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Abstract

We consider the problem of characterizing user equilibria and optimal solutions
for selfish routing in a given network. We extend the known models by considering
malicious behaviour. While selfish users follow a strategy that minimizes their individ-
ual cost, a malicious user will use his flow through the network in an effort to cause
the maximum possible damage to this cost. We define a generalized model, present
characterizations of flows at Wardrop equilibria and prove bounds for the ratio of the
social cost of a flow at Wardrop equilibrium over the cost when centralized coordination
among users is allowed.

1 Introduction

The general framework of a system of non-cooperative users can be used to model many
different optimization problems such as network routing, traffic or transportation problems,
load balancing and distributed computing, auctions and many more. Game Theoretic tech-
niques can be used to model and analyze such systems in a natural way. The performance
of a system of non-cooperative users is measured by an appropriate cost function which
depends on the behaviour, or strategies of the users. For example in the case of network
routing, the total, system-wide cost can be defined as the total routing cost, or the total
latency experienced by all the users in the network. On the other hand, there is also a cost
associated with each individual user (for example the latency experienced by the user).
It is a well known fact that if each user optimizes her own cost, then they might choose
a strategy that does not give the optimal total cost for the entire system, also known as
social cost [KP99]. In other words, the selfish behaviour of the users leads to a sub-optimal
performance.

Koutsoupias and Papadimitriou [KP99] initiated the study of the coordination ratio
(also referred to as the price of anarchy): How much worse is the performance of a network
of selfish users where each user optimizes her own cost, compared to the best possible
performance that can be achieved on the same system? This question has been studied in
various different models (e.g. [RT02], [SM03]) and bounds for the coordination ratio have
been shown for many interesting cases.
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A basic assumption of the models considered so far is that the users are considered
to be selfish and non-malicious: the user optimizes her own utility or payoff, and does
not care about the performance of the system or the cost induced to other users by her
strategy. We extend these models by considering malicious users. A malicious user will
choose a strategy that will cause the worst possible performance for the entire network.
Such malicious behaviour can be found in practice in settings such as the internet (for
example in ‘denial of service’ attacks). While in terms of Wardrop equilibria, the extension
of the selfish model considered before is quite straight-forward, the existence of malicious
users forces us to a different model for the ‘social cost’. We no longer have an objective
function that can be minimized by the centralized coordination among the users, since in
our setting some of the users still can be coordinated to minimize it, but at the same time
there is a (malicious) user that tries to maximize it. This leads naturally to the formulation
of the ‘social cost’ objective as a minimax problem instead of just a minimization problem.
As a result, we cannot refer to an ‘optimal social cost’ that is a global minimizer of the
social cost objective. Instead, we have to compare the worst Wardrop equilibrium to the
saddle-points of the minimax problem. We define the ‘optimal social cost’ as the minimum
cost achieved by the set of saddle-points. The fact that this set is (usually) non-convex
makes the exact characterization of the ‘optimal social cost’ (and therefore the coordination
ratio) more difficult to characterize than the previous models. Nevertheless, in this paper
we show that in the very general setting considered by Roughgarden and Tardos [RT02],
their results can be extended to the case of systems with malicious users.

Previous Work: Many of the Game Theoretic tools used for analyzing systems of non-
cooperative users derive from results in traffic models and transportation, including work of
Dafermos and Sparrow [DS69], Beckmann, McGuire and Winsten [BMW56] and Aashtiani
and Magnanti [AM81]. More recently, Nash equilibria and their applications were used for
routing problems and the internet. Koutsoupias and Papadimitriou [KP99] considered the
coordination ratio for load balancing problems (routing on a network of parallel links). The
model they considered allowed multiple equilibria, and the coordination ratio compared the
worst case equilibrium cost to the optimal routing cost. Their bounds were improved in
subsequent work on the same model by Mavronicolas and Spirakis [MS01], and Czumaj
and Vöcking [CV02]. Roughgarden and Tardos [RT02] considered a different model for
selfish routing, where there is a unique Wardrop equilibrium and proved bounds for the
coordination ratio, including results for the special case of linear utility functions. Other
work in this model includes results on the topology of the underlying network [Rou01a,
Rou02], algorithms and bounds for Stackelberg scheduling strategies [Rou01b], etc.

Organization: In Section 2 we define the model, give a characterization of Wardrop
equilibria for this model, and prove the existence of Wardrop equilibrium flows under certain
constraints for the latency functions. Section 3 defines the social cost as the objective
function of a minimax program and gives characterizations of its saddle-points. Wardrop
Equilibria are compared with the saddle-points of the minimax program in Section 4, in the
general case (bicriteria result) and the special case of linear latency functions. We conclude
with a short discussion and open problems.

2



2 The model

We are given a directed network G = (V,E) and k source-sink pairs of nodes
(si, ti), i = 1 . . . k. There are also two special nodes sM , tM connected to G with edges
(sM , si), (ti, tM ), i = 1 . . . k. A commodity i with demand ri is associated with each pair
(si, ti), i = 1 . . . k, and a commodity M of demand F is associated with pair (sM , tM ). Let
Pi (PM ) be the set of acyclic paths from si to ti (sM to tM ). A latency function lP (·) is
associated with each path P . For a flow f on G, lP (f) is the latency (cost) of path P for
this particular flow. Notice that in general this latency depends on the whole flow f , and
not only on the flow fe through each edge e ∈ P . In this paper we adopt the additive model
for the path latencies, i.e. lP (f) =

∑
e∈P le(fe), where le is the latency function for edge e

and fe is the amount of flow that goes through e. We also let P be the set of all available
paths in the network and assume that for every source-sink pair there is at least one path
joining the source to the sink. We use the shorthand (G, r, F, l) to describe an instance of
the model.

Commodities i = 1 . . . k model selfish, but otherwise ‘good’ users who want to just use
the network in order to satisfy their demands with the smallest possible cost (i.e. latency
for every unit of flow routed). Commodity M models a selfish ‘malicious’ user who wants
to use his own flow F in such a way that will do the biggest possible damage to the total
cost of the good players.

For our equilibrium model, we use the following general formulation by Aashtiani and
Magnanti [AM81]:

Definition 1 A flow f = ∪P∈PfP is at Wardrop equilibrium for instance (G, r, F, l) iff it
satisfies the following constraints:

(TP (f)− ui)fP = 0 for all P ∈ Pi, i = 1 . . . k (1)
(TP (f)− uM )fP = 0 for all P ∈ PM

TP (f)− ui ≥ 0 for all P ∈ Pi, i = 1 . . . k

TP (f)− uM ≥ 0 for all P ∈ PM∑
P∈Pi

fP − ri = 0 for all i = 1 . . . k

∑
P∈PM

fP − F = 0

f ≥ 0
u ≥ 0

where TP is the delay time or general disutility for path P , fP is the flow through path P ,
and u = (u1, . . . , uk, uM ) is the vector of shortest travel times (or generalized costs) for the
commodities.

Note that TP does not need to be the same function for all paths P (and, indeed, it will be
a different function for the good and the malicious users). Also we emphasize that TP is not
the path latency (the latter is given by function lP ). In what follows we define precisely
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the functions TP for all users, and thus we define completely the equilibrium model of
Definition 1.

The first four equations are the conditions for the existence of a Wardrop traffic equilib-
rium. They require that the general disutility for all paths P that carry flow fP > 0 is the
same and equal to u for every user, and less or equal to the disutility of any path with zero
flow. Any flow that complies with this definition of a Wardrop equilibrium, also satisfies
the following alternative characterization:

Lemma 1 A flow that is feasible for instance (G, r, F, l) is a Wardrop equilibrium iff for
every commodity i (i can be the malicious commodity M) and every pair of paths P1, P2 ∈ Pi

with fP1 > 0, TP1(f) ≤ TP2(f).

2.1 Existence of Wardrop equilibrium

The model of Definition 1 is very general. It turns out that the existence of a Wardrop equi-
librium in this model can also be proved under very general assumptions. More specifically,
the following theorem follows immediately from Theorem 5.4 in [AM81]:

Theorem 1 Suppose that TP is a positive continuous function for all P ∈ P. Then there
is a flow that satisfies the conditions of Definition 1.

A function is positive if its values are positive. In order to make sure that a Wardrop
always exists, from now on we make the following assumption:

Assumption 1 We assume that the disutility function for every path is a positive function
of the total flow. In addition, we assume that the disutility functions for the good users
are increasing functions of the flow, i.e. as the congestion increases for a good user’s path,
its disutility also increases.

3 Social cost when malicious users are present

The existence of a malicious user forces us to redefine the notion of ‘social cost’ [KP99].
In addition to a set of users that collectively strive to minimize their collective cost (the
‘social cost’, as defined earlier [KP99], [RT02]), we have a user who strives to maximize
this same cost. Therefore we define the ‘socially best’ flow in terms of a minimax problem.
Note that in such a setting the notion of an “optimal flow” is replaced by the notion of a
flow “in equilibrium”. Therefore our work compares a Wardrop equilibrium to a minimax
equilibrium (as opposed to the comparison of a Wardrop equilibrium to an optimal solution
of a minimization problem, as in [RT02]).

In what follows, we denote the flow of the good users by fG, and the flow of the malicious
user by fM (recall that we denote by f the total flow). We consider the following minimax
formulation:

max
fM

min
fG

∑
e∈E

ce(fM
e , fG

e ) subject to: (MINMAX)∑
P∈Pi

fG
P = ri ∀i ∈ {1, . . . , k}
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∑
P∈PM

fM
P = F

fG
e =

∑
P∈P:e∈P

fG
P ∀e ∈ E

fM
e =

∑
P∈P:e∈P

fM
P ∀e ∈ E

fG
P ≥ 0 ∀P ∈ P

fM
P ≥ 0 ∀P ∈ P

where ce(fM
e , fG

e ) is the cost of flow (fM
e , fG

e ) passing through edge e. In our case we have

ce(fM
e , fG

e ) = fG
e · le(fG

e , fM
e ).

We call this minimax formulation (MINMAX), and its objective function C(fM , fG)(=∑
e∈E ce(fM

e , fG
e )).

The solution(s) to (MINMAX) are called saddle-points. The saddle-points are defined
as follows:

Definition 2 A flow (f̄G, f̄M ) is said to be a saddle-point of C (with respect to maximizing
in fM and minimizing in fG) if

C(f̄G, fM ) ≤ C(f̄G, f̄M ) ≤ C(fG, f̄M ), ∀fM , ∀fG. (2)

We also refer to (MINMAX) saddle-points as (MINMAX) equilibria.

3.1 Existence of saddle-points

A saddle-point is not always guaranteed to exist. But under certain assumptions, we can
show that (at least one) saddle-point exists. We assume the following for the cost function
C(fM , fG):

Assumption 2 The functions ce(fM
e , fG

e ) are continuous, differentiable, convex with re-
spect to fG, and concave with respect to fM for all e ∈ E.

Following the methods of Dafermos and Sparrow [DS69], and under Assumption 2, we
can prove the following theorem for the existence and properties of saddle-points for
(MINMAX).

Theorem 2 Under Assumption 2, a feasible flow f̄ = (f̄M , f̄G) is a solution (saddle-point)
to the minimax problem (MINMAX) if and only if it has the following properties:∑

e∈P

∂ce

∂fG
e

(f̄) ≤
∑
e∈P ′

∂ce

∂fG
e

(f̄), ∀i = 1 . . . k, ∀P, P ′ ∈ Pi with f̄G
P > 0 (3)

∑
e∈P

∂ce

∂fM
e

(f̄) ≥
∑
e∈P ′

∂ce

∂fM
e

(f̄), ∀P, P ′ ∈ PM with f̄M
P > 0 (4)

5



In particular, the above imply that for every ‘good’ user i = 1, . . . , k, and the malicious
user we have:∑

e∈P

∂ce

∂fG
e

(f̄) =
∑
e∈P ′

∂ce

∂fG
e

(f̄) = Ai, ∀P, P ′ ∈ Pi with both f̄G
P , f̄G

P ′ > 0 (5)

∑
e∈P

∂ce

∂fM
e

(f̄) =
∑
e∈P ′

∂ce

∂fM
e

(f̄) = B, ∀P, P ′ ∈ PM with both f̄M
P , f̄M

P ′ > 0 (6)

Conditions (3) and (4) are simply the Kuhn-Tucker conditions for prob-
lem (MINMAX) [Roc70]. A sketch for the proof of Theorem 2 can be found in Appendix A.

4 Wardrop vs. Minimax equilibria

The saddle-points of (MINMAX) give us the total cost achieved in a system with both
good and malicious users, provided there is a central authority that can direct the flow
of each good user so that the total cost is the minimum possible, in the presence of a
malicious user. This cost, which is a quantitative estimate of the ‘social cost’ that can
be achieved by a central coordinator, may be quite different to the total cost achieved
by the lack of such a coordinator, i.e. by allowing each user (good or malicious) to act
selfishly. Here, we define natural selfish behaviors for both the good and malicious users,
in accordance with the general model of Definition 1. Our aim will be to estimate how
far can selfishness push the total cost from the optimal coordinated one (i.e. the best
saddle-point of (MINMAX)). In order to do this, we modify the definition of the price of
anarchy or coordination ratio, defined by Koutsoupias and Papadimitriou [KP99] and used
by Roughgarden and Tardos [RT02].

Definition 3 (Coordination ratio) Let (G, r, F, l) be an instance of the routing problem
on network G with latency function le(·) for every edge e, with k good users with demands
ri, i = 1, . . . , k and a malicious user with flow F . Then the coordination ratio ρ(G, r, F, l)
for this instance is defined as follows:

ρ(G, r, F, l) =
worst Wardrop equilibrium

best saddle-point of (MINMAX)
. (7)

In case the Wardrop equilibrium or/and the (MINMAX) equilibrium is/are unique, then
the ‘worst’ or/and ‘best’ in the definition above can be omitted. For the class of latency
functions we study here, these equilibria are indeed unique or they all have the same cost.
But in other cases, we should emphasize that it may be very difficult (or even impossible)
to characterize the ‘best (MINMAX) equilibrium’ (e.g. when the set of these equilibria is
not convex, as is usually the case).

According to the model of Definition 1, the selfish users will base their decisions for
picking flow paths on their individual notion of general disutility TP , for every path P .
This disutility is very easy to be defined for the ‘good’ users: it is simply the latency of the
path, i.e.

TP (fG, fM ) := lP (fG, fM ) (=
∑
e∈P

le(fe)), ∀i = 1, . . . , k, ∀P ∈ Pi (8)
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For the malicious user though, the form of his general disutility in fact determines how
powerful or weak this user can be. In this paper we study malicious players that base their
decisions exclusively on the costs of individual paths. The malicious player exhibits a rather
greedy behavior, and does not (or cannot1) take into account the impact of his decisions on
the whole network (e.g. by solving (MINMAX) so that his allocation of flow will have the
worst impact on the ‘social cost’ he might be able to achieve more damage than looking
greedily at the costs of individual paths). Let M(fG) =

∑
e∈E fG

e · ∂le
∂fM

e
(fG

e , 0). Then the
general disutility for the malicious user paths is defined as follows:

TP (fG, fM ) := M(fG)−
∑
e∈P

fG
e · ∂le

∂fM
e

(fG
e , fM

e ), ∀P ∈ PM (9)

In other words, the malicious player always tries to send his flow through a path with the
biggest possible congestion increase for every unit of flow he allocates to this path, i.e. the
malicious player follows a “best value for your money” policy.

The definition of M(·) may seem cryptic initially, but recall that in order to be able to
guarantee the existence of a Wardrop equilibrium (Theorem 1) we must make sure that
Assumption 1 holds for all the TP ’s. Since the edge latency functions le are concave with
respect to fM

e (Assumption 2), the function ∂le
∂fM

e
(fG

e , fM
e ) is decreasing with respect to fM

e ,

so its maximum value for a particular fG
e is ∂le

∂fM
e

(fG
e , 0), which is also positive because le

increases when fM
e increases (Assumption 1). Hence TP (fG, fM ) ≥ 0, ∀P ∈ PM .

4.1 Bicriteria Bound

As in the case of [RT02] we can prove a “bicriteria” result that gives an upper bound for the
ratio between the cost at Wardrop equilibrium and the cost of the saddle-point solution.

Theorem 3 If f = (fG, fM ) is a flow at Wardrop Equilibrium for (G, r, F, l) and f̂ =
(f̂G, f̂M ) is a saddle-point of (MINMAX) for (G, 2r, F, l) then C(f) ≤ C(f̂).

Proof:
The (social) cost of flow f is defined as

C(f) =
∑

e

fG
e · le(fG

e + fM
e ).

If f is at Wardrop equilibrium, then the total latency along any flow path P for good user i
from si to ti, i = 1 . . . , k is the same, denoted by Li(f)2, and the total cost can be expressed
as C(f) =

∑
i Li(f)ri. Define a new latency function l̄e(x, y) as follows:

l̄e(x, y) =


le(x, y) if x > fG

e and y > fM
e

le(x, fM
e ) x > fG

e and y ≤ fM
e

le(fG
e , y) x ≤ fG

e and y > fM
e

le(fG
e , fM

e ) x ≤ fG
e and y ≤ fM

e

(10)

1maybe because of lack of resources, e.g. time in an on-line scenario
2Recall that is the same as TP for user i.
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Note that the difference l̄e(x, fM
e )− le(x, fM

e ) is zero for x ≥ fG
e . Therefore the following

is true for all x ≥ 0:

x(l̄e(x, fM
e )− le(x, fM

e )) ≤ le(fG
e , fM

e )fG
e . (11)

The new latency functions give a new cost (cost with respect to l̄) that is not too far from
the real cost:

∑
e

l̄e(f̂G
e , fM

e )f̂G
e − C(f̂G, f̂M ) ≤

∑
e

l̄e(f̂G
e , fM

e )f̂G
e − C(f̂G, fM )

=
∑

e

f̂G
e (l̄e(f̂G

e , fM
e )− le(f̂G

e , fM
e ))

≤
∑

e

fG
e · le(fG

e , fM
e )

= C(f)

(12)

The first inequality is due to the fact that f̂ = (f̂G, f̂M ) is a saddle-point for (G, 2r, F, l),
i.e. C(f̂G, fM ) ≤ C(f̂G, f̂M ) since (f̂G, fM ) is a feasible solution for (MINMAX). The
second inequality comes from (11) for x := f̂G

e .
Consider any path P ∈ Pi. From the definition of l̄e we have that∑

e∈P

l̄e(0, fM
e ) ≥

∑
e∈P

le(fG
e , fM

e ) = Li(f).

and from the fact that l̄e(x, fM
e ) is an increasing function of x we get∑
e∈P

l̄e(f̂G
e , fM

e ) ≥
∑
e∈P

l̄e(0, fM
e ).

Therefore:

∑
e∈E

l̄e(f̂G
e , fM

e ) · f̂G
e ≥

∑
i

∑
P∈Pi

f̂G
P

∑
e∈P

l̄e(f̂G
e , fM

e )

≥
∑

i

∑
P∈Pi

Li(f)f̂G
P

=
∑

i

2Li(f)ri = 2C(f)

(13)

By combining (12) with (13) we get C(f) ≤ C(f̂). 2

The same proof also gives the following result:

Theorem 4 If f = (fG, fM ) is a flow at Wardrop Equilibrium for (G, r, F, l) and f̂ =
(f̂G, f̂M ) is a saddle-point of (MINMAX) for (G, (1+γ)r, F, l), γ > 0 then C(f) ≤ 1

γ C(f̂).

At a first glance, it seems rather surprising that the bicriteria bounds of [RT02] are quite
robust against the existence of a malicious user. But if we look closer to the quantities
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compared in the theorems above, we see that while the demands of the good users are
increased, the flow quantity at the disposal of the malicious user remained the same. In-
tuitively, the malicious user has the same power to disrupt the good users in both cases,
and therefore if he settles with some strategy to do so for the initial good demands, this
strategy should work about as well when the latter demands increase. The same goes for
the good users’ strategies as well.

4.2 Special case: linear latency functions

In this section we deal with the special case of linear edge latency functions, i.e. for every
edge e ∈ E, le(fG

e , fM
e ) = ae(fG

e + fM
e ) + be for some ae ≥ 0, be > 0. Note that we assume

that the latency for an edge is positive even if no flow passes through it. This is a quite
natural assumption (in all physical systems there is always some delay in moving from point
A to point B, even if there is no congestion at all), and allows Theorem 1 to apply in this
case. We modify our shorthand notation to (G, r, F, a, b) to include the linear coefficient
vectors.

In this special case we have

• TP (fG, fM ) :=
∑

e∈P (aef
G
e + aef

M
e + be), ∀i = 1, . . . , k, ∀P ∈ Pi

• TP (fG, fM ) :=
∑

e∈E aef
G
e −

∑
e∈P aef

G
e , ∀P ∈ PM

Lemma 1 and Theorem 2 take a more specific form for the linear case:

Lemma 2 Let le(fG
e , fM

e ) = ae(fG
e + fM

e ) + be with ae ≥ 0, be > 0 be the latency function
for every edge e ∈ E of G.

(a) a flow f = (fG, fM ) is at Wardrop equilibrium iff

• for all users i = 1, . . . , k and paths P, P ′ ∈ Pi with fP > 0∑
e∈P

(
aef

G
e + aef

M
e + be

)
≤

∑
e∈P ′

(
aef

G
e + aef

M
e + be

)
• for all paths P, P ′ ∈ PM with fP > 0∑

e∈P

aef
G
e ≥

∑
e∈P ′

aef
G
e

(b) a flow f̄ = (f̄G, f̄M ) is an equilibrium (saddle-point) for (MINMAX) iff

• for all commodities i = 1, . . . , k and paths P, P ′ ∈ Pi with f̄P > 0∑
e∈P

(
2aef̄

G
e + aef̄

M
e + be

)
≤

∑
e∈P ′

(
2aef̄

G
e + aef̄

M
e + be

)
• for all paths P, P ′ ∈ PM with f̄P > 0∑

e∈P

aef̄
G
e ≥

∑
e∈P ′

aef̄
G
e
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Note that the conditions for the malicious user paths are exactly the same in both cases.
For this special form of the edge latency functions, we can prove that the saddle-point

cost for (MINMAX) is unique (the proof can be found in Appendix B). Lemma 2 implies
the following

Lemma 3 Let (fG, fM ) be a Wardrop equilibrium flow for instance (G, r, F, a, b). Then
the following are true:

(a) the flow (fG/2, fM ) is a (MINMAX) equilibrium for (G, r/2, F, a, b)

(b) the flow (fG, fM/2) is a (MINMAX) equilibrium for (G, r, F/2, 2a, b)

(c) ∂cP

∂fG (fG/2, fM ) = lP (fG, fM ) of P .

Proof: Parts (a), (b) follow directly from Lemma 2. For part (c), note that for each path
P

lP (fG, fM ) =
∑
e∈P

(aef
G
e + aef

M
e + be)

and
∂cP

∂fG
(fG/2, fM ) =

∑
e∈P

(2aex + aey + be)

∣∣∣∣∣
(x=fG/2,y=fM )

.

2

In what follows, let ∆G
i (f̄G, f̄M ) := ∂ci

∂fG (f̄G, f̄M ) be the minimum marginal cost of increas-
ing f̄G on an si− ti path, and Li(fG, fM ) is the disutility for user i in Wardrop equilibrium
(fG, fM ).

Lemma 4 Let (f̄G, f̄M ) be a (MINMAX) equilibrium for instance (G, r, F, a, b). Then for
any δ > 0 a feasible flow for instance (G, (1 + δ)r, F, a, b) has cost at least

C(f̄G, f̄M ) + δ

k∑
i=1

∆G
i (f̄G, f̄M )ri.

Proof: Lemma 4.4 in [RT02]. 2

We now prove our main theorem for the coordination ratio in the linear case.

Theorem 5 For instance (G, r, F, a, b), 1 ≤ ρ(G, r, F, a, b) ≤ 4
3 .

Proof: Let (fG, fM ) be a Wardrop equilibrium flow and (f̄G, f̄M ) a (MINMAX) equi-
librium in (G, r, F, a, b). Then, according to Lemma 3, flow (fG/2, fM ) is a (MINMAX)
equilibrium for instance (G, r/2, F, a, b) and flow (fG, fM/2) is a (MINMAX) equilibrium
for instance (G, r, F/2, 2a, b). Therefore

C(f̄G, f̄M ) ≥ C(f̄G, fM )

≥ C(fG/2, fM ) +
k∑

i=1

∆G
i (fG/2, fM )

ri

2

= C(fG/2, fM ) +
1
2

k∑
i=1

Li(fG, fM )ri

= C(fG/2, fM ) +
1
2
C(fG, fM )

(14)

10



where the first inequality comes from the fact that (f̄G, f̄M ) is a (MINMAX) equilibrium for
(G, r, F, a, b), the second inequality holds because of Lemmata 3(a) and 4, the third equality
is due to Lemma 3(c), and the fourth equality holds because in a Wardrop equilibrium
(fG, fM ) the latency for every si − ti path that carries some flow is equal to Li(fG, fM ).

For the cost C(fG/2, fM ) of the (MINMAX) equilibrium for instance (G, r/2, F, a, b),
we have

C(fG/2, fM ) =
∑
e∈E

(
1
4
aef

G
e

2
+

1
2
aef

G
e fM

e +
1
2
bef

G
e )

≥ 1
4

∑
e∈E

(aef
G
e

2
+ aef

G
e fM

e + bef
G
e )

=
1
4
C(fG, fM )

(15)

From inequalities (14), (15) we get C(f̄G, f̄M ) ≥ 3
4C(fG, fM ), therefore ρ(G, r, F, a, b) ≤ 4

3 .
For the lower bound of the ratio we have:

C(f̄G, f̄M ) ≤ C(fG, f̄M )

=
∑
e∈E

(ae(fG
e )2 + aef

G
e f̄M

e + bef
G
e )

=
∑
e∈E

(2ae(fG
e )2 + 2aef

G
e

f̄M
e

2
+ bef

G
e )−

∑
e∈E

ae(fG
e )2

= C(fG,
f̄M

2
)−

∑
e∈E

ae(fG
e )2

≤ C(fG, fM/2)−
∑
e∈E

ae(fG
e )2

= C(fG, fM )

where C(fG, f̄M

2 ) in the fourth line is the cost of flow (fG, f̄M

2 ) for instance (G, r, F/2, 2a, b),
and the inequality in the fifth line is due to the fact that flow (fG, fM/2) is a (MINMAX)
equilibrium for instance (G, r, F/2, 2a, b). Hence 1 ≤ ρ(G, r, F, a, b).

2

Note that the lower bound for the coordination ratio is tight, since ρ(G, r, F, a, b) = 1 if G
is just a path with the sources for all users in one end, and all the sinks in the other.

5 Open Problems

The model presented in our work gives rise to many open problems. It would be very
interesting to present a result connecting the social cost of an equilibrium point in a network
with malicious users and the cost in an equivalent instance without malicious users. This
would give a clear characterization of the negative impact of the presence of malicious flow.
For the general latency functions, it seems that it is possible to prove more tight results and
extend the bicriteria result by proving a lower bound. The model defined in our work gives
rise to unique saddle-points and Wardrop equilibria. It would be interesting to consider

11



a more general model that allows multiple equilibria (for example, by adding capacities
for the edges in the network [SM03]) and analyze the performance of the system in the
presence of malicious users.
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A Existence of saddle-points for (MINMAX)

Here we give a sketch for the proof of Theorem 2. Since the proof is just an extension
to the proof of Theorem 1.2 in [DS69], we give just the proof for the sufficiency of con-
ditions (3), (4), i.e. we prove that if conditions (3), (4) are satisfied by a feasible flow
f̄ = (f̄G, f̄M ), then f̄ is a saddle point for (MINMAX). In order to show this, we have to
show two things:

1. For every feasible flow f̄ + ∆f̄G = (f̄G + ∆f̄G, f̄M ), C(f̄) ≤ C(f̄ + ∆f̄G) (i.e. if we
perturb the flow of the ‘good’ users by ∆f̄G by reallocation, so that the new flow is
still feasible, the total cost cannot decrease).

2. For every feasible flow f̄ +∆f̄M = (f̄G, f̄M +∆f̄M ), C(f̄) ≥ C(f̄ +∆f̄M ) (i.e. if we
perturb the flow of the malicious user by ∆f̄M by reallocation, so that the new flow
is still feasible, the total cost cannot increase).

Here we show (1). Showing (2) is completely analogous.
The change of the cost because of the reallocation of the ‘good’ flow is

∆C =
∑
e∈E

[
ce(f̄G

e + ∆f̄G
e , f̄M

e )− ce(f̄G
e , f̄M

e )
]

Assumption 2 implies that the functions ∂ce

∂fG
e

(fG
e , fM

e ) are non-decreasing functions of

fG
e (because of the convexity of ce(fG

e , fM
e ) with regard to fG

e ). Therefore we can apply
the Mean Value Theorem with respect to fG

e to get

∆C ≥
∑
e∈E

∂ce

∂fG
e

(f̄G
e , f̄M

e ) ·∆f̄G
e

=
k∑

i=1

∑
P∈Pi

∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) ·∆f̄G
e

=
k∑

i=1

∑
P∈Pi

∆f̄G
P ·

∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e )

≥
k∑

i=1

∑
P∈Pi

∆f̄G
P ·Ai

=
k∑

i=1

Ai

∑
P∈Pi

∆f̄G
P

= 0

13



where the second inequality is due to (3) and (5) together with the fact that if f̄G
P = 0 then

∆f̄G
P ≥ 03, and the last equality is due to the fact that the flow for user i was reallocated,

but its total value didn’t change (it remained ri), since it remained feasible.
By repeating the same argument for the case of reallocation of flow for the malicious

user (and by using the concavity of ce with respect to fM
e ), we can show that the total

cost cannot decrease. Therefore conditions (3) and (4) are sufficient. We can prove the
necessity of these conditions in exactly the same way as in [DS69].

B Uniqueness of the saddle-point cost for linear latencies

We prove the uniqueness of the saddle-point value for linear latency functions le(fG
e , fM

e ) =
ae(fG

e + fM
e ) + be with ae ≥ 0, be > 0.

Theorem 6 If f = (fG, fM ) and f̄ = (f̄G, f̄M ) are two saddle-points of (MINMAX) with
linear latency functions, then fG = f̄G and C(fG, fM ) = C(f̄G, f̄M ).

Proof: First we concentrate on a particular good user i and a particular flow path P ∈ Pi.
Theorem 2 implies that the following two complementarity conditions hold:

fG
P

[∑
e∈P

∂ce

∂fG
e

(fG
e , fM

e )−Ai

]
= 0

f̄G
P

[∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e )− Āi

]
= 0

Also, Theorem 2 implies that ∑
e∈P

∂ce

∂fG
e

(fG
e , fM

e ) ≥ Ai

∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) ≥ Āi

From the above, it is clear that

(fG
P − f̄G

P )

[∑
e∈P

∂ce

∂fG
e

(fG
e , fM

e )−Ai −
∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) + Āi

]
≤ 0

By summing over all paths in Pi we get

∑
P∈Pi

(fG
P − f̄G

P )

[∑
e∈P

∂ce

∂fG
e

(fG
e , fM

e )−
∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e )

]
+ (Āi −Ai) ·

∑
P∈Pi

(fG
P − f̄G

P ) ≤ 0

and therefore ∑
P∈Pi

(fG
P − f̄G

P )

[∑
e∈P

∂ce

∂fG
e

(fG
e , fM

e )−
∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e )

]
≤ 0

3Hence ∆f̄G
P ·

∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) ≥ ∆f̄G
P ·Ai for all P ∈ Pi.
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due to the fact that for both flows
∑

P∈Pi
fG

P =
∑

P∈Pi
f̄G

P = ri. By summing over all users
i = 1, . . . , k we get ∑

e∈E

(fG
e − f̄G

e )
[

∂ce

∂fG
e

(fG
e , fM

e )− ∂ce

∂fG
e

(f̄G
e , f̄M

e )
]
≤ 0 (16)

We repeat the same arguments for the malicious user. More specifically, from Theorem 2
we get that

fM
P

[∑
e∈P

∂ce

∂fM
e

(fG
e , fM

e )−B

]
= 0

f̄M
P

[∑
e∈P

∂ce

∂fM
e

(f̄G
e , f̄M

e )− B̄

]
= 0

Also, Theorem 2 implies that ∑
e∈P

∂ce

∂fG
e

(fG
e , fM

e ) ≤ B

∑
e∈P

∂ce

∂fG
e

(f̄G
e , f̄M

e ) ≤ B̄

Exactly as before we can show that∑
e∈E

(fM
e − f̄M

e )
[

∂ce

∂fM
e

(fG
e , fM

e )− ∂ce

∂fM
e

(f̄G
e , f̄M

e )
]
≥ 0 (17)

By substituting the cost function ce(fG
e , fM

e ) = aef
G
e

2 + aef
G
e fM

e + bef
G
e in (16), (17),

we get

2
∑
e∈E

ae(fG
e − f̄G

e )2 +
∑
e∈E

ae(fG
e − f̄G

e )(fM
e − f̄M

e ) ≤ 0 (18)∑
e∈E

ae(fG
e − f̄G

e )(fM
e − f̄M

e ) ≥ 0 (19)

which implies that fG
e = f̄G

e , ∀e ∈ E. But this implies that C(fG, fM ) = C(f̄G, f̄M ), be-
cause otherwise, for example if C(fG, fM ) < C(f̄G, f̄M ), we would also have C(f̄G, fM ) =
C(f̄G, f̄M ), and f̄ is not a saddle-point, contradiction.

2
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