If x∗, λ∗ is the optimal solution for (LP-NEW), then define λ(k,i) :=

(
∑M

j=1 x∗
j,(k,i))/(ak/ck). Obviously λ(k,i) ≥ λ∗ > 0, ∀(k, i). Also, we define

yj,(k,i) := ck

λ(k,i)ak
x∗

j,(k,i) and pj,(k,i) := ak

ckµj
, ∀i, j, k. Then y satisfies the following

system of inequalities:

∑M
j=1 yj,(k,i) = 1, ∀k, i

∑

(k,i) pj,(k,i)yj,(k,i) ≤ 1/λ∗, ∀j

yj,(k,i) ≥ 0, ∀i, j, k

This is exactly the relaxation of the problem (without costs) of scheduling unre-
lated parallel machines that [16] studies. We can think of the commodities (k, i)
as jobs, the edges of capacities µ as machines, pj,(k,i) as the processing time of
job (k, i) on machine j, 1/λ∗ as the makespan, and y as a feasible (fractional)
assignment of jobs to machines that achieves this makespan. Suppose that there
is some ρ > 0 such that pj,(k,i) ≤ ρ/λ∗, ∀i, j, k. Then Theorem 2.1 of [16] im-
plies that their algorithm produces an (integral) assignment of jobs to machines
ŷ with makespan at most (1 + ρ)/λ∗. This algorithm is the third step of our
algorithm.

Our solution assigns x̂j,(k,i) :=
λ(k,i)ak

ck
ŷj,(k,i) (note that for every (k, i), these

values are going to be 0 for all j except one.) It is easy to prove the following:

Lemma 1. The solution produced by the algorithm above is within 1/2(1 + ρ)
of the optimum.

Proof. The solution x̂ satisfies the constraints of (LP-NEW) for λ := λ∗/(1+ρ).
Hence it approximates the maximum concurrent unsplittable flow within a factor
of 1/2. Together with the approximation factor of 1/2 from the first step, this
implies the lemma.

4.3 The case µ = α · βT

This case can be generalized to any M × K matrix µ which is the product of
an M × 1 vector α and the transpose of a K × 1 vector β, i.e., µ = α · βT (in
other words, the service rates satisfy µj,k = αjβk). Then it is easy to see that
the initial problem (MP) is equivalent to

max λ s.t.
∑M

j=1 xj,k ≥ λbk, k = 1, . . . , K
∑K

k=1 xj,k ≤ αj , j = 1, . . . , M
xj,k ≥ 0, k = 1, . . . , K, j = 1, . . . , M

∑M
j=1 χ{xj,k > 0} ≤ ck, k = 1, . . . , K

(MP′′)

where xj,k := αjδj,k, for all j, k, and bk := ak/βk. (MP′′) then falls into the case
of Section 4.2.

4.4 Extension to TDCCP with costs

We can extend TDCCP by introducing costs to the assignment of servers to
classes. Let cj,k be the per unit cost of assigning server j to class k. Hence, if δj,k

is the fraction of its effort dedicated by j to k, then the cost incurred is cj,kδj,k.
For example, the assignment of a worker to a machine where he has no expertise
may incur a bigger cost (because of training needs, damages because of deficient
products he produces etc.) than the cost of an experienced worker to the same
machine. Together with these costs cj,k, we are also given a budget that cannot
be exceeded by our final assignment. Hence we are asked for an assignment of
servers to classes that respect the given budget and maximizes the throughput.

The algorithms of [5], [16] used in Section 4.2 are cost preserving. When
in the first step we transform the budget-constrained k-splittable flow problem
into a budget-constrained exactly-k-splittable flow problem, [5] proves that the
optimal solution of the latter is not only an 1/2 approximation of the former,
but it also respects the initial budget constraint. Also the algorithm of [16] we
use in Section 4.2 produces an assignment that always respects the budgetary
constraint (although it may not produce the optimal makespan).2

5 Solving TDCCP - general case

For the general case, let

wj :=
µmax

j

µmin
j

, j = 1, 2, . . . , M

where µmax
j := maxk{µj,k} and µmin

j := mink{µj,k}. Note that µj,k = 0 implies
that δj,k = 0, so we will assume that µj,k > 0 for all j, k. Also, let wmax :=
maxj{wj}, and let δ∗, λ∗ be the optimal solution to (MP). Instead of the original
problem (MP), we will try to solve (approximately) the following problem:

max λ s.t.
∑M

j=1 µj,kδj,k ≥ λak, k = 1, . . . , K
∑K

k=1 µj,kδj,k ≤ µmax
j , j = 1, . . . , M

δj,k ≥ 0, k = 1, . . . , K, j = 1, . . . , M
∑M

j=1 χ{δj,k > 0} ≤ ck, k = 1, . . . , K.

(NEW MP)

It is clear that, as in Section 4.2, we can set xj,k := µj,kδj,k in (NEW MP) to get
exactly the same formulation as (MP′). Hence we can apply the same techniques

we applied in Section 4.2, to obtain an approximate solution x̂, λ̂, which is within

2 Obviously the costs in the budgetary constraint in each of the LP formulations above
are scaled following the scaling of the assignment variables.

1/10 of the optimum solution (of (MP′)). Then we output the following solution
to the original problem:

δj,k :=
x̂j,k

wjµj,k

, ∀j, k. (5)

The following proposition is proven in the full version:

Proposition 2. Solution (5) is a feasible solution for (MP), and achieves a λ
of value at least λ∗/10wmax.

This result extends to the case of a budgetary constraint problem, i.e. the
approximation factor can be achieved without violating the (given) budget (cf.
Section 4.4.)

6 NP-completeness

We reduce a slight variation of the classical PARTITION problem (see [SP12]
in [10]) to the version of our problem that is studied in Section 4.2, which, by
abusing the terminology a little bit, we will call problem (MP′):

MP′

Instance: We are given (MP′) and λ∗ ∈ R.
Question: Is the solution of (MP′) greater than or equal to λ∗?

Obviously this problem is in NP (given λ∗ and a solution to MP′, one can easily
check whether its objective is greater than or equal to λ∗). The PARTITION

problem variation we reduce it to is the following:

PARTITION

Instance: Finite set A of even cardinality and a size s(a) ∈ Z
+ for each item

a ∈ A.
Question: Is there a subset A′ ⊆ A of cardinality |A|/2 and such that
∑

a∈A′ s(a) =
∑

a∈A\A′ s(a)?

Given the PARTITION instance, we identify the elements of A with the

numbers 1, 2, . . . , |A|. Let S :=
∑|A|

j=1 s(j) be the total size. We set K := 2, M :=
|A| and µj := s(j), j = 1, . . . , |A|. We also set c1 = c2 := |A|/2, and a1 = a2 := 1.
Finally we set λ∗ := S/2. Therefore we get an instance of (MP′) in polynomial
time. From now on, when we refer to (MP′), we actually refer to this specific
instance we constructed. We can prove (proof in the full version) the following

Theorem 2. PARTITION has a solution iff (MP′) achieves λ ≥ λ∗.

References

1. S. Andradóttir and H. Ayhan. Throughput maximization for tandem lines with
two stations and flexible servers. Operations Research, 53:516–531, 2005.

2. S. Andradóttir, H. Ayhan, and D.G. Down. Server assignment policies for maximiz-
ing the steady-state throughput of finite queueing systems. Management Science,
47:1421-1439, 2001.

3. S. Andradóttir, H. Ayhan and D.G. Down. Dynamic server allocation for queueing
networks with flexible servers. Operations Research, 51:952-968, 2003.

4. M. Armony and N. Bambos. Queueing networks with interacting service resources.
Proceedings of the 37th Annual Allerton Conference on Communications, Control,
and Computing , 42-51, 1999.

5. G. Baier, E. Köhler, and M. Skutella. On the k-splittable flow problem. Proceedings
of ESA’02.

6. D.P. Bischak. Performance of a manufacturing module with moving workers. IIE
Transactions, 28:723-733, 1996.

7. J.G. Dai. On positive Harris recurrence of multiclass queueing networks: A unified
approach via fluid limit models. Annals of Applied Probability , 5:49-77, 1995.

8. J.G. Dai and W. Lin. Maximum pressure policies in stochastic processing networks.
Operations Research, 53:197–218, 2005.

9. Y. Dinitz, N. Garg, and M. Goemans. On the single-source unsplittable flow
problem. Combinatorica, 19 (1999), pp. 17–41.

10. M. R. Garey and D. S. Johnson. Computers and Intractability: a guide to the
theory of NP-Completeness. W. H. Freeman and Co., 1979.

11. M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, Chapter 6. Springer-Verlag, 1993.

12. F.S. Hillier and K.C. So. On the simultaneous optimization of server and work
allocations in production line systems with variable processing times. Operations
Research, 44:435-443, 1996.

13. W.J. Hopp and M.P. van Oyen. Agile workforce evaluation: A framework for
cross-training and coordination. IIE Transactions, 36:919–940, 2004.

14. S. G. Kolliopoulos and C. Stein. Approximation algorithms for single-source un-
splittable flow. SIAM J. Computing 31:919-946, 2002.

15. A.N. Rybko and A.L. Stolyar. Ergodicity of stochastic processes describing the op-
eration of open queueing networks. Problems of Information Transmission, 28:199-
220, 1992.

16. D. B. Shmoys and . Tardos. An approximation algorithm for the generalized
assignment problem. Mathematical Programming A, Vol. 62(3), pp. 461 - 474,
1993.

17. M.S. Squillante, C.H. Xia, D.D. Yao, and L. Zhang. Threshold-based priority
policies for parallel-server systems with affinity scheduling. Proceedings of the
2001 American Control Conference, 2992-2999, 2001.

18. L. Tassiulas and P.B. Bhattacharya. Allocation of independent resources for max-
imal throughput. Stochastic Models, 16:27-48, 2000.

19. L. Tassiulas and A. Ephrimedes. Stability properties of constrained queueing sys-
tems and scheduling policies for maximum throughput in multihop radio networks.
IEEE Transactions on Automatic Control , 37:1936-1948, 1992.

20. E. Zavadlav, J.O. McClain, and L.J. Thomas. Self-buffering, self-balancing, self-
flushing production lines. Management Science, 42:1151-1164, 1996.

