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Abstract. We consider the problem of characterizing user equilibria and
optimal solutions for selfish routing in a given network. We extend the
known models by considering users oblivious to congestion. While in the
typical selfish routing setting the users follow a strategy that minimizes
their individual cost by taking into account the (dynamic) congestion
due to the current routing pattern, an oblivious user ignores congestion
altogether. Instead, he decides his routing on the basis of cheapest routes
on a network without any flow whatsoever. These cheapest routes can
be, for example, the shortest paths in the network without any flow. This
model tries to capture the fact that routing tables for at least a fraction
of the flow in large scale networks such as the Internet may be based on
the physical distances or hops between routers alone. The phenomenon
is similar to the case of traffic networks where a certain percentage of
travelers base their route simply on the distances they observe on a map,
without thinking (or knowing, or caring) about the delays experienced on
this route due to their fellow travelers. In this work we study the price of
anarchy of such networks, i.e., the ratio of the total latency experienced
by the users in this setting over the optimal total latency if all users were
centrally coordinated.
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1 Introduction

The general framework of a system of non-cooperative users can be used
to model many different optimization problems such as network routing,
traffic or transportation problems, load balancing and distributed com-
puting, auctions and many more. Game-theoretical techniques can be
used to model and analyze such systems in a natural way. The perfor-
mance of a system of non-cooperative users is measured by an appropriate
cost function which depends on the behaviour, or strategies of the users.
For example in the case of network routing, the total, system-wide cost
can be defined as the total routing cost, or the total latency experienced
by all the users in the network. On the other hand, there is also a cost
associated with each individual user (for example the latency experienced
by the user). It is a well known fact that if each user optimizes her own
cost, then they might choose a strategy that does not give the optimal
total cost for the entire system, also known as social cost. In other words,
the selfish behaviour of the users leads to a sub-optimal performance.

Koutsoupias and Papadimitriou [3] initiated the study of the coordina-
tion ratio (also referred to as the price of anarchy): How much worse is
the performance of a system of selfish users where each user optimizes her
own cost, compared to the best possible performance that can be achieved
on the same system? In particular, this question was first studied in the
setting of selfish network routing by Roughgarden and Tardos [5]. In this
model, the network users experience edge latencies that depend on the
congestion on each edge according to some latency function. Given a par-
ticular flow pattern, the users decide to route their flow through paths
of minimum latency. A traffic equilibrium is an assignment of traffic to
paths so that no user can unilaterally switch her flow to a path of smaller
cost. Wardrop’s principle [6] for selfish routing postulates that

at equilibrium, for each origin-destination pair the travel costs on
all the routes actually used are equal, or less than the travel costs
on all unused routes.

In the past, several variations of this basic model have been consid-
ered. For example, Roughgarden [4] studied the case of combining selfish
and centrally coordinated users on the same network, proposing Stack-
elberg strategies for the latter that would improve the price of anarchy.
Karakostas and Viglas [2] studied the combination of selfish and malicious
users: A malicious user will choose a strategy that will cause the worst
possible performance for the entire network. These models try to capture
a richer set of paradigms in networks such as the Internet, where traffic



does not consist by users of the same profile or behavior. In this work we
introduce a new paradigm that is based on the following observation: A
fundamental assumption in the basic selfish routing model is that each
user is able to measure the latencies of all paths available to him at any
moment, in order to pick the best possible path currently available for his
flow. It is clear that in very large networks this assumption is probably
quite unrealistic, since it may not be possible to measure these latencies
or measure them as often as needed. Hence it may be easier for a frac-
tion α of the network users to consult predefined routing tables based on
non-dynamic parameters of the network, such as the physical distances
between nodes. The price these users pay for the convenience is a de-
gree of naivety in their decisions, since they are completely oblivious to
congestion phenomena. We call such users oblivious.

More specifically, we consider oblivious users that route their flow
through the shortest path connecting its origin to its destination, as mea-
sured in the network without flow. We study the price of anarchy in
case of linear edge latency functions, first for a (single commodity) single
pair of nodes connected by a set of parallel edges, and then for general
topologies with an arbitrary number of origin-destination pairs. Unlike
the case of selfish routing without oblivious users where the price of anar-
chy is bounded by 4/3 [5], our bounds are not independent of the network
parameters. For both the cases of parallel links and general topologies,
the bounds depend on the coefficients ae of the linear latency functions
le(fe) = aefe +be for edges e, where fe is the total flow through edge e. In
addition, the general topology bound depends on the minimum fraction
of total demand that the optimal routing sends through any edge. Al-
though these bounds can be very large, if, for example, there are network
edges with vastly different behavior under congestion (as is the case in a
traffic network with both highways and side-streets), this seems to be un-
avoidable in view of the fact that the myopic behavior of oblivious users
may lead to great congestion of ‘wide’ edges by them, and in that way
directing the selfish users to non-congested but ‘narrow’ paths. Indeed,
we provide an example exhibiting such behavior for the simple case of
parallel links in Section 3.1. In addition, the dependence of the general
topology bound on the ‘spread’ of the optimal flow seems to be necessary,
given that the oblivious flow concentrates the oblivious users on specific
(initially fastest, but possibly very slow after the selfish users have been
added) paths, which may be orthogonal to what the optimal flow does.

Organization: In Section 2 we define the model, in Section 3 we study
linear latency functions in simple networks of two nodes connected by



parallel links, and in Section 4 we study linear functions in general, mul-
ticommodity networks. We conclude with a discussion in Section 5.

2 Preliminaries

We are given a directed network G = (V,E) with a latency function lP (·)
associated to each path P . For a flow f on G, lP (f) is the latency (cost)
of path P for this particular flow. Notice that in general this latency
depends on the whole flow f , and not only on the flow fe through each
edge e ∈ P . In this paper we adopt the additive model for the path
latencies, i.e., lP (f) =

∑
e∈P le(fe), where le is the latency function for

edge e and fe is the amount of flow that goes through e. We also let P
be the set of all available paths in the network and assume that for every
source-sink pair there is at least one path joining the source to the sink.
In this work we assume that the latency functions are linear functions of
the edge flow fe, i.e., le(fe) = aefe + be, ∀e ∈ E. The total cost of a flow
f is defined as C(f) =

∑
e∈E fele(fe).

We consider the case where for every origin-destination commodity of
demand d, a fraction α of it consists of an infinite number of oblivious
users, each carrying an infinitesimal amount of flow through the shortest
path connecting the source to the destination when there is no flow routed
on G. If there are more than one shortest paths, we will assume that all
these users pick the smallest in a lexicographic ordering. The rest (1−α)d
of the demand consists of an infinite number of selfish users, each carrying
an infinitesimal amount of flow.

3 Parallel links

Let G be a network consisting of parallel links connecting two nodes s, t.
We will assume that the edge latency functions are strictly increasing, i.e.,
for every edge e with le(fe) = aefe + be we have ae > 0. Note that in this
setting, both the traffic equilibrium flow and the optimal flow are unique.
In what follows, we use 0 ≤ α ≤ 1 to denote the fraction of total flow
from s to t that is oblivious. We will use the term ‘traffic equilibrium’ for
flows with α = 0 that are at traffic equilibrium, while we reserve the term
‘oblivious equilibrium’ for flows with α > 0 and with their selfish users at
traffic equilibrium in the network that results after routing the oblivious
users. The following observation is true due to Wardrop’s principle and
since the latency functions are increasing:



Proposition 1 Let fd and fd+δ be flows at traffic equilibrium, of demand
d and d + δ respectively, with δ ≥ 0. Then we have fd

e ≤ fd+δ
e , ∀e ∈ E.

In what follows, we denote the total demand from s to t with d, and
the optimal flow of demand d with fopt. We denote the flow of demand
d at traffic equilibrium with f∗, and the flow of demand d at oblivious
equilibrium with f̃ , where the flow of oblivious users with total demand
αd is denoted with f̃o and the flow of selfish users (with total demand
(1− α)d) with f̃∗, i.e., f̃ = f̃∗ + f̃o. Obviously, the oblivious flow will be
routed through the edge e with the smallest le(0) = be (or the first such
edge in a lexicographic ordering, if there are more than one). Let es be
this edge.

Proposition 2 f∗e ≥ f̃∗e , ∀e ∈ E.

Proof: If f∗es
≥ αd then f∗ = f̃ . Otherwise we have αd > f∗es

. In this
case, no selfish users will flow through es because of Wardrop’s principle,
i.e., f̃∗es

= 0. By removing es from G together with the portion of flow on
it, we get two new Nash flows f∗

′
and f̃∗

′
, of demand d− f∗es

and d−αd.
As αd > f∗es

, from Proposition 1, we have f∗
′ ≥ f̃∗

′
. Then since f̃∗es

= 0,
we get f∗ ≥ f̃∗. 2

Lemma 1. C(f̃∗) ≤ 4
3(1− α)C(fopt).

Proof: Since latency functions are increasing and f∗ ≥ f̃∗ from Proposi-
tion 2, we know that ∀e, le(f∗e ) ≥ le(f̃e

∗
). Also Wardrop’s principle for f∗

implies that le(f∗e ) = L(f∗), ∀e : f∗e > 0 and le(f∗e ) ≥ L(f∗), ∀e, where
L(f∗) is the common latency of the paths used by the traffic equilibrium
flow f∗. Then

C(f∗)− C(f̃∗) =
∑

e

(
le(f∗e )f∗e − le(f̃∗e )f̃∗e

)
≥
∑

e

(f∗e − f̃∗e )le(f∗e )

≥
∑

e

(f∗e − f̃∗e )L(f∗) = αdL(f∗) = αC(f∗).

Then Theorem 4.5 of [5] implies the lemma. 2

The Karush-Kuhn-Tucker conditions imply that fopt is a traffic equi-
librium for latency functions l∗e(x) = ∂le

∂fe
(x), i.e., for l∗e(fe) = 2aefe + be.

Then Wardrop’s principle implies that

l∗e1
(fopt

e1
) = l∗e2

(fopt
e2

), ∀e1, e2 : fopt
e1

, fopt
e2

> 0



and
l∗e(f

opt
e ) ≥ l∗e1

(fopt
e1

), ∀e1 : fopt
e1

> 0.

We will use this fact in what follows.

Proposition 3 fopt
es > 0.

Proof: Let e be an edge with fopt
e > 0. Then we have

l∗es
(fopt

es
) ≥ l∗e(f

opt
e ) = 2aef

opt
e + be

> be

≥ bes = l∗es
(0).

Therefore fopt
es > 0, since functions l∗e(x) are increasing. 2

In what follows, let Eopt = {e : fopt
e > 0}.

Proposition 4 For any edge e, we have les(f
opt
es ) ≤ le(f

opt
e ). For any

edge e ∈ Eopt, we have aesf
opt
es ≥ aef

opt
e .

Proof: For any edge e, we have

le(fopt
e ) =

1
2
(
l∗e(f

opt
e ) + be

)
≥ 1

2
(
l∗es

(fopt
es

) + be

)
≥ 1

2
(
l∗es

(fopt
es

) + bes

)
= les(f

opt
es

).

where the first inequality is due to Proposition 3, and the second is due
to the definition of es.

Similarly, we get the second part of the proposition for any edge e ∈
Eopt.

2

Lemma 2. C(f̃o) ≤ max{α, α2r}C(fopt), where r =
∑

e∈Eopt(aes/ae).

Proof: We have

C(fopt) =
∑

e

le(fopt
e )fopt

e

≥ les(f
opt
es

)
∑

e

fopt
e (Proposition 4)



=
(
aesf

opt
es

+ bes

)
d.

From the second part of Proposition 4 we have that (aes/ae)f
opt
es ≥

fopt
e , ∀e ∈ Eopt. By summing over all e ∈ Eopt, we get aesf

opt
es ≥ aesd/r.

Thus
C(fopt) ≥

(aes

r
d + bes

)
d.

Therefore

C(f̃o)
C(fopt)

≤ (aesα
2d + αbes)d(aes

r d + bes

)
d

≤ max{α, α2r}.

2

Theorem 1. If f̃o
es

= αd ≥ f∗es
, then C(f̃)

C(fopt) ≤
4
3(1 − α) + max{α, α2r},

otherwise C(f̃)
C(fopt) ≤

4
3 .

Proof: If f̃o
es

= αd < f∗es
then f̃ = f∗ and the second part of the theorem

follows. In the case αd ≥ f∗es
, edge es which is used by the oblivious

users is no longer attractive to selfish users, i.e., f̃∗es
= 0. Thus f̃∗ and f̃o

are actually orthogonal, i.e., f̃∗
T
f̃o = 0. Then, if A > 0 is the |E| × |E|

diagonal matrix whose diagonal elements are the ae’s, we have

C(f̃) = (A(f̃∗ + f̃o) + b)T (f̃∗ + f̃o)

= f̃∗
T
Af̃∗ + f̃oT

Af̃o + 2f̃∗
T
Af̃o + bT (f̃∗ + f̃o)

= (Af̃∗ + b)T f̃∗ + (Af̃o + b)T f̃o

and the first part of the theorem now comes from Lemmata 1 and 2. 2

3.1 A bad example for parallel links

We provide an example to show that in networks with parallel links, the
price of anarchy can be as bad as our bound in Theorem 1 in case α = 1,
i.e., all users are oblivious. The network has only two links, namely e1 and
e2, with latency functions l1(x) = 10x and l2(x) = x+ε, where 0 < ε < 1.
The total demand is d = 1.

The optimal cost in this setting is Copt = 10/11 + (40ε− ε2)/44. When
α ≥ (1 + ε)/11, the cost of the oblivious equilibrium is Ceq = 11α2 − (2 +



ε)α + (1 + ε). One can see that when α is one (all users are oblivious),
and ε tends to zero, the price of anarchy is

lim
ε→0

Ceq

Copt
= 11,

which is exactly the bound we get in Theorem 1.
However, this example is not tight when α < 1. The loss of tightness

comes from the 4/3 which is the upper bound for the selfish routing price
of anarchy [5]. We used this result directly in the last step of Lemma 1
and in the first case of Theorem 1. While this example is a tight example
for Lemma 2, it is not tight for the 4/3. The price of anarchy here is very
close to 1. Thus a real tight example for our bound would be one that
is tight for both 4/3 and Lemma 2. Unfortunately such an ideal example
does not exist since the tightness of Lemma 2 requires very small be/ae for
all links, but in order to make 4/3 tight we need a relatively large be/ae

to make a distinction between the selfish flow and the optimal flow. This
implies that the bound in Theorem 1 is not tight, and a tighter bound
remains as an open problem.

4 General topologies

In this section we study the price of anarchy of oblivious equilibria for gen-
eral topologies, arbitrary number of origin-destination pairs (commodi-
ties) and linear latency functions. We will use the concept of β-function
defined in [1]. Let L be a family of continuous and non-decreasing latency
functions. For every function l ∈ L and every value v ≥ 0, let us define:

β(v, l) :=
1

vl(v)
max
x≥0

{x(l(v)− l(x))}.

In addition, let us define

β(l) := sup
v≥0

β(v, l),

and
β(L) := sup

l∈L
β(l).

We will denote the inner product of two vectors x, y by 〈x, y〉.
We will also use an alternative characterization of a traffic equilibrium

f∗ of demand d, as a solution to the following variational inequality:

〈l(f∗), f − f∗〉 ≥ 0, ∀f ∈ {f : f is a flow satisfying demand d}.



By applying this formulation to the selfish part of an oblivious equilibrium
f̃ = f̃∗ + f̃o in the network obtained after the oblivious users have been
routed3, we get

〈l(f̃), f − f̃∗〉 ≥ 0, ∀f ∈ {f : f is a flow satisfying demand (1− α)d}.

By setting f := (1− α)fopt we have

〈l(f̃), f̃∗〉 ≤ (1− α)〈l(f̃), fopt〉. (1)

Lemma 3. 〈l(f̃), f̃∗〉 ≤ (1− α)β(L)C(f̃) + (1− α)C(fopt).

Proof:

〈l(f̃), f̃∗〉
(1)

≤ (1− α)〈l(f̃), fopt〉

≤ (1− α)

(∑
e

β(f̃e, le)le(f̃e)f̃e +
∑

e

le(fopt
e )fopt

e

)
≤ (1− α)

(
β(L)C(f̃) + C(fopt)

)
.

2

Lemma 4. 〈l(f̃), f̃o〉 ≤ nαdγa

fopt
min

C(fopt), where n = |V |, γa = maxe ae
mine ae

, and

fopt
min = mine fopt

e .

Proof: Let Psi be the path used by the oblivious users corresponding to
the i-th origin-destination pair (commodity). Note that this is the shortest
path amongst all possible paths Pi connecting this pair when we define
the edge distances as le(0) = be. Also let di be the demand for this pair,
therefore αdi is the amount of oblivious flow routed through Psi . Let also
amin = mine ae, amax = maxe ae.

The key observation is that the oblivious flow f̃o is a traffic equilibrium
for the original network, if we define its latency functions as loe(f) = be.
From the discussion above, this implies that

〈l(0), f − f̃o〉 ≥ 0, ∀f ∈ {f : f is a flow satisfying demand αd},

or, if we set f := αfopt, we get∑
e∈E

bef̃
o
e ≤ α

∑
e∈E

bef
opt
e . (2)

3 Note that the new latency functions in this network are l′e(fe) = ae(f̃
o
e + fe) + be =

le(fe + f̃o
e ).



Then

〈l(f̃), f̃o〉 =
∑
e∈E

(
ae(f̃∗e + f̃o

e )f̃o
e + bef̃

o
e

)
(2)

≤ α
∑

i

di

∑
e∈Psi

ae(f̃∗e + f̃o
e ) + α

∑
e∈E

bef
opt
e . (3)

To get a upper bound of the first term:

α
∑

i

di

∑
e∈Psi

ae(f̃∗e + f̃o
e ) = α

∑
i

di

∑
e∈Psi

ae(f̃∗e + αdi)

≤ nα2amax

∑
i

d2
i + α

∑
i

di

∑
e∈Psi

aef̃
∗
e

≤ nα2amax

∑
i

d2
i + nαamax(1− α)

∑
i

d2
i

≤ nαdγa(amind)

≤ nαdγa

∑
e∈E

aef
opt
e

≤ nαdγa

fopt
min

∑
e∈E

aef
opt
e

2
. (4)

Since nαdγa

fopt
min

≥ α the combination of (3),(4) proves the lemma.
2

Theorem 2.

C(f̃)
C(fopt)

≤
4
(
1− α + nαdγa/fopt

min

)
3 + α

Proof: By combining Lemma 3 with Lemma 4, we have

C(f̃) = 〈l(f̃), f̃o〉+ 〈l(f̃), f̃∗〉

≤ (1− α)C(fopt) + (1− α)β(L)C(f̃) +
nαdγa

fopt
min

C(fopt),

hence

C(f̃)
C(fopt)

≤
1− α + nαdγa/fopt

min

1− (1− α)β(L)
.

For L being the set of non-decreasing linear functions β(L) = 1
4 [1], and

the theorem follows. 2



5 Discussion and open problems

The obvious open problem is the tightening of the bounds of Theo-
rems 1,2. One method of doing so seems to be the avoidance of relating
the cost of oblivious equilibria to the optimal cost via traffic equilibria.
It is precisely this intermediate step that doesn’t allow us yet to have a
tight analysis for Theorem 1.

Especially Theorem 2 for general topologies may be possible to be
improved by removing its dependence on the minimum optimum path
flow fopt

min. Although the optimum flow is a parameter of the network, it
may be very difficult to be determined by the network designer, while
the other parameters of the network (G, n, d, ae, be) can be set directly.
Finally, it would be interesting to get non-trivial bounds (if they exist)
for general latency functions.
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