
On Derandomization and Average-Case
Complexity of Monotone Functions ∗

George Karakostas †

McMaster University

karakos@mcmaster.ca

Jeff Kinne ‡

Indiana State University

jkinne@cs.indstate.edu

Dieter van Melkebeek §

University of Wisconsin-Madison

dieter@cs.wisc.edu

February 20, 2012

Abstract

We investigate whether circuit lower bounds for monotone circuits can be used to derandomize
randomized monotone circuits. We show that, in fact, any derandomization of randomized
monotone computations would derandomize all randomized computations, whether monotone or
not. We prove similar results in the settings of pseudorandom generators and average-case hard
functions – that a pseudorandom generator secure against monotone circuits is also secure with
somewhat weaker parameters against general circuits, and that an average-case hard function
for monotone circuits is also hard with somewhat weaker parameters for general circuits.

1 Introduction

One of the central topics in the theory of computing deals with the power of randomness – can
randomized procedures be efficiently simulated by deterministic ones? A long line of research (see
[Mil01] for an introduction) has shown how to construct pseudorandom generators sufficient to
derandomize all time-efficient randomized algorithms under a very reasonable complexity-theoretic
hardness assumption. The latter states that there exists a problem decidable in time 2Θ(n) that
cannot be solved by a family of circuits that uses only 2o(n) gates for inputs of length n. We call
such a hardness condition a “circuit lower bound for an explicit function” and the pseudorandom
generators constructed using the hard function “hardness-based”. Given the hardness assumption,
all problems solvable by polynomial-time bounded-error randomized algorithms can be solved in
polynomial time on deterministic machines, i.e., BPP = P.

∗Parts of this work appeared in the 20th International Symposium on Algorithms and Computation (ISAAC) [Kar09]
and in the second author’s PhD dissertation [Kin10].

†Research supported by an NSERC Discovery grant.
‡Partially supported by NSF award 0728809, a Cisco Systems Distinguished Graduate Fellowship, and Indiana State

University Research Council award 11-07. A significant portion of this work was completed while a graduate
student at the University of Wisconsin-Madison.

§Partially supported by NSF awards 0728809 and 1017597, and by the Humboldt Foundation.

1

Though the hardness assumption is plausible and widely believed in the community, circuit lower
bounds have been notoriously difficult to prove and recent work [KI04] has shown that in fact any
non-trivial derandomization of BPP implies circuit lower bounds that have been elusive for a long
time.

A natural question then is, for which algorithmic settings do we have hard functions that yield
derandomization? Monotone functions are one of the notable settings where hard functions are
known. In this paper we consider whether these hardness results imply derandomization; and
we ask the broader question of how derandomization of monotone computations relates to the
derandomization of general non-monotone computations.

1.1 Background

The hope in studying monotone Boolean functions is that the property of monotonicity can be
exploited to prove stronger results than in the general case. This hope has come to fruition in the
area of circuit lower bounds. A long line of research has proved that various explicit monotone
functions require monotone circuits of super-polynomial size (perfect matchings) or even exponential
size (clique) (see [BS91] and [Kor03] for surveys).

An immediate question is whether the exponential worst-case lower bounds for monotone circuits
can be used in hardness-based pseudorandom generators to derandomize bounded-error randomized
monotone circuits. The latter are monotone circuits C that take two inputs: the input x to the
problem, and the coin flip sequence r. C should satisfy the promise that for every x, PrR[C(x,R) =
1] ≥ 2

3 or PrR[C(x,R) = 1] ≤ 1
3 , where R is chosen uniformly at random. Including a uniformity

condition – that there is a deterministic polynomial-time machine that on input 1n outputs the
circuit C – gives a natural monotone version of the complexity class BPP.

Consider the requirements needed to apply a hardness-based pseudorandom generator to de-
randomize monotone circuits. The proofs for hardness-based pseudorandom generators typically
argue that if the generator can be broken by small circuits, then we can use those small circuits to
approximately compute the presumed hard function. In the setting of monotone circuits, we would
assume a small monotone circuit that distinguishes the output of the generator from uniform, and
with this monotone distinguisher we should construct a small monotone circuit that approximately
computes the presumed hard function. For this to work, the reduction from the distinguisher to
the circuit approximating the hard function should preserve monotonicity.

Let us consider two different generator constructions that have been developed to derandomize
time-bounded computations – the Nisan-Wigderson generator [NW94] and the Shaltiel-Umans gen-
erator [SU05, Uma03]. The latter generator uses ingredients such as list-decodable codes and finite
field arithmetic that perform non-monotone operations such as parity, and it is unclear if these
elements can be made monotone.

On the other hand, an examination of the reduction for the Nisan-Wigderson generator reveals
that only a single negation is needed, and a monotone function that is hard on average for both
monotone circuits and their negations could be used in this generator to derandomize monotone
circuits. To derandomize a circuit of size nk, the known proof requires a function that is (1

2 −
1
nk

)-
hard for small circuits. But can such lower bounds be proved for monotone functions? A negative
answer comes from work in learning theory. [KLV94] showed that for any monotone function f , f is
within distance 1

2 −Ω(1
n) of the constant 0 function, the constant 1 function, or one of the dictator

2

functions (which are equal to the i-th bit of the input for some i); the results of [KKL88] improved
the distance to 1

2 − Ω(logn
n). In particular, no monotone function has hardness greater than this

amount even for constant-depth constant size circuits – and the approach of using the existing
proof of the Nisan-Wigderson generator to derandomize randomized monotone computations fails.

1.2 Our Results

¿From the discussion above, we know that there can be no monotone function with high enough
average-case hardness to be used in known hardness-based pseudorandom generators to deran-
domize monotone circuits. But can we easily prove high average case hardness for some explicit
non-monotone function against monotone circuits? We consider this goal and other questions
related to derandomizing monotone circuits.

Hard on Average Functions First, we show that a function that is hard on average for monotone
circuits is hard on average for general circuits with somewhat weaker parameters. We prove the
contrapositive – that a general circuit approximating any function can be converted into a monotone
circuit without too much loss in parameters. In the following, an anti-monotone circuit is the
negation of a monotone circuit, and a function is to within ε of some other function on the same
domain if they differ on a fraction at most ε of the domain.

Theorem 1. Let f be any function. If there is a general circuit C with s gates that computes f to
within 1

2 − ε, then there is either a monotone or anti-monotone circuit with 2s+O(n log2 n) gates
that computes f to within 1

2 − ε
′ for ε′ = max(ε

n+1 ,
c√

n log(1/ε)
) for c > 0 an absolute constant that

does not depend on n, s, or ε.

We observe that Theorem 1 is tight to within a constant factor for the parity function. We also
observe that monotone functions exist with hardness close to the barrier implied by results from
learning theory. Subsequent to [KLV94] and [KKL88], [OW09] show that any monotone function
is within distance 1

2 − Ω(log n/
√
n) of the constant 0 function, constant 1 function, a dictator,

or majority. We observe that there exist monotone functions that are not within (1
2 − 1/n1/2−η)

from functions computed by general circuits of size 2n
Ω(1)

, for every positive constant η and all but
finitely many input lengths n.

Pseudorandom Generators Theorem 1 shows that one particular method of constructing a pseu-
dorandom generator secure against monotone circuits – namely constructing a hard function for use
in the Nisan-Wigderson generator – would also yield results for general non-monotone circuits. We
show that in fact any method for constructing a pseudorandom generator secure against monotone
circuits also implies a generator secure against general circuits with somewhat weaker parameters.

Theorem 2. Let C be a circuit of size s that ε-distinguishes some distribution D from uniform.
Then there is a monotone circuit C ′ of size 2s + O(n log2 n) that ε′-distinguishes D from uniform
for ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
) for c > 0 an absolute constant that does not depend on n, s, or ε.

In particular, Theorem 2 shows that if D is the output distribution of a pseudorandom generator
G, then a distinguisher for G can be converted into a monotone distinguisher without too much

3

loss in the distinguishing probability. We observe that Theorem 2 is nearly tight for pseudorandom
generators with small stretch, in particular for the generator that outputs its seed and the parity
of the seed.

Derandomization in General Constructing pseudorandom generators is one method to deran-
domize (monotone) randomized circuits. We show that any method of derandomizing monotone
randomized circuits can also be used to derandomize general non-monotone randomized computa-
tions.

Theorem 3. Let L be any language computable by polynomial-time bounded-error randomized ma-
chines. There is a language Lmon computable by uniform monotone bounded-error polynomial-size
randomized circuits such that L poly-time mapping reduces to Lmon. In particular, if Lmon ∈ P
then L ∈ P.

1.3 Techniques

Each of our results entails reducing computation by general circuits to computation by monotone
circuits. The key concept involved in the transformation is that of a slice function. A function f is
called a slice function if there is a value k such that f(x) = 1 for all x with Hamming weight greater
than k, f(x) = 0 for all x with Hamming weight less than k, and f(x) can take arbitrary values for
x with Hamming weight equal to k. We refer to the set of inputs having Hamming weight exactly
k as the k-th slice of the Boolean n-cube. Beyond the fact that slice functions are monotone, our
proofs use the following two properties.

Monotone Complexity of Slice Functions. The monotone and general circuit complexity of
slice functions are polynomially related.

Embedding Functions Within Slices. The truth table of any Boolean function f on n bits can
be embedded within the middle slice of another function f ′ on m bits, where m = n+O(log n).

The formal statement of these properties is contained in the preliminaries. We now discuss how
the properties are used to prove our results.

Theorem 1 states that a general circuit C that approximates a function f can be converted into
a monotone approximating circuit Cmon without much loss in parameters. The basic idea is to
find a slice k on which C computes f well and let Cmon be a monotone circuit that computes the
monotone slice function that agrees with C on the k-th slice. Cmon has a monotone circuit of size
polynomially related to the size of C by the first property above.

Theorem 2 states that a circuit C that distinguishes some distribution (e.g., the output of a
pseudorandom generator) from uniform can be made monotone without much loss in parameters.
The main idea is similar to that of Theorem 1 but for the setting of a distinguisher rather than
computing a function.

Theorem 3 states that for any BPP language L there is a language Lmon computed by a monotone
bounded-error randomized circuit such that L poly-time many-one reduces to Lmon. The main idea
is to use the second property above to convert the BPP machine into a monotone circuit and then
use the first property to show the resulting monotone computation has polynomial-size monotone
circuits.

4

1.4 Organization

In Section 2 we give preliminaries, in particular reviewing the properties of monotone slice functions
used in the main results. Section 3 contains our results on average-case hard functions, including
Theorem 1. Section 4 contains our results on distinguishers, including Theorem 2. Section 5
contains our results on derandomization, including Theorem 3.

2 Preliminaries

We introduce our notation and terminology, and we state relevant properties of monotone func-
tions. For a more thorough treatment of the general concepts within computational complexity,
see [AB09]. See [Kor03] for a survey on monotone functions and circuits.

For a binary string x, we use the notation x to denote the string resulting from negating each
bit of x. We use the notation |x| to refer to the Hamming weight of a string x, so |x| is equal to
the number of ones in x. For an index i between 1 and n, we let xi refer to the i-th bit of x.

A Boolean circuit is a rooted directed acyclic graph with each internal node labeled as an AND,
OR, or NOT gate and with each leaf node labeled as either some input bit xi or one of the constants
0 or 1. The root produces the output of the circuit, and this output is computed in the natural
way. We measure the size of a circuit by the number of gates.

Monotone Boolean Functions A monotone Boolean function is one such that flipping an input
bit from 0 to 1 cannot change the output of the function from 1 to 0. Monotone functions can be
computed by monotone circuits – circuits consisting of AND and OR gates but with no NOT gates.
There are many examples of natural monotone Boolean functions based on graph properties – such
as clique, connectivity, or perfect matchings – where adding edges can only make the property
easier to satisfy.

An anti-monotone function is the negation or complement of a monotone function. Anti-
monotone circuits can equivalently be viewed as either negations of monotone circuits or monotone
circuits that are given x as input rather than x. When we speak of anti-monotone circuits we refer
to the former by default.

Slices and Slice Functions We use the terminology k-th slice of the Boolean n-cube to refer to
the set of

(
n
k

)
n-bit strings that have Hamming weight exactly k. The middle slice refers to the

bn/2c-th slice. Using Stirling’s formula, the middle slice contains
(

n
bn/2c

)
= Θ(1√

n
2n) many strings.

A monotone slice function for the k-th slice is a monotone function that can take arbitrary values
for inputs on the k-th slice, evaluates to 1 for inputs x with |x| > k, and evaluates to 0 for inputs
x with |x| < k. An anti-monotone slice function for the k-th slice is the negation of a monotone
slice function for the k-th slice. We will say simply “slice function” when it is clear from context
whether we refer to a monotone slice function or an anti-monotone slice function.

Monotone Complexity of Slice Functions Berkowitz [Ber82] observed that the monotone and
general circuit complexity of slice functions are polynomially related, as follows. Let f be a mono-
tone slice function for the k-th slice. Note that for x with Hamming weight exactly k, xi = 1 if
and only if the n− 1 remaining bits in x have Hamming weight at least k. Then given a circuit for

5

computing f , we first push all negations to the inputs (this at most doubles the size of the circuit)
and then replace any instance of xi by a threshold circuit over n − 1 bits. As thresholds can be
computed by O(n log n) size monotone circuits [AKS83], the resulting monotone circuit is of size
2s+O(n2 log n).

The construction can also be used to produce an anti-monotone circuit that agrees with f on
the k-th slice – produce a monotone circuit computing the monotone slice function that is the
complement of f on the k-th slice and then negate this circuit. Similarly, if f is an anti-monotone
slice function, the process can be used to produce either a monotone or anti-monotone circuit
agreeing with f on the k-th slice.

[Val86] gives a slightly more efficient construction that computes the threshold circuits for each
xi simultaneously with O(n log2 n) many gates, which implies that if a slice function f has general
circuits with s gates then f has monotone circuits with 2s + O(n log2 n) gates. Further, the
construction is poly-time uniform.

Lemma 1 ([Val86]). Let f be any slice function and let C be a circuit with at most s gates that
computes f . There is a monotone circuit Cmon and an anti-monotone circuit Canti−mon such that
both agree with f on the slice in question, compute slice functions, are of size 2s+O(n log2 n), and
can be constructed in time polynomial in n and the size of C.

Embedding Functions Within Slices Given a function f on n bits, the truth table for f can be
embedded within a slice of a function f ′ on m bits for some m not too much larger than n. One
method is to let f ′ take m = 2n bits as input and set f ′ to be a monotone slice function such
that for each n-bit string x, f ′(x, x) = f(x). Note that all inputs of the form (x, x) fall within
the middle slice, so f ′ exists. The monotone circuit complexity of f ′ is polynomially related to its
general circuit complexity by Lemma 1. However, only a very small fraction of the middle slice of

f ′ is used in the embedding, namely 2n

(2n
n)

= Θ(
√
n

2n).

For our application in Theorem 3, we need an embedding that uses a larger fraction of the input
space of f ′. If we let f ′ take m-bit inputs, then it is possible to embed the truth table of f into
the middle slice of f ′ provided

(
m
bm/2c

)
≥ 2n. Because the binomial coefficient

(
m
bm/2c

)
grows by less

than a factor of 2 for each increment of m, m can also be chosen so that
(

m
bm/2c

)
≤ 2 · 2n, so the

embedding occupies a constant fraction of the slice. To achieve the embedding efficiently, we let
k = bm/2c and associate the string x = x1x2 . . . xn ∈ {0, 1}n with the representation of its value
v
.
=
∑n

i=1 xi2
n−i in the so-called “combinatorial number system of degree k”, which expresses v

uniquely as

v =

(
ak
k

)
+

(
ak−1

k − 1

)
+ ...+

(
a1

1

)
where m > ak > ak−1 > ... > a1 ≥ 0 and with the definition that

(
ai
i

)
= 0 if ai < i. Given v, we can

find the combinatorial representation of v efficiently using a greedy approach; determining v given
its combinatorial representation is easy as well. See [Knu06, section 7.2.1.3] for further details.

To embed f within the k-th slice of the m-cube of a function f ′, we associate x with the m-bit
string x′ that has ones precisely in positions ak + 1, ak−1 + 1, ..., a1 + 1. We set f ′ to be the slice
function that has f ′(x′) = f(x). We summarize the relevant properties of this embedding in the
next lemma.

6

Lemma 2. For any positive integers n, m, k such that
(
m
k

)
≥ 2n, there is a one-to-one mapping φ

from {0, 1}n into the set of m-bit strings with Hamming weight exactly k; the mapping is computable
and invertible in poly(m) time.

Concentration of Slices The number of n-bit strings having exactly k ones is equal to
(
n
k

)
, a value

which is largest when k is close to n/2 and smaller when k is far from n/2. In fact, the weight
of a uniformly at random chosen n-bit string is strongly concentrated around n/2. The following
lemma, known as a Chernoff bound, quantifies this phenomenon. A proof can be found, e.g., in
[AS00, Corollary A.1.2].

Lemma 3 (Chernoff Bound). Let n be a positive integer and 0 ≤ j ≤ bn2 c. The number of
n-bit strings that have Hamming weight either less than bn2 c − j or greater than dn2 e+ j is at most

2e−2j2/n · 2n.

Average-Case Hardness We say that a language L is within δ of another language L′ if their
characteristic functions are within relative Hamming distance δ, i.e., they differ on at most a δ
fraction of the inputs for each input length n. At any input length n, the distance between a
language L and a class of languages is defined as the minimum distance between L and some
language in the class. We call a language L hard for a class if for any language in the class, L is
far from the language on almost all input lengths n.

Definition 1 (hardness on average). A language L is δ(·)-hard for a class of languages C if
for every language L′ ∈ C, L′ is within relative Hamming distance δ(n) of L for only finitely many
input lengths n.

Notice that worst-case hardness corresponds to setting δ(n) = 1
2n .

3 Average-Case Hardness

In this section we prove our results concerning average-case hardness. In section 3.1, we show that
functions which are hard on average for monotone circuits are hard on average for general circuits
with somewhat weaker parameters (Theorem 1). In section 3.2, we observe that there exist mono-
tone functions with average-case hardness approaching the barrier discussed in the introduction.

3.1 Reduction to Monotone Circuits

We establish Theorem 1 by showing that a circuit which approximates a given function can be
made monotone without too much loss in accuracy.

Theorem 1 (restated). Let f be any function. If there is a general circuit C with s gates that
computes f to within 1

2 − ε, then there is either a monotone or anti-monotone circuit with 2s +
O(n log2 n) gates that computes f to within 1

2 − ε′ for ε′ = max(ε
n+1 ,

c√
n log(1/ε)

) for c > 0 an

absolute constant that does not depend on n, s, or ε.

7

Proof. The main idea is that there must be some slice on which C computes f well and contains a
large fraction of all inputs. Once this is proven, we show that either the monotone or anti-monotone
circuit that agrees with C on the slice in question must compute f on at least a 1

2 + ε′ fraction
of the inputs. The choice between the monotone or anti-monotone circuit is made to ensure the
circuit computes f with probability at least 1

2 on inputs outside of the slice of interest.
We begin by considering for each slice i, the value Ai that the i-th slice contributes to the

advantage C has in computing f . Ai is the difference between the number of x with |x| = i and
C(x) = f(x) and the number of x with |x| = i and C(x) 6= f(x). We have by assumption that

n∑
i=0

Ai ≥ 2n(2ε).

By an averaging argument, there exists an index i such that Ai ≥ 2n 2ε
n+1 . Lemma 1 gives us both a

monotone circuit Cmon and an anti-monotone circuit Canti−mon of size 2s+O(n log2 n) that agree
with C on the i-th slice. Cmon and Canti−mon thus have advantage at least 2n 2ε

n+1 in computing f
on the i-th slice. Because Cmon and Canti−mon are complements outside of the i-th slice, at least
one of them agrees with f on at least 1

2 of all inputs outside of the i-th slice. Altogether, we have
that either Cmon or Canti−mon has total advantage at least 2n 2ε

n+1 in computing f ; equivalently at

least one of the circuits computes f to within 1
2 −

ε
n+1 .

The alternate value for ε′ comes by only considering Θ(
√
n log(1/ε)) slices around the middle

which together contain 1− ε
2 fraction of all strings. The Chernoff Bound of Lemma 3 tells us that if

we pick an n-bit string at random, the probability that the Hamming weight deviates from bn2 c by

at least j is at most ε
2 if we set j such that 2e−2j2/n ≤ ε

2 , so j = Θ(
√
n log(1/ε)). Thus we remove

from consideration at most ε
22n strings by restricting to the Θ(

√
n log(1/ε)) many slices closest

to the middle, and therefore C must compute f correctly on at least 2n(1
2 + ε

2) of the remaining
strings. We can now carry out an argument similar to the above – where instead of n + 1 many
slices we consider Θ(

√
n log(1/ε)) many and start from a circuit that is correct on at least 2n(1

2 + ε
2)

of the strings in these slices rather than 2n(1
2 + ε) – to obtain the alternate value of ε′. �

Tightness of Theorem 1 We observe that Theorem 1 is within a constant factor of being tight
for large ε when applied to the parity function. The parity function can easily be computed by
a small circuit, and applying Theorem 1 to this circuit, with ε = 1

2 , gives either a monotone or
anti-monotone circuit computing parity to within 1

2 −
c√
n

for some constant c. On the other hand,

it is well-known that no monotone or anti-monotone function can compute parity to within more
than 1

2 −O(1√
n

).

The hardness of parity for monotone functions can be seen, for example, by considering the
average sensitivity of parity and monotone functions. The average sensitivity of a function f is∑n

i=1 Prx∈{0,1}n [f(x) 6= f(x⊕ei)] where x⊕ei is equal to x but with the i-th bit flipped. Parity has
average sensitivity equal to n, while it is known that every monotone (and anti-monotone) function
has average sensitivity O(

√
n) (see, for example, [BT96]). We can pick an input x′ uniformly at

random by first picking x uniformly at random, picking i at random, and letting x′ = x with
probability 1/2 and letting x′ = x ⊕ ei with probability 1/2. If f is monotone or anti-monotone,
the bound on the average sensitivity implies that with probability 1 − 1

Ω(
√
n)

, an input x and bit

8

position i are chosen so that f(x) = f(x ⊕ ei). When this occurs, we obtain an x′ such that
f(x′) 6= parity(x′) with probability 1/2. Overall, f differs from parity on a fraction 1

2 − O(1√
n

) of

the inputs.

3.2 Monotone Hard Functions

As mentioned in Section 1, results from learning theory tell us that no monotone function can be
more than (1

2 − Ω(logn√
n

))-hard for circuits large enough to compute majority – linear-size general

circuits or O(n log n)-size monotone circuits. In this subsection, we observe that there do exist
monotone functions whose hardness approaches this barrier.

First, [ACR97] prove a result which implies the existence of a mildly average-case hard monotone
function. They establish an asymptotic characterization of how inapproximable a function can be
on any subset of its inputs. In particular, there exist monotone slice functions which are hard to
approximate on the middle slice; the precise parameters are stated in the next lemma. Recall that
a Boolean function is balanced if it outputs 0 and 1 with the same frequency.

Lemma 4 (follows from [ACR97]). There exist constants c1, c2 > 0 such that for sufficiently
large n, the following holds. There is a balanced monotone slice function f such that no circuit with
s = c12n

n3/2 gates computes f to within 3
4 on the middle slice and therefore to within 1− δ(n) overall

at length n for δ(n) = c2√
n

.

In many settings, it has been shown that average-case hardness can be amplified by applying a
hard function to many independent inputs and then taking the parity. Results of this form are
called XOR lemmas. This fails as a method to amplify hardness for monotone functions because
the resulting hard function would not be monotone. A similar issue arises when attempting to
amplify the hardness of NP functions. To obtain a hardness amplification lemma for NP, O’Donnell
[O’D04] showed that a monotone combining function can be used in place of parity with some loss
in parameters. The technique can also be used in the setting of monotone functions, giving Lemma
5.

Lemma 5 (follows from [O’D04]). Let H be a monotone function that is balanced and 1
nc -hard

for circuits of size s, for some positive constant c. There is a polynomial p and a polynomial-time
computable monotone function C such that H ′ : {0, 1}n·p(n) → {0, 1} defined as

H ′(x1, x2, ..., xp(n)) = C(H(x1), H(x2), ...,H(xp(n)))

is (1
2 −

1
(n·p(n))1/2−η)-hard for circuits of size s

nd
on inputs of length n · p(n), where d is a constant

that depends on c.

By applying Lemma 5 to the hard function of Lemma 4, we obtain the following.

Theorem 4. For every constant η > 0 there exists a constant c(η) > 0 and a monotone function

f such that for sufficiently large n, f at length n is δ-hard for circuits of size 2n
c(η)

, where δ =
1
2 −

1
n1/2−η .

We point out that the hard function of Theorem 4 is computable in EΣp2 , exponential time with
an oracle to the second level of the polynomial hierarchy, using the same techniques that show
EΣp2 contains a language with maximal general circuit complexity (see [MVW99] for a discussion of
those techniques).

9

4 Pseudorandom Generators

In this section we prove our results concerning distinguishers of (pseudorandom) distributions.

Reduction to Monotone Adversaries Theorem 2 states that a circuit that distinguishes a dis-
tribution from uniform can be converted into a monotone distinguisher with somewhat weaker
parameters.

Theorem 2 (restated). Let C be a circuit of size s that ε-distinguishes some distribution D from
uniform. Then there is a monotone circuit C ′ of size 2s+O(n log2 n) that ε′-distinguishes D from
uniform for ε′ = max(ε

2(n+1) ,
c√

n log(1/ε)
) for c > 0 an absolute constant that does not depend on n,

s, or ε.

Proof. The proof is essentially identical to that of Theorem 1 except in the setting of distinguishers
rather than computing a Boolean function. The main idea is to find a slice i on which C O(ε′)-
distinguishes and let C ′ compute a monotone slice function agreeing with C on that slice. A simple
calculation then shows that either C ′ or the threshold function outputting 1 iff |x| > i distinguishes
with probability ε′ over all inputs.

Let C be an ε-distinguisher of size s for D. By definition, |PrX←Un [C(X) = 1]−PrY←D[C(Y) =
1]| ≥ ε. Without loss of generality, we assume that the inequality holds without the absolute value
signs. By breaking the probability space into disjoint events, we have that

n∑
i=0

(Pr
X←Un

[C(X) = 1 and |X| = i]− Pr
Y←D

[C(Y) = 1 and |Y | = i]) ≥ ε.

By an averaging argument, there exists an index i such that PrX←Un [C(X) = 1 and |X| = i] −
PrY←D[C(Y) = 1 and |Y | = i] ≥ ε

n+1 . By Lemma 1, there is a monotone circuit Cmon that

agrees with C on the i-th slice and uses at most 2s+O(n log2 n) gates. The overall distinguishing
probability of Cmon can be expressed as

(PrX←Un [Cmon = 1 and |X| = i]− PrY←D[Cmon = 1 and |Y | = i])
+(PrX←Un [Cmon = 1 and |X| > i]− PrY←D[Cmon = 1 and |Y | > i])
+(PrX←Un [Cmon = 1 and |X| < i]− PrY←D[Cmon = 1 and |Y | < i]).

The last term is 0 because Cmon outputs 0 on strings of weight less than i. The middle term is
PrX←Un [|X| > i]− PrY←D[|Y | > i] because Cmon outputs 1 on strings of weight greater than i. If
the absolute value of this term is greater than ε

2(n+1) , then the threshold function that outputs 1

iff |X| > i – computable by O(n log n) size monotone circuits [AKS83] – is an ε
2(n+1) -distinguisher.

Otherwise, the distinguishing probability of Cmon is at least

(Pr
X←Un

[Cmon(X) = 1 and |X| = i]− Pr
Y←D

[Cmon(Y) = 1 and |Y | = i])− ε

2(n+ 1)
≥ ε

2(n+ 1)
.

The alternate value for ε′ comes by only considering Θ(
√
n log(n/ε)) layers around the middle,

which together contain a fraction 1 − ε
2 of all strings. These layers collectively distinguish with ε

2
advantage, so one of them must distinguish with Ω(ε√

log(n/ε)
) advantage. The analysis for this case

is the same as for the corresponding case of Theorem 1. �

10

Remark In the setting of general circuits, it is known that the existence of explicit pseudorandom
generators is equivalent to the existence of explicit functions that are hard on average. A natural
question is whether this remains true in the setting of monotone circuits; if so then Theorem 2 for the
case of pseudorandom distributions would follow as a corollary to Theorem 1. A simple argument
shows that the language L defined as the set of strings output by a pseudorandom generator secure
against certain adversaries must be worst-case hard for those same adversaries. The argument
carries through for monotone circuits, but worst-case hardness is not enough to apply Theorem
1. For general circuits and pseudorandom generators computable in exponential time in the seed
length, [NW94] observe that L must be average-case hard by appealing to the known worst-case
to average-case reductions for languages computable in exponential time. These reductions do not
seem to preserve monotonicity and therefore do not prove a connection between pseudorandom
generators secure against monotone circuits and average-case hard functions for monotone circuits.

Tightness of Theorem 2 One question is whether the parameters in Theorem 2 can be tightened
further. It is well-known that a hard function f can be used to create a generator Gf , defined
by Gf (x) = (x, f(x)), that is a pseudorandom generator with 1 bit of stretch. When dealing
with monotone circuits as the distinguishers, we can use parity as the hard function to obtain the
following theorem.

Theorem 5. Define a generator G⊕ as follows: G⊕(x) = (x,⊕(x)). Then G⊕ : {0, 1}n →
{0, 1}n+1 is a ε-pseudorandom generator secure against monotone and anti-monotone circuits of
any size, where ε = c

n1/2 for some absolute constant c > 0.

The proof for the setting of general circuits is standard, and it can be verified that the standard
proof preserves monotonicity. For completeness we provide the proof for the setting of Theorem 5
in the appendix.

Theorem 5 shows that Theorem 2 is tight to within a constant factor for large ε: G⊕ is easily
distinguishable with ε = 1

2 by a small general circuit, and applying Theorem 2 to this circuit
produces a monotone circuit that γ√

n
-distinguishes G⊕ from uniform for some constant γ – a

monotone distinguisher within a constant factor of optimal.

5 Derandomization

In this section we show that any method of derandomizing monotone randomized circuits can also
be used to derandomize general non-monotone circuits.

Monotone Randomized Computations One natural definition for the class of monotone random-
ized computations is the set of BPP languages that are also monotone. However, one can easily
reduce any BPP language L to this class by simply embedding the truth table of L within the
middle slice of a monotone function. Thus, with this definition of monotone BPP, derandomizing
monotone BPP trivially implies derandomizing all of BPP.

We instead consider another natural, more restrictive, definition of monotone randomized com-
putations, namely the set of languages that can be solved by uniform bounded-error monotone
randomized circuits. The uniformity requirement is that on input 1n, the circuit can be output in

11

poly(n) time. The resulting circuit should be monotone in both the input and random bits and
should have bounded error on every input.

We point out that there exist monotone languages in BPP that are not computable by uniform
bounded-error monotone randomized circuits. This follows from two facts. First, randomness can
be removed from bounded-error monotone randomized computations by reducing the error to be less
than 2−n (which only uses majority and thus preserves monotonicity) and then fixing a random
string that is correct for all inputs; thus bounded-error randomized monotone circuits can be
simulated efficiently by non-uniform deterministic monotone circuits. Second, [Raz85] and [Tar87]
demonstrate monotone languages in P, and thus also BPP, that require non-uniform monotone
circuits of super-polynomial size (exponential size for the result of [Tar87]).

Despite the more restrictive character of our notion of monotone randomized computation, The-
orem 3 establishes an efficient reduction from any BPP language L to languages solvable by this
weaker model of randomized monotone computations.

Theorem 3 (restated). Let L be any language computable by polynomial-time bounded-error ran-
domized machines. There is a language Lmon computable by uniform monotone bounded-error
polynomial-size randomized circuits such that L poly-time mapping reduces to Lmon. In particular,
if Lmon ∈ P then L ∈ P.

Proof. Let M be a bounded-error randomized machine running in time nk computing a BPP lan-
guage L, for some constant k. The basic idea is to take the function computed by the deterministic
machine underlying M and embed it within a monotone slice function. Viewing this monotone slice
function as a randomized monotone circuit, we must ensure the following.

(i) The circuit has bounded error on all inputs.

(ii) L polynomial-time many-one reduces to the language computed by the circuit.

Let f : {0, 1}n × {0, 1}nk → {0, 1} be the function computed by M given an n-bit input x and
random string r of length nk. To produce a randomized monotone circuit, we separately embed
both the input and the random string into the middle slice of larger Boolean cubes. To embed the
input we can use the simple embedding associating x with the 2n-bit string (x, x). We must take
more care with the embedding of the random bits because the circuit must have error bounded
away from one half on each input. We achieve this by using the embedding of Lemma 2.

Let m be the smallest even integer such that
(
m
m/2

)
≥ 2n

k
. Because

(
m
bm/2c

)
grows by less than

a factor of two for each increment of m, we also have that
(
m
m/2

)
≤ 4 · 2nk . Consider the function

fmon that takes an input x′ of 2n bits and a random string r′ of m bits and behaves as follows.

1. Slice function of x′

If |x′| > n, set fmon(x′, r′) = 1. If |x′| < n, set fmon(x′, r′) = 0.

2. Slice function of r′ for x′ on middle slice
If |x′| = n and |r′| > m/2, set fmon(x′, r′) = 1.
If |x′| = n and |r′| < m/2, set fmon(x′, r′) = 0.

12

3. Embed f within middle slice of fmon
If x′ = (x, x) for some x of length n and |r′| = m/2, do the following. If r′ is among the 2n

k

strings matched with {0, 1}nk by the embedding of Lemma 2, let r be the associated value and

set fmon(x′, r′) = f(x, r). For r′ that do not have a match within {0, 1}nk , set fmon(x′, r′) to
0 on half of these and 1 on the other half.

4. Other x′ on the middle slice
If |x′| = n, x′ is not of the form (x, x), and |r′| = m/2, set fmon(x′, r′) = 0.

We first argue that fmon(x′, ·) has error bounded away from 1/2 by at least 1/poly(n) on each
input x′. For x′ of the form (x, x), the construction ensures Prr′ [fmon(x′, r′) = 1] = 1

2 · (1− ρ) + ρ ·
Prr[f(x, r) = 1], where ρ is the fraction of strings used by the embedding of nk-bit random strings
into the middle slice of the m-cube. By our choice of m, m = nk +O(log n) and ρ = Θ(1√

m
). Thus

the majority value of fmon(x′, ·) agrees with the majority value of f(x, ·), and the error is bounded
away from one half by 1/ poly(n).

For x′ with |x′| = n that is not of the form (x, x), steps 2 and 4 ensure error bounded away from
one half as well – for such x′, Prr′ [fmon(x′, r′) = 0] ≥ 1

2 + 1
poly . For x′ with |x′| 6= n, fmon(x′, ·) is

either the constant 0 or constant 1 by the first step.
Let us see that fmon can be computed by a monotone and uniform polynomial-size circuit. Let

C be a uniform polynomial-size circuit for fmon; we wish to remove the negations from this circuit
without increasing the size too much. We first push the negations to the inputs, at most doubling
the circuit size. Because fmon is a monotone slice function of x′, as noted in the discussion before
Lemma 1, we can replace the negations of those variables by a monotone and uniform circuit of size
O(n log2 n). For x′ on the non-trivial slice of fmon, fmon is a monotone slice function of r′, so we
can replace the negations of those variables by a monotone and uniform circuit of size O(m log2m).
We conclude that fmon has a monotone and uniform polynomial-size circuit.

We can reduce the error of the circuit from 1
2 − 1/poly to 1

3 using standard error reduction
consisting of taking multiple trials and majority voting. This can be implemented by a uniform
monotone circuit of polynomial size [AKS83]. The result is a uniform polynomial-size monotone
circuit Cmon such that for every x, if PrR[M(x,R) = 1] ≥ 2

3 then PrR′ [Cmon((x, x), R′) = 1] ≥ 2
3 ,

and if PrR[M(x,R) = 1] ≤ 1
3 then PrR′ [Cmon((x, x), R′) = 1] ≤ 1

3 . �

Acknowledgments

We thank Tassos Viglas, Iannis Tourlakis, and Nicola Galesi for helpful discussions, and Valentine
Kabanets for pointing out useful references. We also thank Matt Anderson and Scott Diehl for
helpful discussions and comments.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

13

[ACR97] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. Optimal bounds
for the approximation of Boolean functions and some applications. Theoretical Computer
Science, 180(1-2):243–268, 1997.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An 0(n log n) sorting network. In
Proceedings of the ACM Symposium on Theory of Computing, pages 1–9, 1983.

[AS00] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience, second
edition, 2000.

[Ber82] S.J. Berkowitz. On some relationships between monotone and non-monotone circuit
complexity. Technical report, University of Toronto, 1982.

[BS91] Ravi B. Boppana and Michael Sipser. Handbook of Theoretical Computer Science (Vol.
A): Algorithms and Complexity, chapter The Complexity of Finite Functions, pages
757–804. MIT Press, 1991.

[BT96] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone func-
tions. Journal of the ACM, 43:747–770, 1996.

[Kar09] George Karakostas. General pseudo-random generators from weaker models of compu-
tation. In Proceedings of the International Symposium on Algorithms and Computation,
pages 1094–1103, 2009.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13(1/2):1–46, 2004.

[Kin10] Jeff Kinne. Deterministic Simulations and Hierarchy Theorems for Randomized Algo-
rithms. PhD thesis, University of Wisconsin-Madison, 2010.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean functions.
In Proceedings of the IEEE Symposium on Foundations of Computer Science, pages 68–
80, 1988.

[KLV94] Michael Kearns, Ming Li, and Leslie Valiant. Learning Boolean formulas. Journal of the
ACM, 41(6):1298–1328, 1994.

[Knu06] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3, Generating
All Combinations and Partitions. Addison-Wesley Professional, 2006.

[Kor03] Aleksej D. Korshunov. Monotone Boolean functions. Russian Math. Surveys, 58(5):929–
1001, 2003.

[Mil01] Peter Bro Miltersen. Derandomizing complexity classes. In Handbook of Randomized
Computing, pages 843–941. Kluwer Academic Publishers, 2001.

[MVW99] Peter Bro Miltersen, N. Variyam Vinodchandran, and Osamu Watanabe. Super-
polynomial versus half-exponential circuit size in the exponential hierarchy. In Pro-
ceedings of the Annual International Computing and Combinatorics Conference, pages
210–220, 1999.

14

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49(2):149–167, 1994.

[O’D04] Ryan O’Donnell. Hardness amplification within NP. Journal of Computer and System
Sciences, 69(1):68–94, 2004.

[OW09] Ryan O’Donnell and Karl Wimmer. KKL, Kruskal-Katona, and monotone nets. In
Proceedings of the IEEE Symposium on Foundations of Computer Science, 2009.

[Raz85] Alexandor Razborov. A lower bound on the monotone network complexity of the logical
permanent. Matematicheskie Zametki, 37(6):887–900 (in Russian), 1985. English transli-
ation in Mathematical Notes of the Academy of Sciences of the USSR 37:6, 485–493.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a
new pseudorandom generator. Journal of the ACM, 52(2):172–216, 2005.

[Tar87] Eva Tardos. The gap between monotone and non-monotone circuit complexity is expo-
nential. Combinatorica, 7(4):141–142, 1987.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. Journal of Computer
and System Sciences, 67(2):419–440, 2003.

[Val86] Leslie G. Valiant. Negation is powerless for Boolean slice functions. SIAM Jounral on
Computing, 15(2):531–535, 1986.

Proof of Theorem 5

We follow the standard proof from the general setting and keep track of monotonicity to verify the
final circuit is monotone or anti-monotone. We assume a monotone or anti-monotone circuit C that
ε-distinguishes the output of G⊕ from uniform. We would like to use C to compute parity on some
n-bit string x. If C were a perfect distinguisher then for any x, C(x,⊕(x)) = 1 and C(x,⊕(x)) = 0.
C is not a perfect distinguisher, but we treat it as if it were and analyze the probability that we are
correct. Namely, we choose a random bit b and query the value C(x, b). If C(x, b) = 1 we assume
⊕(x) = b; if C(x, b) = 0 we assume ⊕(x) = b. A random bit b is equal to ⊕(x) with probability 1

2
and is equal to ⊕x with probability 1

2 , so the probability we output the correct value for ⊕(x) is

1

2
(Pr
X∈Un

[C(X,⊕(X)) = 1] + Pr
X∈Un

[C(X,⊕(X)) = 0]). (1)

We use the fact that C is an ε-distinguisher to lower bound (1). We have that

| Pr
X∈Un

[C(X,⊕(X)) = 1]− Pr
X∈Un,β∈U1

[C(X,β) = 1]| ≥ ε.

By expressing the second term as a sum depending on whether β is ⊕(X) or ⊕(X), we have

1
2 |PrX∈Un [C(X,⊕(X)) = 1]− PrX∈Un [C(X,⊕(X)) = 1]| ≥ ε, and therefore
1
2 |PrX∈Un [C(X,⊕(X)) = 1] + PrX∈Un [C(X,⊕(X)) = 0]− 1| ≥ ε.

15

If the sign on the absolute value is positive, we have that (1) is at least 1
2 + ε. Otherwise we have

that (1) is at most 1
2 − ε; in that case the negation of our strategy is correct with probability at

least 1
2 + ε.

Let us verify that this strategy produces a monotone or anti-monotone circuit. First, there is a
value for b that preserves the probability of success, and we can fix this value into the circuit. If b
is fixed to 1, then our strategy outputs C(x, 1); if b is set to 0, our strategy outputs C(x, 0). Due to
the sign on the absolute value, we may need to place an additional negation at the top of the final
circuit. We have that if C is an ε-distinguisher for G⊕ then one of C(x, 1), C(x, 1), C(x, 0), C(x, 0)
computes parity to within 1

2 − ε. If C is monotone or anti-monotone, then so are each of these
circuits, but we know that parity cannot be computed to within 1

2−ε by monotone or anti-monotone
circuits for ε ≥ c 1√

n
for an appropriate constant c, as mentioned at the end of Section 3.1.

16

