
Emergency connectivity in ad-hoc networks with selfish nodes

George Karakostas1,2,? and Euripides Markou2,??

1 Department of Computing & Software.
2 School of Computational Engineering & Science.

McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
E-mail: karakos@mcmaster.ca, markoue@mcmaster.ca

Abstract. In multihop wireless networks, the nodes are selfish, in that they try to maximize their
own utility without any regards for the overall network-wide outcome. Since a successful transmission
between a pair of nodes requires the cooperation of intermediate nodes in order for the transmitted
packets to reach their destination, there have been protocols that offer cooperation incentives to nodes.
One such family of incentive protocols are the so-called reputation-based protocols. The basic idea is
to identify uncooperative behavior, and punish misbehaving nodes until they start cooperating.
Inspired by the CONFIDANT protocol [1], we define and study a basic reputation-based protocol. Its
reputation mechanism is implemented through the ability of any node to define a threshold of tolerance
for any of its neighbors, and to cut the connection to any of these neighbors that refuse to forward an
amount of flow above that threshold. The main question we would like to address is whether one can set
the initial conditions so that the system reaches an equilibrium state where a non-zero amount of every
commodity is routed. This is important in emergency situations, where all nodes need to be able to
communicate even with a small bandwidth. Following a standard approach, we model this protocol as
a game, and we give necessary and sufficient conditions for the existence of non-trivial Nash equilibria.
Then we enhance these conditions with extra conditions that give a set of necessary and sufficient
conditions for the existence of connected Nash equilibria. We note that it is not always necessary for
all the flow originating at a node to reach its destination at equilibrium. For example, a node may be
using unsuccessful flow in order to effect changes in a distant part of the network that will prove quite
beneficial to it. We show that we can decide in polynomial time whether there exists a (connected)
equilibrium without unsuccessful flows. In that case we calculate (in polynomial time) initial values
that impose such an equilibrium on the network. On the negative side, we prove that it is NP-hard
to decide whether a connected equilibrium exists in general (i.e., with some nodes using unsuccessful
flows at equilibrium).

1 Introduction

In recent years there has been a great effort in designing robust and efficient wireless networks of
devices that take upon themselves certain network responsibilities that used to be the responsibil-
ities of a central network designer in traditional network design. For example, in ad-hoc networks
the topology of the network is the result of cooperation amongst the nodes themselves: in a multi-
hop wireless network, a successful transmission between a pair of nodes requires the cooperation of
intermediate nodes in order for the transmitted packets to reach their destination. While this may
be guaranteed in networks with a central authority forcing the nodes to cooperate, in the absence
of such an authority cooperation may not be guaranteed. This is due to the selfishness of each node,
i.e., the effort by the node to maximize its own utility without caring about the results of its actions
on the overall network-wide outcome. For example, if battery life is a valuable resource for a node,
forwarding packages between two other nodes consumes energy that doesn’t result in any kind of
pay-off for this node, and as a result it may decide to stop cooperating in forwarding packages for
others. If this behavior prevails throughout the whole network, it may eventually result in zero
throughput for everybody, a phenomenon better known as the “Tragedy of the Commons” [4]. To
? Research supported by an NSERC Discovery Grant and MITACS.

?? Research supported by MITACS.



cope with this problem one can offer incentives to nodes such as rewards for their cooperation or
punishment for non-cooperation.

The two most commonly proposed forms of incentives are micro-payments, and reputation-based
mechanisms. One of the main motivation for developing them is the desire of the network designer
to not permanently punish a misbehaving node, but ‘re-socialize’ it if it changes its uncooperative
behavior.

Micro-payment schemes are based on the concept of distribution of credit to nodes, so that nodes
are compensated for their cooperation by (virtual) credit payments, that they can then use to pay
intermediate nodes for forwarding their own traffic. Hence if a node is consistently uncooperative,
it will run out of credit and will have to stop transmitting. Usually, the distribution and/or the
expenditure of credit is controlled by a central authority. Examples of such protocols are [2, 9].

Reputation-based systems are based on lists that the nodes keep on the reputation of their
neighbors, i.e., the fraction of packets forwarded by them. They use this information in order to
decide how much traffic they should forward towards their neighbors. This may be decided in a
Tit-for-Tat fashion, i.e., when a node has to relay a packet on behalf of a neighbor, it does so with
the same probability with which this neighbor forwards its own packets (see [7, 8] for examples of
such mechanisms). Or, the amount to forward can be decided according to (centralized or local)
ratings tables, that give the nodes an indication of the behavior of other nodes; if a node’s rating of
another node falls below a certain threshold, then the latter cannot be trusted to forward traffic,
and therefore nothing is forwarded to it by the former, i.e., the edge connecting the two nodes is
cut by the first node. An example of such a mechanism that actually distributes the reputation
information so that each node can form its own ratings table is the CONFIDANT protocol [1]. More
recent protocols [5, 6] limit the distribution of reputation information only to one-hop neighbors.

Our results: In this work we address the connectivity issues arising in such reputation-based
systems. More specifically, we would like to study whether it is possible in such a selfish environment
to lead all nodes towards an equilibrium with good connectivity properties. In fact, we are very
ambitious: we are looking for driving them towards an equilibrium that permits a non-zero quantity
of every traffic demand to be satisfied. The reason for such a strict requirement is the fact that
in an emergency situation police, firemen, emergency medical personnel, etc. should be able to
communicate with each other even if the achieved bandwidth is very small (but still enough for
emergency signals to be able to travel through the network). From the above, it is not at all obvious
whether such a goal can be achieved, given the fact that each network node is autonomously playing
a protocol game, after it’s been set in its initial condition. Given the game-theoretic nature of such
protocols, it is only natural to study them in terms of their (Nash) equilibrium states. Under this
light, and given the rules of the game, i.e., the protocol, the most appropriate (indeed, in some cases
the only) time a network designer can intervene in order to control the outcome is during the setting
of the initial conditions, or, equivalently, by ‘rebooting’ the protocol with new initial values. This
can be achieved by a separate broadcasting channel that all nodes are listening (‘snooping’) in, and
whose packets are of the highest priority. Obviously, this is a very intruding method, and it would
defy the purpose of selfishness if it were to be applied very frequently. But one does not (hopefully)
expect catastrophic emergency situations to arise that frequently. Therefore broadcasting will not
be used often.

Inspired by the CONFIDANT mechanism, we study a basic reputation-based system. The strat-
egy of every node consists of the amount of traffic flow it sends to its various receivers, the routing
of this flow, the amount of flow it forwards for every commodity in which it doesn’t participate as
a sender or a receiver, and a non-negative threshold value for each outgoing edge. The latter set of
values is an abstraction of the reputation mechanism: if the amount of flow that is forwarded by

2



node x to node y (including flow that originates at x), but is cut by y is more than the threshold
value x has for y, then x disconnects edge (x, y). Later on, y may end up cutting flow that is less
than the current threshold value of x for (x, y), in which case (x, y) reappears. The utility for every
node increases with the flow originating at or destined for this node and reaches its destination,
while decreases with the flow sent out or forwarded by this node (because, for example, the node
has to spend battery energy to transmit).

The main drawback of this protocol is the assumption that every node has to make its strategy
known to every other node. But at the same time, this complete knowledge of the game state gives
great potential power to each node to affect parts of the network that are very far away, even in
counter-intuitive ways, e.g., by sending flow whose sole purpose is to affect the current topology
and discourage the flow of other nodes. Hence, this assumption may make our demand for complete
connectivity even harder to achieve, and it may mean that things can be easier in a more restricted
setting. As a first step towards achieving this goal, we are able to characterize the complexity of
computing initial values that lead to a connected Nash equilibrium in our protocol. We do that, by
giving necessary and sufficient conditions for the existence of non-trivial Nash equilibria. Then we
enhance these conditions with extra conditions that give a set of necessary and sufficient conditions
for the existence of connected Nash equilibria. Note that it is not always necessary for all the
flow originating at a node to reach its destination at equilibrium. As mentioned above, a node
may be using such unsuccessful flow in order to effect changes in a distant part of the network
that will prove quite beneficial to it. We show that in case there is a connected Nash equilibrium
without unsuccessful flows, we can calculate (in polynomial time) initial values that impose such an
equilibrium on the network using linear programming. On the other hand, if the connected Nash
equilibrium(-ia) exist, but nodes are allowed to use unsuccessful flows, then it is NP-hard even to
decide whether an equilibrium exists.

Our results are derived using game-theoretic concepts, which is the standard approach for an-
alyzing such protocols, modeled as games. But we emphasize that, other than the assumptions
mentioned above, we don’t impose any restrictions on the network topology, or any statistical
distribution on the nodes’ decisions.1

2 Model and Terminology

In this section we describe our model for the network and the protocol the nodes follow. The
set of connections that can be realized is given by a directed graph G(V,E). We emphasize that,
depending on the current state of the game, not all these edges may be present. For every origin-
destination pair (commodity) (u, v), u, v ∈ V there is a demand d(u,v) that u wants to send to v.
The flow is splittable, and u decides how to split and route this flow. Again, the current state of
the game may not allow u to send all of d(u,v), so the latter serves more as an upper bound on the
flow actually sent. We denote by Pi the set of paths connecting the i-th origin-destination pair in
G, and let P := ∪iPi.

The current state of the network, together with the nodes’ strategies are described by the
following set of variables:

• F y
(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y 6= u, v: This is the flow of

commodity (u, v) that y receives through e, and forwards further through e′.

1 We don’t assume any kind of synchronization amongst the nodes, but we do assume that the decision variables
changes are instantaneous. Note that the game modeling the protocol is not a repeated game, and there isn’t any
notion of rounds.

3



• fy
(u,e,e′,v) with e, e′ ∈ E, e = (x, y), e′ = (y, z), u, v, x, y, z ∈ V and y 6= u, v: This is the decision

variable of y that sets an upper bound on the amount of flow
∑

g=(w,x)

F x
(u,g,e,v) routed through

e′ that y actually forwards through e′, i.e., F y
(u,e,e′,v) = min{fy

(u,e,e′,v),
∑

g=(w,x)

F x
(u,g,e,v) routed

through e′} (notice that edge e′ can be disconnected; in that case, what is being forwarded by
y through e′ is simply lost). We emphasize that fy

(u,e,e′,v) is just the y’s decision variable that
determines what y will do if there is flow from u to v which has been forwarded from x to y and
needs to be forwarded through e′ = (y, z), while

∑
g=(w,x)

F x
(u,g,e,v) is the actual flow that comes to

y from x through e. So y maintains such a variable fy
(u,e,e′,v), for every incoming edge e = (x, y)

and every outgoing edge e′ = (y, z), and every commodity (u, v).
• Oy

(u,e,v) with e ∈ E, e = (x, y), u, v, x, y ∈ V and y 6= u, v: This is an auxiliary variable, defined

as Oy
(u,e,v) =

∑
e′=(y,z)

F y
(u,e,e′,v). It is simply the total flow of commodity (u, v) coming to y through

edge e, and being forwarded by y through all its outgoing edges e′ = (y, z).
• Iy

(u,e′,v) with e′ ∈ E, e′ = (y, z), u, v, y, z ∈ V and y 6= v: This is also an auxiliary variable,

defined as Iy
(u,e′,v) =

∑
e=(x,y)

F y
(u,e,e′,v). It is simply the total flow of commodity (u, v) coming to y

through all its incoming edges e = (x, y), and being forwarded by y through edge e′. Note that
Iy
(y,e′,v) is the flow originated at y and routed through e′ with destination v.

• εy
x: This auxiliary variable is defined as εy

x =
∑

com.(u,v),v 6=y

(Ix
(u,e,v) − Oy

(u,e,v)), i.e., as the part of

the total flow that comes to y through e and is being blocked by y.
• su

(u,P,v): This is the decision variable of u that determines how much flow of commodity (u, v)
node u routes through path P (whether this flow amount eventually reaches v or not).

• THRx(y): This is the decision variable of node x that defines an upper bound on the flow
forwarded by x and cut by y that x can tolerate before it cuts edge (x, y). We consider edge
(x, y) disconnected when εy

x > 0 AND THRx(y) ≤ εy
x. Hence edge (x, y) exists in the network

provided εy
x = 0 OR THRx(y) > εy

x.

The following definition will be used repeatedly throughout this paper:

Definition 1. An edge (x, y) is connected if εy
x = 0 OR THRx(y) > εy

x, and disconnected other-
wise.

Therefore, the strategy of a node x is determined by the value vector (sx,THRx,fx). Note
that the routing of the flow x sends out is incorporated in the values for sx. Therefore x decides
the following:

• Threshold THRx(y) ≥ 0, and hence decides whether edge (x, y) is connected or not.
• Variables εx

w, by deciding fx
(u,e,e′,v) which, in turn, change the flows F x

(u,e,e′,v). As a result, x

decides whether edge e = (w, x) is connected or not.
• The routing of the flow originating at x and its quantity, by deciding sx

(x,P,y) for any path P

connecting x to y. But always
∑

P sx
(x,P,y) ≤ d(x,y).

We repeat that every node sees all decision variables of all other nodes, we don’t assume any kind
of synchronization amongst the nodes, but we do assume that the decision variables changes are
instantaneous.

4



Definition of the utility function: Every node plays in a selfish way, i.e., so that its utility
(defined below) is maximized. At any time t, we denote by C−

y , C+
y , D−

y , D+
y the sets of connected

incoming, connected outgoing, disconnected incoming and disconnected outgoing edges respectively,
adjacent to node y. Then, for every node y its utility function is defined as follows:

utilt(y) =
flow sent by y
and reached its

destination
+ flow received by y − flow forwarded by y −

flow sent by y
and didn’t reach
its destination

.

More specifically,

utilt(y) =
∑

e∈C+
y

Sy
e +

∑
e∈C−

y

Ry
e −

∑
e′∈C+

y ∪D+
y

∑
u 6=y,v∈G

Iy
(u,e′,v) − (

∑
e′∈C+

y ∪D+
y

∑
v∈G

Iy
(y,e′,v) −

∑
e∈C+

y

Sy
e )

where

• Sy
e is the flow which has been sent by y (i.e. originated at y) through edge e and has reached

its destination,
• Ry

e is the flow which has been received by y through edge e,
• Iy

(u,e′,v) is the flow of commodity (u, v) with y 6= v, and node y attempts to forward (or sent, if
u = y) through edge e′ (note that e′ may be disconnected).

The intuition behind this definition of utility (which is very similar to the definition used in [1]),
is that a node exchanges resource units (e.g., battery energy) for information units (i.e., packets
received or sent successfully). Our assumption is that the correspondence is one for one. Different
weighting of resources and information is a generalization left for future work.

Throughout this work, we use the standard definition of Nash equilibria, i.e., at equilibrium, no
node gains an increase of its utility by changing its decision variables (strategy), while the other
nodes maintain their own strategies. We will focus on non-trivial equilibria.

Definition 2. A trivial equilibrium is any equilibrium with fx = 0,∀x, and with su
(u,(u,v),v) =

d(u,v), ∀ commodities (u, v) s.t. (u, v) ∈ E and su
(u,P,v) = 0 otherwise.

So from now on, whenever we write ‘equilibrium’ we mean ‘non-trivial equlibrium’, unless otherwise
stated. We also assume that there is always at least one demand between non-adjacent nodes in G,
since otherwise a trivial equilibrium is a connected one, and this case is not very interesting.

Definition 3. An amount of flow with origin a node u and destination a node v routed through a
path P is successful if it reaches node v, otherwise it is unsuccessful.

3 Characterization of Nash equilibria

In this section we give necessary and sufficient conditions for the existence of an equilibrium. Our
hope will be that these conditions (probably together with additional ones) will simplify the study
of connected equilibria.

Definition 4. An unsuccessful flow Φ which has been routed through edge e is responsible for
disconnecting edge e if e would be connected without Φ.

We group the (non-disconnected) incoming and outgoing edges for a node x as follows:

5



• group 1: these edges transfer only successful flows,
• group 2: these edges transfer successful and unsuccessful flows,
• group 3: these edges transfer only unsuccessful flows.

The proof of the following Theorem can be found in Appendix A:

Theorem 1. The game is at an equilibrium if and only if for any node x the following conditions
hold:

1. εy
x = 0, where g = (x, y) ∈ C+

x (i.e., node y does not cut any flow forwarded by x through the
connected edge g),

2. if there is a successful flow between nodes u,v 6= y routed through edge g = (x, y), then
THRx(y) = 0,

3. if there is no unsuccessful flow going through an edge e = (t, x), then Rx
e ≥

∑
u 6=x,v

∑
g=(x,y)

F x
(u,e,g,v)

(i.e., the flow that node x receives through edge e = (t, x) is not less than the total flow which
is coming through e and x has to forward, if all this latter flow is successful),

4. for any disconnected edge g′ = (x, y′) ∈ D+
x it holds that THRx(y′) = εy′

x > 0, node x does not
send any flow through g′, and the (unsuccessful) flows which are responsible for disconnecting
g′ are being sent by at least two nodes, other than x,

5. let e = (t, x) be an incoming connected edge to x such that all unsuccessful flows which pass
through e, have been routed through outgoing disconnected edges g′ = (x, y′i) ∈ D+

x of x; then:

• THRt(x) = 0,

• Rx
e ≥

∑
u 6=x,v

∑
g′∈D+

x

F x
(u,e,g′,v) +

∑
u 6=x,v

∑
g∈C+

x

F x
(u,e,g,v),

6. the flow that node x sends successfully through all of its (connected) outgoing edges Φ(x) is
maximized over all possible routings sx,

7. any combination of the following possible actions taken by x cannot increase its utility:

(a) disconnecting a number of edges of group 2,
(b) decreasing the unsuccessful flow that x lets go through edges of group 3,
(c) connecting edges e′ = (t′, x) ∈ D−

x ,
(d) sending successful and unsuccessful flow through the outgoing edges of x,
(e) increasing thresholds

Theorem 1 is essentially a codification of all the conditions that happen simultaneously at
equilibrium. But showing that such a (non-trivial) equilibrium exists (or, even more, compute it)
is non-trivial. In fact, we will show that deciding the existence of an equilibrium is NP-hard. But it
turns out it is much easier to check whether there is a non-trivial equilibrium with only successful
flows; this can be reduced to the solution of a simple LP.

For every edge e = (u, v), we set d(e) equal to d(u,v) if commodity (u, v) exists, and 0 otherwise.
Let D :=

∑
e∈E d(e). We will use the following notation:

• e ∈∗ P , when edge e ∈ P is not the last edge of P ,
• e ∈0 P , when edge e ∈ P is the last edge of P .

6



In the following LP, variables x(P ) represent the amount of flow sent along path P :

max
∑
P∈P

x(P ) s.t. (LP-S)∑
P :e∈∗P

x(P )−
∑

P :e∈0P

x(P ) ≤ 0 ∀e ∈ E

∑
P∈Pi

x(P ) ≤ d(ui,vi) ∀i

x(P ) ≥ 0 ∀P ∈ P

Theorem 2. A non-trivial equilibrium with only successful flows exists if and only if (LP-S) has
a solution x(P ) with

∑
P∈P x(P ) > D.

Proof: First we note that the trivial equilibrium is a solution of (LP-S) (therefore (LP-S) is always
feasible) that achieves an objective value of D. Also, note that if an origin-destination pair (ui, vi)
is connected by edge e = (ui, vi) in E, then at any equilibrium the whole demand d(ui,vi) is routed
through e, otherwise ui could have increased its utility by routing more of this commodity. Hence,
the total flow routed by a non-trivial equilibrium with only successful flows is always greater than
D.

For the ‘if’ direction, let x(P ) be a solution to (LP-S). Consider an edge e = (x, y). Notice
that

∑
P :e∈∗P

x(P ) =
∑
u,v,g

F y
(u,e,g,v) and

∑
P :e∈0P

x(P ) = Ry
e . Then the first constraint guarantees that∑

u,v,g

F y
(u,e,g,v) ≤ Ry

e . We call this property (i). We will show that the user strategies produced by

the following procedure Equil satisfy the theorem:

Procedure Equil
sui

(ui,P,vi)
:= x(P ), ∀P ∈ Pi, ∀i;

For each commodity (ui, vi) do
TotF low(ui, vi) := 0;
For each edge e1 = (ui, x1) do

For each edge e2 = (x1, x2) do
fx1

(ui,e1,e2,vi)
:=

∑
P∈Pi:e1,e2∈P

sui

(ui,P,vi)
;

TotF low(ui, vi) := TotF low(ui, vi) + fx1

(ui,e1,e2,vi)
;

For each edge ej = (xj−1, xj) not incident to ui, vi do
For each edge ej+1 = (xj , xj+1) not incident to ui, vi do

f
xj

(ui,ej ,ej+1,vi)
:= TotF low(ui, vi);

THRx(y) := 0, ∀x, y;

We prove that the above construction is already at equilibrium. Consider a commodity (u, v).
Notice that in any path 〈u e1→ x1

e2→ x2
e3→ · · · ek−1→ xk−1

ek→ v〉 from u to v in the network,
we have

∑
P∈P(u,v):e1,e2∈P

su
(u,P,v) = fx1

(u,e1,e2,v) ≤ fx2

(u,e2,e3,v) = fxi

(u,ei,ei+1,v) = TotF low(u, v), where

3 ≤ i ≤ k − 1. The total flow that can pass from ei, ei+1 going from u to v, is at most fxi

(u,ei,ei+1,v).
Even if all this flow passes also from ej , ej+1 for j > i, it will not exceed f

xj

(u,ej ,ej+1,v). Therefore,

if edge ej = (xj−1, xj) is already connected (THRxj−1(xj) > ε
xj
xj−1 OR ε

xj
xj−1 = 0), it cannot get

disconnected by an unsuccessful flow from u to v which has been routed through ei, ei+1, ej , ej+1,

7



since ε
xj
xj−1 cannot increase. This means that there is no unsuccessful flow in the network and

moreover, node u cannot send an unsuccessful flow using any path to v, cutting an edge ei, where
i > 1. We call this property (ii).

We verify that the conditions of Theorem 1 hold. Since there is no unsuccessful flow in the net-
work, condition (1) holds. Condition (2) has been explicitly forced in the last line of the Procedure.
Conditions (4), (5) hold trivially since there is no unsuccessful flow in the network. Condition (3)
also holds because of property (i). For condition (6), since no edge is disconnected, node u could
send more flow to node v only by increasing some term(s) of

∑
P∈P(u,v):e1,e2∈P

su
(u,P,v). But in that

case, edge e1 would be disconnected since
∑

P∈P(u,v):e1,e2∈P

su
(u,P,v) = fx1

(u,e1,e2,v) and hence node u fails

to send more flow to node v. In view of property (ii), condition (7) becomes equivalent to ‘sending
any unsuccessful flow does not increase its utility’. Because of property (ii), the only unsuccessful
flow that u can send, can cut only edge e1. But this is clearly not profitable. Thus condition (7)
also holds and the network is at equilibrium.

For the ‘only if’ direction, suppose that a (non-trivial) equilibrium with all flows being successful
exists. Set x(P ) to be the amount of flow through path P ∈ P〉, ∀i. Obviously, the second constraint

of (LP-S) is satisfied. Condition 3 of Theorem 1 implies that
∑
u,v,g

F y
(u,e,g,v) ≤ Ry

e , for every edge

e. But
∑
u,v,g

F y
(u,e,g,v) =

∑
P :e∈∗P

x(P ) and Ry
e =

∑
P :e∈0P

x(P ). Therefore the first constraint of (LP-S)

holds as well. Hence, x(P ) is feasible, and since the equilibrium is non-trivial,
∑

P∈P x(P ) > D

holds, as explained at the beginning.
2

The solution of (LP-S) by standard techniques [3] implies the following

Corollary 1. We can compute in polynomial time user strategies that are at equilibrium with only
successful flows, if such an equilibrium exists.

4 Connected equilibria

In this section we study the following question: given an underlying network topology along with a
set of demands between nodes, is it possible to assign values to the decision variables, so that the
game converges to a connected equilibrium, when such an equilibrium exists?

Recall that we call the network connected iff a non-zero amount of every commodity reaches its
destination. Therefore, if, in addition to being at equilibrium, we want the network to be connected,
we have to add to Theorem 1 the condition that for every commodity (u, v), there is a successful
non zero flow sent from u to v through a path P in the network. This translates to the following
condition for every edge e = (x, y) in path P : THRx(y) ≥ εy

x = 0 AND Ix
(u,e,v) > 0 (especially

when y 6= v, it must hold THRx(y) = εy
x = 0, as follows from condition 2 of Theorem 1).

Theorem 3. A network is at a connected equilibrium if and only if in addition to the Theorem 1
conditions, for every commodity (u, v), either edge (u, v) is connected or there is a path connecting
u, v, so that for every edge e = (x, y) in the path it holds that Ix

(u,e,v) > 0 AND εy
x = 0.

It is easy to see that there are cases in which it is impossible for a game to converge to a
connected equilibrium. For example, suppose that there is an edge e = (x, y) in the network such
that node x is neither a source nor a sink, and there is a commodity (u, v) such that all paths

8



between u and v pass through e. Then it is easy to see that, in any equilibrium, there will be no
flow from u to v. Indeed, suppose that there is a connected equilibrium. Hence there should be an
edge e = (t, x) in the network which carries some successful flow. If e carries only successful flow
then the condition 3 of Theorem 1 would be violated. On the other hand if e carries successful and
unsuccessful flow condition 7(a) would be violated since x would have a profit to disconnect edge
e and gain in its utility.

As mentioned in the Introduction, the proof of existence, and the computation of strategies that
lead to connected equilibria is, in general, very difficult, since we will prove in the next section that
it is an NP-hard problem. But, building on the results of the previous section, we can prove the
existence (or not) of a connected equilibrium with only successful flows in polynomial time, and
compute strategies that achieve it. Using the characterization of such equilibria by Theorem 3, we
can reduce this computation to the solution of the following extension of (LP-S):

max w s.t. (LP-C)∑
P :e∈∗P

x(P )−
∑

P :e∈0P

x(P ) ≤ 0 ∀e ∈ E

∑
P∈Pi

x(P ) ≤ d(ui,vi) ∀i

∑
P∈Pi

x(P ) ≥ w ∀i

x(P ) ≥ 0 ∀P ∈ P
w ≥ 0

Similarly to Theorem 2, we can prove the following

Theorem 4. A connected equilibrium with only successful flows exists if and only if (LP-C) has
a solution x(P ), w with w > 0.

Again, the solution of (LP-C) by standard techniques [3] implies the following

Corollary 2. We can compute in polynomial time user strategies that induce a connected equilib-
rium with only successful flows, if such an equilibrium exists.

5 NP-hardness of existence of a connected Nash equilibrium

Suppose a network is given together with a set of demands. In this section we prove that it is
NP-hard to decide whether there exist values for the decision variables of the nodes so that the
game converges to a connected equilibrium (that possibly uses successful and unsuccessful flows).
We prove this by reduction from the satisfiability problem (Sat).

5.1 Construction of the reduction

Let I be an instance of the Sat problem. We remind the reader that a literal L(A) in I of the
Sat problem is the appearance of the boolean variable A in its positive (A) or negative (¬A) form.
A clause C in I is a disjunction of literals and the instance I is a conjunction of clauses.

For every variable A ∈ I we construct a variable-subgraph as shown in Figure 1. We select
numbers δ, α, λ where δ > α > λ > 0 and we assign demands between nodes in that subgraph as
illustrated in Figure 2.

For every clause C ∈ I we add two nodes uC , vC . We also assign a demand δ between uC and
vC . We connect these nodes with the variable-subgraphs described earlier as follows:

9



• If variable A appears as literal A (positive form) in clause C then we add the edges (uC , v1)
and (v2, vC) and we assign a demand δ between nodes uC , v1 (see Figure 3a).

• If variable A appears as literal ¬A (negative form) in clause C then we add the edges (uC , v4)
and (v5, vC) and we assign a demand δ between nodes uC , v4 (see Figure 3b).

We call these subgraphs literal-subgraphs.
The above construction can be done in polynomial time on the number of the boolean variables.

An example of a clause with 3 literals and its respective construction, which we call a clause-
subgraph is shown in Figure 4. In Figure 5, an example of a boolean formula with 3 clauses-3
variables and its respective construction is shown.

5.2 Transformation of a truth assignment

We will now see how to transform in polynomial time a solution of the Sat problem to a solution
of our problem. The general idea is the following:

• If a variable A of the Sat problem has value TRUE, then we set suitable values to decision
variables of the corresponding variable-subgraph so that to force node v2 to forward some
successful flow, namely the flow which satisfies the demand between nodes uc, vc which nodes
correspond to the clause in which the variable A appears in its positive form (if there exists such
a clause). In this case edge (v4, v5) is the only one in the variable-subgraph with no successful
flow at all. In fact edge (v4, v5) is disconnected (there are unsuccessful flows in the system).

• If a variable A of the Sat problem has value FALSE, then we set suitable values to decision
variables of the corresponding variable-subgraph so that there is a successful flow routed through
edge (v4, v5), namely the flow which satisfies the demand between nodes uc, vc which nodes
correspond to the clause in which the variable A appears in its negative form (if there exists
such a clause). In this case there are no unsuccessful flows in the network and edge (v1, v2) is
the only one in the variable-subgraph with no successful flow at all.

• We then show that the network is connected (i.e., for any demand there is a flow being delivered)
and the system is at a Nash equilibrium.

The details can be found in Appendix B.

5.3 Analysis of the reduction

We first prove the following lemma which guarantees that the transformation of a connected equi-
librium back to a truth assignment is consistent, i.e., a boolean variable gets exactly one of the
values TRUE or FALSE.

Lemma 1. In a variable-subgraph GA, in any connected equilibrium, there is exactly one edge with
no successful flow at all. This edge is either (v1, v2) or (v4, v5).

Hence depending on which edge of the variable subgraph GA carries successful flow we assign to the
corresponding boolean variable A the value TRUE (when the edge is (v1, v2)) or FALSE (when
the edge is (v4, v5)).

We finally show (the two relevant Lemmas A.6, A.7 can be found in Appendix B) that an
instance I of the Sat problem is satisfiable if and only if the constructed π(I) instance of the
network game has a connected Nash equilibrium. This implies the following theorem:

Theorem 5. Given a network and a set of demands between nodes, it is NP-hard to decide whether
there exist values for the decision variables of the nodes so that the game converges to a connected
Nash equilibrium.

10



6 Conclusion

The question of inducing Nash equilibria with specific attributes is a very general one, and applies
to any protocol. In this work we study the property of connectivity, but other natural goals are
the maximization of total utility, the maximization of the minimum demand satisfied (similar to
concurrent multicommodity flow problems), the maximization of total bandwidth etc. We focused
on a basic reputation-based model for ad-hoc networks, but the achievement of most of these goals
remains open for this model as well. On the other hand, we were able to characterize the Nash
equilibria for it in a way that allowed us to study connectivity properties in a very general setting,
i.e., for general topologies and multiple commodities. We would like to combine these properties with
additional ones, e.g., maximization of the minimum demand. This would involve network design
decisions at the level of setting-up the topology, since there are simple examples with throughput
(i.e. the minimum (over all commodities) fraction of satisfied demand) equal to dmin

(k−1)dmax
, where

dmin, dmax are the minimum, maximum demands respectively, and k is the number of commodities.
Hence, a natural extension of our results would be to study these extra network design decisions
when the installation of every new edge incurs a cost. Another natural extension would be the
study of a minimal subset of nodes whose setting of initial values induces an equilibrium with the
desired properties. Note that in our results we set the initial values for all nodes, thus inducing an
equilibrium ‘in one shot’.

References

1. S. Buchegger and J.-Y. Le Boudec. Performance Analysis of the CONFIDANT Protocol: Cooperation Of Nodes
Fairness In Dynamic Ad-hoc NeTworks. In Proceedings of MOBIHOC02, 2002.

2. L. Buttyan and J.-P. Hubaux. Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks. In Pro-
ceedings ACM/Kluwer Mobile Networks and Applications, vol. 8(5), pp. 579–592, 2003.

3. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer
Verlag, Berlin 1993.

4. G. Hardin. The Tragedy of the Commons. Science, Vol. 162, No. 3859, pp. 1243–1248, December 1968.
5. Q. He, D. Wu, and P. Khosla. SORI: A Secure and Objective Reputation-based Incentive Scheme for Ad-hoc

Networks. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC2004), pp.
825830, 2004.

6. R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining Cooperation in Multihop Wireless Networks.
In Proceedings of Second USENIX Symposium on Networked System Design and Implementation (NSDI’05),
2005.

7. F. Milan, J. J. Jaramillo, and R. Srikant. Achieving cooperation in multihop wireless networks of selfish nodes.
In Proceedings of the 2006 workshop on Game theory for communications and networks (GameNets), 2006.

8. V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. Rao. Cooperation in wireless ad-hoc networks. In
Proceedings of IEEE INFOCOM 03, pp. 808–817, 2003.

9. S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, Cheat-proof, Credit-based System for Mobile Ad-hoc
Networks. In Proceedings of IEEE INFOCOM03, pp. 1987–1997, 2003.

11



A Proof of Theorem 1

Proof: We first prove that, at equilibrium, the above conditions are true for any node.
For the first condition, if

∑
u,v 6=y

Ix
(u,g,v) = 0, i.e., if no flow is being forwarded from x to y through

edge g with destination v 6= y, then, of course, nothing can be cut by y and thus εy
x = 0. Now

suppose that εy
x > 0 when

∑
u,v 6=y

Ix
(u,g,v) > 0. This means that there is an unsuccessful flow sent by

some node u to some node v through edge g, and this flow is blocked by y. But then node u can
increase its utility by not sending this flow, which contradicts the definition of a Nash equilibrium.
Therefore εy

x = 0.
For the second condition, if THRx(y) > εy

x = 0 when there is a successful flow Φ through
g = (x, y), then node y could increase its utility by cutting flow forwarded by x, thus increasing εy

x

up to min{THRx(y)− δ, Φ}, for some δ > 0, without violating THRx(y) > εy
x = 0, and, therefore,

increasing its utility, which is a contradiction.
For condition (3), if Rx

e <
∑

u 6=x,v

∑
g

F x
(u,e,g,v), then x could profit by cutting all flow coming

through e.
For condition (4), first we prove that x cannot send all the unsuccessful flow responsible for

disconnecting g′ by itself. Indeed, suppose that x sends all the unsuccessful flow Φ that causes the
disconnection of g′ (due to the fact that for node y′ we have THRx(y′) ≤ εy′

x and εy′
x > 0). Since

the system is at equilibrium, no other node sends flow through g′ (if there were such a node, then
it could profit by stopping sending that flow). Thus x can safely connect edge g′ by not sending
the flow Φ and profit, which is a contradiction. For the same reason any node t cannot send all
by itself the unsuccessful flow Φ that disconnects g′. Thus there are at least two nodes which send
unsuccessful flows through g′ and disconnect it. Suppose that one of them is x. If THRx(y′) < εy′

x

then at least one of these two flows can be safely decreased without connecting g′, a contradiction.
Hence THRx(y′) = εy′

x > 0. But then x can decrease THRx(y′) to 0 and not send its flow, thus
profiting, a contradiction. Therefore there are at least two nodes which send unsuccessful flows
responsible for disconnecting g′ and node x is not one of them. THRx(y′) = εy′

x > 0 for the same
reason as before.

For condition (5), if THRt(x) > 0 for some t, then node x could increase εx
t , thus decreasing

ε
y′i
x for some i and at the same time decreasing THRx(y′i), so that THRx(y′i) ≤ ε

y′i
x still holds, thus

profiting, a contradiction. If Rx
e <

∑
u 6=x,v

∑
g′∈D+

x

F x
(u,e,g′,v) +

∑
u 6=x,v

∑
g∈C+

x

F x
(u,e,g,v) for some e and given

that THRt(x) = 0, node x could profit by increasing εx
t and cutting edge e, a contradiction.

Finally, the proof for conditions (6), (7) is straight-forward, since if they do not hold then it is
easy to see that node x can have a course of action that increases its utility, a contradiction.

Now we prove that if the above conditions hold, then no node can increase its utility by changing
its strategy. For the sake of contradiction, suppose that there is a node x which can increase its
utility by succeeding in doing a combination of the following:

(a) increase the flow it sends successfully,
(b) increase the flow it receives,
(c) decrease the flow it forwards,
(d) decrease the flow it sends unsuccessfully.

We will show that when a node manages in any of the above, its overall utility does not increase,
no matter what other actions it may take, a contradiction.

12



For (a), since (6) holds, node x has to connect at least one previously disconnected edge. Such
an edge will be either adjacent to x or not. First suppose it is an adjacent edge g′ = (x, y′). For
connecting g′, node x should either increase THRx(y′) or increase εx

t of an edge e = (t, x) through
which an unsuccessful flow passes that cuts edge g′. In view of conditions (5), (7)b, (7)d, (7)e both
these cases lead to a loss for x. Another case for x is to send an unsuccessful flow to cut an edge w

which will end up (possibly after connecting and disconnecting several edges) cutting an edge which
is crossed by the unsuccessful flow which cuts g′. This is also non-profiltable because of condition
(7)c, (7)d. Now consider a disconnected edge g′ which is not adjacent to x. Either x has to send
less unsuccessful flow through g′, or increase the εx

t of an edge e = (t, x) through which there is
an unsuccessful flow that cuts edge g′, or send an unsuccessful flow to cut an edge w which will
end up (possibly after connecting and disconnecting several edges) to cut an edge which is crossed
by the unsuccessful flow which cuts g′. Again all these are not profitable because of conditions
(7)c, (7)d, (7)b.

For (b), the only case in which node x could receive more flow is by connecting a previously
disconnected not-adjacent edge e′x through which there was an unsuccessful flow with target x.
For this purpose, node x has to send an unsuccessful flow to cut an edge w which will end up
(possibly after connecting and disconnecting several edges) cutting an edge which is crossed by the
unsuccessful flow which cuts e′x. This is not profitable because of conditions (7)b, (7)c, (7)d.

For (c), we note that x could do this in two ways:

• By decreasing some variables fx
(u,e,g,v) > 0, for edges e = (t, x) such that It

(u,e,v) > 0, v 6= x. In
view of conditions (1), (2), if any fx

(u,e,g,v) > 0 of a successful flow is decreased, εx
t increases, and

edge e will be disconnected. But because of condition (3), x’s utility will decrease. If node x tries
to decrease the unsuccessful flow that it forwards through it, then because of (4), (5), (7)a, (7)b
this action is not profitable.

• By sending an unsuccessful flow to cut an edge w which, in turn, and possibly after connecting
and disconnecting several edges, will cut an edge crossed by the flow which x forwards. This is
not profitable because of conditions (7)a, (7)b, (7)c, (7)d.

For (d), condition (7)d implies that if x decreases the unsuccessful it sends, its utility decreases.
2

B NP-hardness of existence of a connected Nash equilibrium

5.2 Transformation of a truth assignment

We show how to transform a solution of the Sat problem to a solution of our problem in polynomial
time. The general idea is the following:

• If a variable A of the Sat problem has value TRUE, then we set suitable values to decision vari-
ables of the corresponding variable-subgraph so that to force node v2 to forward some successful
flow. To that end node v1 and node v3 send unsuccessful flows which disconnect edge (v4, v5).
In particular node v1 sends an unsuccessful flow through nodes < v1, v2, v3, v4, v5, v7, v8, v9 >

to node v9 and node v3 sends an unsuccessful flow through nodes < v3, v4, v5, v7, v8, v9 > to
node v9. These flows are such that if one of them decreases, then edge (v4, v5) gets connected
again. Moreover, in such a case (i.e., should edge (v4, v5) be connected again), the flow that
would pass through edge (v4, v5) would disconnect edge (v5, v7). Because of this, node v2 would
stop receiving a flow from node v5. In other words, by this technique, node v2 will be forced to
forward the unsuccessful flow from node v1 and keep edge (v1, v2) connected. We can then pass a

13



successful flow through edge (v1, v2), namely the flow which satisfies the demand between nodes
uc, vc which nodes correspond to the clause in which the variable A appears in its positive form
(if there exists such a clause). In this case edge (v4, v5) is the only one in the variable-subgraph
with no successful flow at all.

• If a variable A of the Sat problem has value FALSE, then we set suitable values to decision
variables of the corresponding variable-subgraph so that there is a successful flow routed through
edge (v4, v5), namely the flow which satisfies the demand between nodes uc, vc which nodes
correspond to the clause in which the variable A appears in its negative form (if there exists
such a clause). In this case there are no unsuccessful flows in the network and edge (v1, v2) is
the only one in the variable-subgraph with no successful flow at all.

• We then show that the network is connected (i.e., for any demand there is a flow being delivered)
and the system is at a Nash equilibrium.

We now set the values of the decision variables of the nodes of the constructed graph. We
are doing so by first setting the decision variables of the nodes of each variable-subgraph. For
simplicity, we use instead of notation vi, just the number i (i.e., i stands for node vi). We first list
the values for the nodes decision variables of a variable-subgraph GA which are common in every
variable-subgraph (no-matter whether the corresponding boolean variable A has been assigned a
value TRUE or FALSE) and then we complete the initialization for those two cases. We only list
the decision variables to which we assign non-zero values (i.e., for any decision variable not listed
below, we assign a zero value). We assign the values as follows:

Common values:

• Node 1: f1
(10,(10,1),(1,2),5) = δ, s1

(<1,12>) = δ.
• Node 2: s2

(<2,3>) = 3δ + 4α, s2
(<2,3,6,5,7,8,9>) = 2δ + α.

• Node 3: f3
(10,(2,3),(3,6),5) = δ, f3

(1,(2,3),(3,4),9) = α, f3
(2,(2,3),(3,6),9) = 2δ + α, s3

(<3,6>) = 4δ + 2α,
s3
(<3,6,5>) = δ, s3

(<3,4>) = 2α, s3
(<3,6,5,7,8,9>) = α.

• Node 5: f5
(2,(6,5),(5,7),9) = 2δ + α, f5

(3,(6,5),(5,7),9) = α, s5
(<5,7,8,9,10,1>) = δ + 2α, s5

(<5,7,8,11,3>) = δ,
s5
(<5,7>) = 4δ + 4α.

• Node 6: f6
(2,(3,6),(6,5),9) = 2δ + α, f6

(3,(3,6),(6,5),5) = δ, f6
(3,(3,6),(6,5),9) = α, f6

(10,(3,6),(6,5),5) = δ,
s6
(<6,5>) = 2δ + 3α.

• Node 7: f7
(2,(5,7),(7,8),9) = 2δ + α, f7

(3,(5,7),(7,8),9) = α, f7
(5,(5,7),(7,8),3) = δ, f7

(5,(5,7),(7,8),1) = δ + 2α,
s7
(<7,8>) = 4δ + 4α.

• Node 8: f8
(2,(7,8),(8,9),9) = 2δ + α, f8

(3,(7,8),(8,9),9) = α, f8
(5,(7,8),(8,9),1) = δ + 2α, f8

(5,(7,8),(8,11),3) = δ,
s8
(<8,9>) = δ, s8

(<8,11>) = δ.
• Node 9: f9

(5,(8,9),(9,10),1) = δ + 2α, s9
(<9,10>) = δ + 2α.

• Node 10: f10
(5,(9,10),(10,1),1) = δ + 2α, s10

(<10,1>) = δ, s10
(<10,13>) = δ.

• Node 11: f11
(5,(8,11),(11,3),3) = δ, s11

(<11,3>) = δ.
• Node 12: f12

(1,(1,12),(12,9),9) = δ, s12
(<12,9>) = δ.

• Node 13: f13
(10,(10,13),(13,4),5) = δ, s13

(<13,4>) = δ.

According to whether the boolean variable A has value TRUE or FALSE we complete the initial-
ization as follows:

If variable A of the Sat problem has value TRUE then we complete the common values with
the values of the following decision variables.

Additional values for TRUE value transformation

14



• Node 1: s1
(<1,2,3,4,5,7,8,9>) = α, s1

(<1,12,9>) = δ − α.
• Node 2: f2

(10,(1,2),(2,3),5) = δ, f2
(1,(1,2),(2,3),9) = α.

• Node 3: s3
(<3,4,5,7,8,9>) = α.

• Node 4: THR4(5) = 2λ, f4
(1,(3,4),(4,5),9) = α, f4

(3,(3,4),(4,5),9) = α.
• Node 5: f5

(3,(4,5),(5,7),9) = α− λ, f5
(1,(4,5),(5,7),9) = α− λ.

• Node 10: s10
(<10,1,2,3,6,5>) = δ.

The above values together with the common values consist the TRUE value transformation. In
this case, where the variable-subgraph corresponds to a boolean variable with value TRUE, the
flow-paths have been routed as shown in Figure 6.

Lemma A.3. Consider a time in the game where the decision variables of the nodes of a variable-
subgraph have the values of the TRUE value transformation. Then: a) edge (v4, v5) is dis-
connected and b) if one of the (unsuccessful) flows which have been routed through edge (v4, v5)
decreases then edge (v5, v7) will get disconnected.
Proof: Node v4 forwards α unsuccessful flow coming from v1 (s1

(<1,2,3,4,5,7,8,9>) = f2
(1,(1,2),(2,3),9) =

f3
(1,(2,3),(3,4),9) = f4

(1,(3,4),(4,5),9) = α) and α unsuccessful flow coming from v3 (s3
(<3,4,5,7,8,9>) =

f4
(3,(3,4),(4,5),9) = α). Node v5 allows α − λ flow from v1 (f5

(1,(4,5),(5,7),9) = α − λ) and α − λ flow
from v3 coming from edge (4, 5) (f5

(3,(4,5),(5,7),9) = α − λ). Therefore ε54 = 2λ (node v4 does not
forward any other flow). Since THR4(5) = 2λ, we have that THR4(5) = ε54 = 2λ. Therefore edge
(v4, v5) is disconnected. If one of these two unsuccessful flows gets decreased, then we will have
ε54 < 2λ and ε54 < THR4(5) which means that edge (v4, v5) will get connected. Then the other flow
(α − λ) will go through edge (v5, v7). Notice that there is already α successful flow coming from
node v3 which node v7 forwards. Since f7

(1,(5,7),(7,8),9) = 0 and f7
(3,(5,7),(7,8),9) = α, we will have that

ε75 ≥ α−λ > 0 and since THR5(7) = 0, we will have THR5(7) < ε75 which means that edge (v5, v7)
gets disconnected.

2

If variable A of the Sat problem has value FALSE then we complete the common values with
the values of the following decision variables.

Additional values for FALSE value transformation

• Node 1: s1
(<1,12,9>) = δ.

• Node 10: s10
(<10,13,4,5>) = δ.

The above values together with the common values consist the FALSE value transformation.
In this case, where the variable-subgraph corresponds to a boolean variable with value FALSE,
the flow-paths have been routed as shown in Figure 7.

The two cases in Figures 6, 7 differ on the blue and red colored paths.

Lemma A.4. A variable-subgraph GA where the values to its nodes’ decision variables have been
assigned according to the TRUE value transformation is at a connected Nash equilibrium.
Proof: We prove that if we fix the values of the decision variables as in the TRUE value transfor-
mation then the GA is already at a connected Nash equilibrium. To that end we verify one by one
the conditions of Theorem 1.

For the first condition all we have to do is to examine the incoming connected edges of every
node:

• v1 forwards flow i) from node v10 to node v5 through edge (v10, v1) and s10
(<10,1,2,3,6,5>) =

f1
(10,(10,1),(1,2),5) = δ,

15



• v2 forwards flow i) from node v10 to node v5 through edge (v1, v2) and s10
(<10,1,2,3,6,5>) =

f2
(10,(1,2),(2,3),5) = δ, ii) from node v1 to node v9 through edge (v1, v2) and s1

(<1,2,3,4,5,7,8,9>) =
f2
(1,(1,2),(2,3),9) = α,

• v3 forwards flow i) from node v10 to node v5 through edge (v2, v3) and s10
(<10,1,2,3,6,5>) =

f3
(10,(2,3),(3,6),5) = δ, ii) from node v1 to node v9 through edge (v2, v3) and s1

(<1,2,3,4,5,7,8,9>) =
f3
(1,(2,3),(3,4),9) = α, iii) from node v2 to node v9 through edge (v2, v3) and s2

(<2,3,6,5,7,8,9>) =
f3
(2,(2,3),(3,6),9) = 2δ + α,

• v4 forwards flow i) from node v1 to node v9 through edge (v3, v4) and s1
(<1,2,3,4,5,7,8,9>) =

f4
(1,(3,4),(4,5),9) = α, ii) from node v3 to node v9 through edge (v3, v4) and s3

(<3,4,5,7,8,9>) =
f4
(3,(3,4),(4,5),9) = α,

• v5 forwards flow i) from node v2 to node v9 through edge (v6, v5) and s2
(<2,3,6,5,7,8,9>) =

f5
(2,(6,5),(5,7),9) = 2δ + α, ii) from node v3 to node v9 through edge (v6, v5) and s3

(<3,6,5,7,8,9>) =
f5
(3,(6,5),(5,7),9) = α, (notice that in view of Lemma A.3 edge (v4, v5) is disconnected, so the first

condition of Theorem 1 does not apply for this edge),
• v6 forwards flow i) from node v10 to node v5 through edge (v3, v6) and s10

(<10,1,2,3,6,5>) =
f6
(10,(3,6),(6,5),5) = δ, ii) from node v2 to node v9 through edge (v3, v6) and s2

(<2,3,6,5,7,8,9>) =
f6
(2,(3,6),(6,5),9) = 2δ + α, iii) from node v3 to node v5 through edge (v3, v6) and s3

(<3,6,5>) =
f6
(3,(3,6),(6,5),5) = δ, iv) from node v3 to node v9 through edge (v3, v6) and s3

(<3,6,5,7,8,9>) =
f6
(3,(3,6),(6,5),9) = α,

• v7 forwards flow i) from node v2 to node v9 through edge (v5, v7) and s2
(<2,3,6,5,7,8,9>) =

f7
(2,(5,7),(7,8),9) = 2δ + α, ii) from node v3 to node v9 through edge (v5, v7) and s3

(<3,6,5,7,8,9>) =
f7
(3,(5,7),(7,8),9) = α (notice that in view of Lemma A.3 edge (v4, v5) is disconnected, and therefore

node v7 does not receive flow from node v3 through that edge), iii) from node v5 to node v3

through edge (v5, v7) and s5
(<5,7,8,11,3>) = f7

(5,(5,7),(7,8),3) = δ, iv) from node v5 to node v1 through
edge (v5, v7) and s5

(<5,7,8,9,10,1>) = f7
(5,(5,7),(7,8),1) = δ + 2α, (notice that since edge (v4, v5) is

disconnected, node v7 does not receive any flow from node v1),
• v8 forwards flow i) from node v2 to node v9 through edge (v7, v8) and s2

(<2,3,6,5,7,8,9>) =
f8
(2,(7,8),(8,9),9) = 2δ + α, ii) from node v3 to node v9 through edge (v7, v8) and s3

(<3,6,5,7,8,9>) =
f8
(3,(7,8),(8,9),9) = α (notice that since edge (v4, v5) is disconnected, node v8 does not receive

flow from node v3 through that edge), iii) from node v5 to node v3 through edge (v7, v8) and
s5
(<5,7,8,11,3>) = f8

(5,(7,8),(8,11),3) = δ, iv) from node v5 to node v1 through edge (v7, v8) and
s5
(<5,7,8,9,10,1>) = f8

(5,(7,8),(8,9),1) = δ + 2α, (notice that since edge (v4, v5) is disconnected, node
v8 does not receive flow from node v1),

• v9 forwards flow from node v5 to node v1 through edge (v8, v9) and s5
(<5,7,8,9,10,1>) = f9

(5,(8,9),(9,10),1) =
δ + 2α,

• v10 forwards flow from node v5 to node v1 through edge (v9, v10) and s5
(<5,7,8,9,10,1>) = f10

(5,(9,10),(10,1),1) =
δ + 2α,

• v11 forwards flow from node v5 to node v3 through edge (v8, v11) and s5
(<5,7,8,11,3>) = f11

(5,(8,11),(11,3),3) =
δ,

• v12 forwards flow from node v1 to node v9 through edge (v1, v12) and s1
(<1,12,9>) = δ − α <

f12
(1,(1,12),(12,9),9) = δ,

• v13 does not forward any flow since node v10 does not send any flow through edge (v10, v13).

16



Therefore for any edge (x, y) different than (v4, v5) it holds εy
x = 0. Since all thresholds apart from

THR4(5) are 0 we have that for any edge (x, y) apart from (v4, v5), THRx(y) = εy
x = 0 and (x, y)

is connected. Thus the first two conditions of Theorem 1 hold.
For the third condition we have:

• v1: receives δ flow from node v10 and δ + 2α flow from node v5 through edge (v10, v1),
• v2: this condition does not apply for edge (v1, v2) since there is unsuccessful flow in that edge,
• v3: i) this condition does not apply for edge (v2, v3) since there is unsuccessful flow in that edge,

ii) receives δ flow from node v11 and δ flow from node v5 through edge (v11, v3),
• v4: i) this condition does not apply for edge (v3, v4) since there is unsuccessful flow in that edge,

ii) receives δ flow from node v13 through edge (v13, v4),
• v5 receives i) δ flow from node v3, 2δ + 3α flow from node v6 and δ flow from node v10 through

edge (v6, v5),
• v6 receives 4δ + 2α flow from node v3,
• v7 receives 4δ + 4α flow from node v5,
• v8 receives 4δ + 4α flow from node v7,
• v9 receives 2δ + α flow from node v2, α flow from node v3, and δ flow from node v8 through

edge (v8, v9), ii) δ flow from node v12 through edge (v12, v9),
• v10 receives δ + 2α flow from node v9 through edge (v9, v10),
• v11 receives δ flow from node v8 through edge (v8, v11),
• v12 receives δ flow from node v1 through edge (v1, v12),
• v13 receives δ flow from node v10 through edge (v10, v13),

Therefore for every edge (x, y) carrying only successful flow condition 3 of Theorem 1 holds.
For condition 4 of Theorem 1, the only disconnected edge is (v4, v5). It holds THR4(5) = 2λ > 0,

node v4 does not send any flow through this edge and nodes v1, v3 send unsuccessful flows through
this edge.

For condition 5 of Theorem 1, the only edge for which the condition applies is edge (v3, v4).
Indeed, it holds that THR3(4) = 0 and node v4 receives 2α flow from node v3 which is equal to
the (unsuccessful) flow that forwards through edge (v4, v5).

For condition 6 of Theorem 1, the only demands that are not completely satisfied are between:

• v1 and v9, but in order for v1 to increase what it sends it needs to decrease the unsuccessful
flow that sends to v9.

• v3 and v9, but in order for v3 to increase what it sends it needs to decrease the unsuccessful
flow that sends to v9.

Both these cases will be taken care by condition 7d.
For condition 7 of Theorem 1 we have:

• Node v1: i) cannot send any unsuccessful flow to cut the flow received from v10 which v1 needs
to forward, ii) cannot stop sending the unsuccessful flow to v9, since it will profit 2α more flow
in its utility (by rerouting this flow to v9) but lose δ + 2α flow that receives from node v5 since
edge (v5, v7) will be disconnected (see Lemma A.3),

• Node v2: i) cannot send any unsuccessful flow to cut the flow received from v10 which v2 needs
to forward, ii) cannot stop forward the (unsuccessful and successful) flows, since edge (v1, v2)
will get disconnected, it will profit δ + α flow but lose the 2δ + α flow that sends to node v9

since edge (v5, v7) will be disconnected (see Lemma A.3),

17



• Node v3: i) cannot send any unsuccessful flow to cut the flows received from v1, v2, v10 which
v3 needs to forward, ii) cannot stop forward the (unsuccessful and successful) flows, since edge
(v2, v3) will get disconnected, it will profit 3δ +4α−λ flow (by sending α−λ flow to v9 through
edge (v4, v5)) but lose 3δ + 4α flow that receives from node v2, iii) cannot stop sending only
the unsuccessful flow α to node v9 through edge (v4, v5), since in that case edge (v5, v7) will be
disconnected (see Lemma A.3) and it will lose α flow that was sending to node v9 through edge
(v6, v5),

• Node v4: i) cannot send any flow, ii) cannot stop forward the unsuccessful flows, since edge
(v3, v4) will get disconnected, it will profit 2α flow but lose the same flow that receives from
node v3, iii) has not a profit to increase its threshold for node v5,

• Node v5: i) cannot send any unsuccessful flow to cut the flows received from v2, v3 which needs
to forward,

• all other nodes cannot send any unsuccessful flow to cut the flows which need to forward.

Notice also that for all demands of Figure 2 there is a flow delivered. Therefore the equilibrium is
connected.

2

Lemma A.5. A variable-subgraph GA where the values to its nodes’ decision variables have been
assigned according to the FALSE value transformation is at a connected Nash equilibrium.
Proof: We prove that if we fix the values of the decision variables as in the FALSE value trans-
formation then GA is already at a connected Nash equilibrium. To that end we verify one by one
the conditions of Theorem 1.

For the first condition all we have to do is to examine the incoming edges of every node:

• v1 does not forward any flow,
• v2 does not forward any flow,
• v3 forwards flow from node v2 to node v9 through edge (v2, v3) and s2

(<2,3,6,5,7,8,9>) = f3
(2,(2,3),(3,6),9) =

2δ + α,
• v4 forwards flow from node v10 to node v5 through edge (v13, v4) and s10

(<10,13,4,5>) = f4
(10,(13,4),(4,5),5) =

δ,
• v5 forwards flow i) from node v2 to node v9 through edge (v6, v5) and s2

(<2,3,6,5,7,8,9>) =
f5
(2,(6,5),(5,7),9) = 2δ + α, ii) from node v3 to node v9 through edge (v6, v5) and s3

(<3,6,5,7,8,9>) =
f5
(3,(6,5),(5,7),9) = α,

• v6 forwards flow i) from node v2 to node v9 through edge (v3, v6) and s2
(<2,3,6,5,7,8,9>) =

f6
(2,(3,6),(6,5),9) = 2δ + α, ii) from node v3 to node v5 through edge (v3, v6) and s3

(<3,6,5>) =
f6
(3,(3,6),(6,5),5) = δ, iii) from node v3 to node v9 through edge (v3, v6) and s3

(<3,6,5,7,8,9>) =
f6
(3,(3,6),(6,5),9) = α,

• v7 forwards flow i) from node v2 to node v9 through edge (v5, v7) and s2
(<2,3,6,5,7,8,9>) =

f7
(2,(5,7),(7,8),9) = 2δ + α, ii) from node v3 to node v9 through edge (v5, v7) and s3

(<3,6,5,7,8,9>) =
f7
(3,(5,7),(7,8),9) = α, iii) from node v5 to node v3 through edge (v5, v7) and s5

(<5,7,8,11,3>) =
f7
(5,(5,7),(7,8),3) = δ, iv) from node v5 to node v1 through edge (v5, v7) and s5

(<5,7,8,9,10,1>) =
f7
(5,(5,7),(7,8),1) = δ + 2α,

• v8 forwards flow i) from node v2 to node v9 through edge (v7, v8) and s2
(<2,3,6,5,7,8,9>) =

f8
(2,(7,8),(8,9),9) = 2δ + α, ii) from node v3 to node v9 through edge (v7, v8) and s3

(<3,6,5,7,8,9>) =
f8
(3,(7,8),(8,9),9) = α, iii) from node v5 to node v3 through edge (v7, v8) and s5

(<5,7,8,11,3>) =
f8
(5,(7,8),(8,11),3) = δ, iv) from node v5 to node v1 through edge (v7, v8) and s5

(<5,7,8,9,10,1>) =
f8
(5,(7,8),(8,9),1) = δ + 2α,

18



• v9 forwards flow from node v5 to node v1 through edge (v8, v9) and s5
(<5,7,8,9,10,1>) = f9

(5,(8,9),(9,10),1) =
δ + 2α,

• v10 forwards flow from node v5 to node v1 through edge (v9, v10) and s5
(<5,7,8,9,10,1>) = f10

(5,(9,10),(10,1),1) =
δ + 2α,

• v11 forwards flow from node v5 to node v3 through edge (v8, v11) and s5
(<5,7,8,11,3>) = f11

(5,(8,11),(11,3),3) =
δ,

• v12 forwards flow from node v1 to node v9 through edge (v1, v12) and s1
(<1,12,9>) = f12

(1,(1,12),(12,9),9) =
δ,

• v13 forwards flow from node v10 to node v5 through edge (v10, v13) and s10
(<10,13,4,5>) = f13

(10,(10,13),(13,4),5) =
δ,

Therefore for any edge (x, y) it holds εy
x = 0.

For the second condition of the Theorem 1, all thresholds are 0.
For the third condition we have:

• v1: receives δ flow from node v10 and δ + 2α flow from node v5 through edge (v10, v1),
• v2: does not receive any flow,
• v3: receives i) 3δ + 3α flow from node v2 through edge (v2, v3), ii) δ flow from node v11 and δ

flow from node v5 through edge (v11, v3),
• v4: receives i) 2α flow from node v3 through edge (v3, v4), ii) δ flow from node v13 through edge

(v13, v4),
• v5: receives i) δ flow from node v3, 2δ + 3α flow from node v6, through edge (v6, v5), ii) δ flow

from node v10 through edge (v4, v5),
• v6: receives 4δ + 2α flow from node v3 through edge (v3, v6),
• v7: receives 4δ + 4α flow from node v5 through edge (v5, v7),
• v8: receives 4δ + 4α flow from node v7 through edge (v7, v8),
• v9: receives i) 2δ + α flow from node v2, α flow from node v3, δ flow from node v8 through edge

(v8, v9), ii) δ flow from node v1 through edge (v12, v9),
• v10 receives δ + 2α flow from node v9 through edge (v9, v10),
• v11 receives δ flow from node v8 through edge (v8, v11),
• v12 receives δ flow from node v1 through edge (v1, v12),
• v13 receives δ flow from node v10 through edge (v10, v13),

Therefore condition 3 of Theorem 1 holds in every edge.
Conditions 4, 5 of Theorem 1 do not apply here since there are no disconnected edges and

unsuccessful flows.
For condition 6 of Theorem 1, the only demand which has not been completely satisfied is

between nodes v3 and v9. However node v3 cannot send more flow than α by any path.
For condition 7 of Theorem 1, since there are no disconnected edges only 7d applies here. We

have:

• Node v1 does not have a profit to send any unsuccessful flow,
• Node v2 does not have a profit to send any unsuccessful flow,
• Node v3 cannot send any unsuccessful flow to cut the flow received from v2 which v3 needs to

forward,
• Node v4 cannot send any flow,
• Node v5 cannot send any unsuccessful flow to cut the flows received from v2, v3 which v5 needs

to forward,
• all other nodes cannot send any unsuccessful flow to cut the flows which they need to forward.

19



Notice also that for all demands of Figure 2 there is a flow delivered. Therefore the equilibrium is
connected.

2

5.3 Analysis of the reduction

Lemma 1. In a variable-subgraph GA, in any connected equilibrium, there is exactly one edge
with no successful flow at all. This edge is either (v1, v2) or (v4, v5).
Proof: Suppose for the sake of contradiction, that there is a connected equilibrium in GA and all
edges have successful flows. This means that all edges are connected. We first show that in this case
the network has no unsuccessful flows at all: if there was a node which was sending an unsuccessful
flow then it would be clearly profitable for that node to stop sending this unsuccessful flow since
this action would not introduce other changes to the network. Thus all edges carry only successful
flows. Consider the edge (v1, v2). Node v2 does not receive a flow since there is no demand with
sink node v2. However there is a successful flow that node v2 needs to forward. But then condition
(3) of Theorem 1 does not hold for the edge (v1, v2) which would mean that the system is not at a
Nash equilibrium.

Thus there is at least one edge which does not carry any successful flow. It is easily checkable
that any edge apart from (v1, v2) and (v4, v5) should carry successful flow, otherwise there is always
a demand for which no flow is being delivered. Now suppose that none of the edges (v1, v2) and
(v4, v5) carry successful flow. But then no flow is being delivered for the demand (v10, v5).

2

Lemma A.6. If the instance I of the Sat problem is satisfiable then the constructed network has
a connected Nash equilibrium.
Proof: Let Φ be a truth assignment which satisfies I. Let m be the maximum number of clauses
satisfied by the same literal in Φ and let k be the maximum number of literals which satisfy the
same clause. Consider a variable-subgraph GA which corresponds to a boolean variable A together
with the nodes and edges which correspond to the clauses Bi that have been satisfied by A in Φ.

If A has value TRUE in the satisfying truth assignment Φ then it must appear as a positive
literal in every Bi and therefore nodes ubi

and nodes vbi
which correspond to those clauses Bi

are connected with GA through edges (ubi
, v1) and (v2, vbi

) respectively. The remaining clauses Cj

(if any) in which A appears as a negative literal correspond to nodes ucj and nodes vcj that are
connected with GA through edges (ucj , v4) and (v5, vcj ) respectively. We show that the enhanced
subgraph (i.e., the subgraph consisting of GA together with the nodes ubi

, vbi
and the edges that

connect those nodes with GA) has a connected Nash equilibrium. We assign values to the decision
variables according to the TRUE value transformation and we additionally set sub

(<ub,1,2,vb>) =

f1
(ub,(ub,1),(1,2),vb)

= f2
(ub,(1,2),(2,vb),vb)

= δ
mk , ∀b among bi. We show that in view of Lemma A.4 the

system is at a connected Nash equilibrium. We verify that the conditions of Theorem 1 still hold.

• For the first condition of Theorem 1 the differences are:
• v1 additionally forwards flow from each node ub among ubi

to one node vb among vbi
through

edge (ub, v1) and sub

(<ub,1,2,vb>) = f1
(ub,(ub,1),(1,2),vb)

= δ
mk ,

• v2 additionally forwards flow from each node ub among ubi
to one node vb among vbi

through
edge (v1, v2) and sub

(<ub,1,2,vb>) = f2
(ub,(1,2),(2,vb),vb)

= δ
mk ,

Therefore the first condition still holds.
• For the second condition there is no difference.
• For the third condition the difference is that v1 additionally receives δ

mk flow from each node
ub among ubi

through edge (ub, v1). Hence the condition still holds.

20



• For conditions 4, 5 there is no difference.
• For condition 6 of Theorem 1, the demand between each node ub among ubi

and one node vb

among vbi
, probably could not be completely satisfied. However node ub cannot send more flow

by any path. Thus this condition also holds.
• For condition 7 of Theorem 1, i) nodes v1, v2 cannot send any unsuccessful flow to cut the new

flow from nodes ubi
which should forward, ii) node ub among nodes ubi

does not have a profit
to send any unsuccessful flow and iii) node v2 still does not have a profit to disconnect edge
(v1, v2), since in that case it could profit at most δ flow than before the introduction of nodes
ubi

raising the total to a 2δ + α flow (see the second bullet in the paragraph for the condition
1 in the proof of Lemma A.4) but still losing the same flow that was sending to node v9 (see
the second bullet in the paragraph for the condition 7 in the proof of Lemma A.4). Hence this
condition also holds.

Therefore the system is at a Nash equilibrium. Notice that nodes ucj , vcj cannot distract this
equilibrium since f4

(uc,(uc,4),(4,5),vc)
= 0, ∀c among cj and therefore the subgraph including those

nodes is still at a Nash equilibrium. Moreover all demands between nodes of GA and all demands
between a node ub among nodes ubi

and the respected node vb among nodes vbi
are satisfied (i.e.,

there is a flow delivered). The situation is shown in Figure 8.
If A has value FALSE in the satisfying truth assignment Φ then it must appear as a negative

literal in every Bi and therefore nodes ubi
and nodes vbi

which correspond to those clauses Bi

are connected with GA through edges (ubi
, v4) and (v5, vbi

) respectively. The remaining clauses
Cj (if any) in which A appears as a positive literal correspond to nodes ucj and nodes vcj that
are connected with GA through edges (ucj , v1) and (v2, vcj ) respectively. We show that the en-
hanced subgraph (i.e., the subgraph consisting of GA together with the nodes ubi

, vbi
and the

edges that connect those nodes with GA) has a connected Nash equilibrium. We assign values to
the nodes decision variables according to the FALSE value transformation and we additionally
set sub

(<ub,4,5,vb>) = f4
(ub,(ub,4),(4,5),vb)

= f5
(ub,(4,5),(5,vb),vb)

= δ
mk , ∀b among bi. We show that in view

of Lemma A.5 the system is at a connected Nash equilibrium. We verify that the conditions of
Theorem 1 still hold.

• For the first condition of Theorem 1 the differences are:
• v4 additionally forwards flow from each node ub among ubi

to one node vb among vbi
through

edge (ub, v4) and sub

(<ub,4,5,vb>) = f4
(ub,(ub,4),(4,5),vb)

= δ
mk ,

• v5 additionally forwards flow from each node ub among ubi
to one node vb among vbi

through
edge (v4, v5) and sub

(<ub,4,5,vb>) = f5
(ub,(4,5),(5,vb),vb)

= δ
mk ,

Therefore the first condition still holds.
• For the second condition there is no difference.
• For the third condition the differences are: i) Node v4 additionally receives δ

mk flow from each
node ub among ubi

through edge (ub, v4) which is equal to what additionally forwards through
that edge. ii) Node v5 additionally forwards δ

mk flow from each node ub among ubi
through edge

(v4, v5) which raises the total flow which needs to forward through edge (v4, v5) to at most δ.
But it also receives a flow δ from node v10 through this edge (see the fifth bullet in the paragraph
for the condition 3 in the proof of Lemma A.5). Hence the condition still holds.

• For conditions 4, 5 there is no difference.
• For condition 6 of Theorem 1, the demand between each node ub among ubi

and one node vb

among vbi
, probably could not be completely satisfied. However node ub cannot send more flow

by any path. Thus this condition also holds.

21



• For condition 7 of Theorem 1, i) nodes v4, v5 cannot send any unsuccessful flow to cut the new
flow from nodes ubi

which should forward, and ii) node ub among nodes ubi
does not have a

profit to send any unsuccessful flow. Hence this condition also holds.

Therefore the system is at a Nash equilibrium. Notice that nodes ucj , vcj cannot distract this
equilibrium since f1

(uc,(uc,1),(1,2),vc)
= 0, ∀c among cj and therefore the subgraph including those

nodes is still at a Nash equilibrium. Moreover for every demand between nodes of GA and for every
demand between a node ub among nodes ubi

and the respected node vb among nodes vbi
there is a

flow delivered. The situation is shown in Figure 9.
Notice that there is no demand that could be satisfied by a flow-path routed through edges

of two different literal-subgraphs. Hence since each literal-subgraph is at a Nash equilibrium, the
whole network is at a Nash equilibrium. Moreover all additional demands between nodes that
correspond to clauses are satisfied since each such pair of nodes has to appear as ub, vb connected
to some variable-subgraph GA, namely this GA for which the boolean variable A satisfies clause b.
Therefore the constructed network is at a connected Nash equilibrium.

2

Lemma A.7. Let I be an instance of the Sat problem. If the constructed π(I) instance of the
network game has a connected Nash equilibrium then instance I of the Sat problem is satisfiable.
Proof: Suppose that the constructed π(I) instance of the network game has a connected equilib-
rium. This means that for every clause-subgraph represented by a demand between nodes uc, vc

there is at least one literal-subgraph in which there is a flow delivered for this demand (i.e., there is
a non-zero successful flow from uc to vc routed through an edge of that literal-subgraph). If the flow
delivered for this demand has been routed through an edge of a positive-literal subgraph then we set
the value of the corresponding boolean variable to be TRUE. If the flow delivered has been routed
through an edge of a negative-literal subgraph then we set the value of the corresponding boolean
variable to be FALSE. If at the end of this procedure there are still boolean variables with no value
assigned then we assign any value to them. We show now that this is a consistent truth assignment.
For the sake of contradiction, suppose that during this truth assignment, there is a boolean vari-
able in which both values TRUE and FALSE have been assigned. This would mean that there
is a literal-subgraph in which a demand between nodes uc1 , vc1 (representing clause C1) has been
satisfied (i.e., there is a flow delivered) while the subgraph serves as a positive-literal-subgraph
(i.e., the flow from uc1 to vc1 has been routed through edge (v1, v2) of the literal-subgraph) and
at the same time there is another demand between nodes uc2 , vc2 (representing clause C2) which
has been satisfied while the subgraph serves as a negative-literal-subgraph (i.e., the flow from uc2

to vc2 has been routed through edge (v4, v5) of the literal-subgraph). But this would mean that in
the corresponding variable-subgraph, both edges (v1, v2) and (v4, v5) have successful flows. But in
view of Lemma 1, such a situation in a variable-subgraph cannot be a Nash equilibrium. Hence the
truth assignment is consistent and satisfies the boolean formula.

2

22



v5

v1
v2 v3 v4

v6

v7

v8

v9

v13

v10
v11

v12

Fig. 1. A variable-subgraph.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 δ δ

2 3δ + 4α 2δ + α

3 2α δ 4δ + 2α 2α

4

5 δ + 2α δ 4δ + 4α

6 2δ + 3α

7 4δ + 4α

8 δ δ

9 δ + 2α

10 δ δ δ

11 δ

12 δ

13 δ

Fig. 2. Demands for the nodes of the variable-subgraph in Figure 1. The rows contain the sources and the columns
contain the sinks. For example the box at row 3 and column 9 contains the value 2α which means that the demand
from node v3 to node v9 is 2α. Empty boxes represent zero demands between the corresponding nodes.

23



v5

v13

v10
v11

v12

v1
v2 v3 v4

v6

uc vc

v7

v8

v9

(b)

v3

vc

v1
v2

uc

v4

v5

v7

v13

v10
v11

v12

v6

v8

v9

(a)

Fig. 3. In any literal-subgraph the demand between nodes uc, vc is δ. a) A positive literal-subgraph. The demand
between nodes uc, v1 is δ. b) A negative literal-subgraph. The demand between nodes uc, v4 is δ.

uc vc

A1 ¬A2 A3

clause: (A1 ∨ ¬A2 ∨ A3)

Fig. 4. A clause C = A1 ∨ ¬A2 ∨A3 and its respective constructed clause-subgraph.

24



A boolean formula: (A1 ∨ ¬A2 ∨ A3) ∧ (¬A1 ∨ A2 ∨ A3) ∧ (A1 ∨ ¬A2 ∨ ¬A3)

uc1
vc1

A1 A2 A3

uc2

uc3vc2

vc3

Fig. 5. A boolean formula (A1 ∨ ¬A2 ∨ A3) ∧ (¬A1 ∨ A2 ∨ A3) ∧ (A1 ∨ ¬A2 ∨ ¬A3) and its respective constructed
subgraph.

v2

v6

v3v1 v4

v13

v8

v9

v5

v7

v10
v11

v12

Fig. 6. A variable-subgraph which corresponds to a variable with value TRUE, with routed flow-paths. Only paths
between non-adjacent nodes are shown. Successful flows go through green colored paths. Unsuccessful flows go through
red colored paths and cut edge (v4, v5). The two paths of unsuccessful flows are such that if in one of them the flow
decreases then edge (v4, v5) gets connected and edge (v5, v7) gets disconnected.

25



v6

v3v1

v2
v4

v13

v8

v9

v5

v7

v10
v11

v12

Fig. 7. A variable-subgraph which corresponds to a variable with value FALSE, with routed flow-paths. Only paths
between non-adjacent nodes are shown. All paths carry only successful flows. Although the edge (v1, v2) is not
disconnected, there is no flow going through it.

v2

v6

v3

vc

v1

uc

v4

v13

v8

v9

v5

v7

v10
v11

v12

Fig. 8. A positive-literal-subgraph which corresponds to a variable with value TRUE, with routed flow-paths.

26



vc

uc

v6

v3v1

v2
v4

v13

v8

v9

v5

v7

v10
v11

v12

Fig. 9. A negative-literal-subgraph which corresponds to a variable with value FALSE, with routed flow-paths.

27


