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Abstract—This paper proposes a method of joint wireless
network and job service allocation for use with mobile com-
putation offloading where task completion times have deadline
constraints. In this design, mobile devices (MDs) may execute a
computational task locally or offload the task through a wireless
network for execution on an edge server (ES). The network owner
offers to lease wireless communication channels at a given set of
base stations along with edge server capacity that is used for
job execution. The objective is to obtain a wireless and service
capacity allocation that minimizes the total energy consumption
of the mobile devices, subject to a cost budget constraint and
constraints on the delay incurred by offloaded task execution.
The design is first formulated as a mixed integer nonlinear
programming problem. An approximate solution is then obtained
by decomposing it into a collection of convex subproblems that
can be efficiently solved. Results are presented that demonstrate
that the proposed solution achieves near optimum performance
over a wide range of system parameters.

I. INTRODUCTION

Mobile computation offloading (MCO) can be used to
improve performance by having the mobile device (MD)
offload local task execution to a remote cloud server, as
opposed to running the task locally. Wireless communications
is typically used by the MD to upload the task/data so that
remote execution is possible. There is a large literature that
has studied various issues dealing with MCO [1] [2] [3].

MCO incurs added latency that would not otherwise exist
due to the time needed to exchange application data with
the server. This latency may be compensated for by task
execution at a cloud edge server, which is typically more
rich in computational resources than the mobile device. An
edge server, located close to the network base stations is
typically used since it can provide very low latency between
the BSs and the server [4]. The basic tradeoffs involving these
attributes and how they relate to the decision to offload task
execution have been studied extensively, for example cf. [5]
[6], and the references therein. The decision to offload job
execution is more complicated when the MD interacts with
the server over stochastic transmission channels that may also
change randomly during the computation offload. This is the
environment that is considered in this paper.

In our paper we consider the case where a network lease-
holder (NL) leases both wireless channel and edge server (ES)
execution services from the network owner, subject to a cost
budget constraint. The NL then uses the leased resources to
provide MCO to a set of mobile devices. The objective is
to find an allocation that minimizes the average MD energy
consumption subject to the budget constraint and constraints
on the probability that job execution deadlines are violated.
This latter constraint significantly increases the difficulty of
the problem compared to the unconstrained case. Note that this
problem is different than that of network slice creation [7]. In
our case, the NL has no interest in operating its own network.
Instead, it purchases services from the network owner, who
prices the cost of unit channel/computational resources in
accordance with the associated performance it offers to the
NL. Inside the owner’s network this may be accomplished
using conventional resource provisioning, and is therefore not
a concern of the network leaseholder. Due to the edge server
placement, we consider the case where the dominant latencies
are that of wireless access and application server execution [4].

More specifically, we introduce a method of combined
wireless network and job service allocation for use with MCO
where task completion times have deadline constraints. When
each MD task is generated, there is an associated deadline,
which gives the time by which task execution should be
completed with a high degree of certainty [8]. The NL leases
wireless channels from the wireless network owner (NO) at a
given set of base stations (BSs), along with ES computational
capacity so that accumulated tasks can be executed. The
objective is for the NL to minimize the total average MD
energy consumption subject to a cost budget constraint and
constraints on the probability that task execution deadlines are
violated. The design is initially formulated as a mixed integer
nonlinear programming problem (MINLP). An approximate
solution is then obtained by decomposing it into a collection
of convex subproblems, which can be solved efficiently, and
picking the best of these solutions. A variety of results are
presented that characterize the tradeoffs between task deadline
violation, MD energy consumption and the rental cost budget.
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Fig. 1. System Model

Our results also show the quality of the proposed solution,
which can achieve close-to-optimum performance for a wide
range of system parameters.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a network that consists
of N BSs that are owned and operated by a network owner
(NO). The set of BSs is denoted by N = {1, 2, . . . , N} and
indexed by n ∈ N . The network also contains an edge server
(ES). Tasks generated by an MD can be offloaded through the
wireless network and executed on the ES.

The NO permits a NL to rent wireless communication and
ES computational capacity that the NL can use for mobile
computation offloading for its MDs. When this is done, for
each BS n, there are up to Kn available channels that can
be selected by the NL. The unit cost for including a channel
from BS n is specified by the NO as αn. When a channel
is included in the agreement, the NO agrees to provision its
network so that sufficient resources are available that allows
the traffic generated on the channel to be carried to the ES with
an acceptable delay with a high degree of certainty. Since the
ES is located at the edge of the network, we focus on the
dominant sources of delay, i.e., wireless access at the BSs and
task execution at the ES [4].

In order to use the computing resources at the ES, the NL
must also lease CPU resources at the ES. The cost (based on
the number of CPU cycles per second) for leasing on the CPU
resource is denoted by β. The maximum available CPU speed
for rental is fC CPU cycles per second.

When an agreement is made between the NO and NL, xn is
defined as the number of channels from BS n that are included,
and y ∈ [0, 1] is defined as the fraction of maximum CPU
speed at the ES that is included, i.e., the CPU speed available
for the NL will be yfC. It is assumed that the NL has a
cost budget, denoted by Bmax. Accordingly, the total rent must
satisfy the following constraint:

∑N
n=1 αnxn+βyfC ≤ Bmax.

There are J classes of tasks generated by the MDs, which
may need to be offloaded to the ES. Let J = {1, 2, . . . , J}

be the set of task classes. The class j of a task is defined by
parameters sj , qj , and dj , where sj is the input data size in
bits, qj is the computation load in number of CPU cycles, and
dj is the deadline of the task in seconds. The probability of
a task generated by an MD belonging to class j is denoted
by PC

j ; we assume that this probability is known, e.g., by
observing the past history of offloading requests.

Our objective is to create a NO/NL contract for MCO.
In MCO, jobs generated by an MD can be executed either
locally (at the MD itself) or offloaded through the network
and executed on the ES. The goal is to accomplish this so that
the mean mobile energy consumption is minimized, subject to
the cost budget constraint and so that the probability of a task
execution deadline violation is bounded.

We model the wireless channels between the MDs and the
BSs as discrete-time Markov processes. It is assumed that there
are In channel models for BS n, which are a function of the
propagation environment that the MDs experience at that BS.
In = {1, 2, . . . , In} is the set of all wireless channel models
in BS n. For each of the channel models, the Markovian
transition probabilities are defined in the usual way, i.e., given
the channel state in the current time slot, there is a probability
associated to its transition to another state in the next time
slot. The time slot duration is defined to be τ seconds.

To obtain the design, the decision to offload the execution
of a task is made using a local execute on blocking (LEB)
mechanism as follows. When an MD in BS n generates a
class j task, the MD offloads the task if at least one of the xn
channels is available for immediate use. Otherwise, the MD
executes the task locally. When a channel is available, the
MD begins the offload by uploading the sj task bits needed
for execution on the ES. The LEB mechanism is useful in
that either local execution or remote offloading is initiated
immediately at task release time, which may be advantageous
when task deadlines are tight.

We consider that tasks arrive at BS n according to a sta-
tionary process with average arrival rate λn tasks per second.
When using the LEB mechanism, a new task is blocked from
BS channel access if all the xn channels are busy for uploading
other tasks. We denote the blocking probability at BS n as PBn

and the power needed in the MD to process tasks as P L. When
a class j task is blocked from offloading and executed locally,
the local execution time is given as Lj = qj/f , where f is the
MD’s execution speed in number of CPU cycles per second.
Hence, the average MD energy consumption per unit of time1

in BS n to execute the tasks that are blocked for offloading due
to channel access can be written as EL

n = PBnλnP
LL̄, where

L̄ is the average local execution time of tasks, which can be
calculated as L̄ =

∑J
j=1 P

C
j Lj . Note that the task blocking

is caused by channel access, which is the same for all task
classes.

The wireless upload transmission time tWn,j,k of the jth class
of tasks in BS n with wireless channel model k is modelled
in number of time slots. The mean wireless transmission

1In what follows we just use the term ‘energy consumption’



time t̄Wn for uploading tasks in BS n can be calculated from
tWn,j,k if the distributions of tasks in different classes and the
wireless channel models are given. The average per unit time
energy consumption of MDs in BS n for uploading tasks can
be written as ET

n = (1− PBn)λnP
Tt̄Wn , where PT is the

transmission power used by the MD for uploading the task bits.
Therefore, the average energy consumption for tasks arriving
at BS n can be expressed as En = EL

n + ET
n .

Under the stated assumptions, the aggregate mean task
arrival rate λ̃ at the ES is given by

λ̃ =
∑N
n=1 (1− PBn)λn. (1)

As is normally the case for stability in a single server queueing
system, the constraint λ̃ < µC must always be satisfied,
where µC denotes the mean service rate at the ES, i.e,
µC = yfC/

∑J
j=1 P

C
j qj . We can relax this constraint to

λ̃ ≤ yfC/
∑J
j=1 P

C
j qj without affecting our solution.

We consider the distribution of total delay for an offloaded
task, which consists of the sum of the delay incurred during
the data upload and task execution at the ES. For BS n, task
class j, and channel model k, the former random variable
is denoted as tWn,j,k, and the latter as tCn,j,k. As mentioned
earlier, the data transmission delay from the BS to the ES
is negligible. In addition, in this paper we consider the case
of a very small amount of data returned once the execution
is completed. Therefore, we only consider the data uploading
delay from the MD to the BS. For the jth class of tasks in BS
n with wireless channel model k, the delay constraint must
satisfy

Pr
[
tWn,j,k + tCn,j,k ≤ dj

]
≥ 1− εj , (2)

where εj is the probability that the completion time of a task
of class j exceeds the required deadline. This commonly used
constraint places a limit on the probability that task deadline
targets are violated [8]. Note that tWn,j,k takes discrete values
in number of time slots, tCn,j,k takes discrete values that are
multiple of CPU cycle periods, while dj is continuous in
seconds.

Our objective is to create an allocation that minimizes the
average MD energy consumption under the deadline and cost
budget constraints. This can now be written as follows.

min
xn,y

∑N
n=1

[
PBnλnP

LL̄+ (1− PBn)λnP
Tt̄Wn

]
s.t. (3)

xn ≤ Kn, ∀n ∈ N (4)∑N
n=1 αnxn + βyfC ≤ Bmax, (5)

Pr
[
tWn,j,k + tCn,j,k ≤ dj

]
≥ 1− εj ,∀n ∈ N , j ∈ J , k ∈ In

(6)

λ̃ ≤ yfC/
∑J
j=1 P

C
j qj , (7)

xn ∈ N, ∀n ∈ N (8)
y ∈ [0, 1] . (9)

In this formulation, constraint (4) ensures that the number
of channels assigned does not exceed the maximum number
available in each BS; constraint (5) makes sure that the cost of
the allocation does not exceed the cost budget; constraint (6)

requires that the probability that tasks are completed before
their deadline is bounded from below, and constraint (7)
ensures that the queue at ES is stable. The optimization
problem formulated in (3)-(9) is a mixed integer nonlinear
programming (MINLP) problem. In general, MINLP problems
are NP-hard and thus no efficient solutions exist.

III. APPROXIMATE SOLUTION

In this section, we propose an approximate solution for the
optimization problem (3)-(9) by decomposing it into several
convex subproblems that can be solved efficiently. More
specifically, we discretize variable y ∈ [0, 1] by breaking [0, 1]
into Y equal segments, so that y takes values ya = a/Y , for
a = 0, 1, . . . , Y . With y fixed, we show that the relaxation of
(3)-(9) can be approximated by a convex optimization prob-
lem, which can be solved in polynomial time. The resulting
(fractional) xn’s are then rounded to integer values (and this is
another source of suboptimality for our solution method). After
solving the resulting Y +1 problems, we output the minimum
solution x∗, y∗. Obviously, the quality of the approximation
depends on the discretization parameter Y .

We consider the relaxed version of problem (3)-(9), i.e.,
constraint (8) has been replaced by xn ≥ 0,∀n. With y
fixed, we show that the non-convex problem (3)-(9) can be
transformed into an equivalent convex optimization problem
with the PBn’s as the decision variables. First, we concen-
trate on constraints (6), (7). Note that the distribution of
Pr[tWn,j,k + tCn,j,k ≤ dj ] is a monotonically decreasing function
of the aggregate mean task arrival rate λ̃. Hence, by binary
search in the range [0, yfC/

∑J
j=1 P

C
j qj ], we can approximate

within any desired accuracy the maximum possible value of
λ̃ that satisfies constraints (6) for all n, j, k. Let λ∗ be this
maximum value (note that λ∗ < µC, so stability is ensured).
Using (1), constraints (6), (7) can be replaced by constraint∑N
n=1 (1− PBn)λn ≤ λ∗.
Next, we note that the blocking probability PBn is mono-

tonically decreasing to xn; let Pmin
Bn be the blocking probability

when xn = Kn. Then constraints (4) can be replaced by the
equivalent constraints Pmin

Bn ≤ PBn ≤ 1, ∀n.
Constraint (5) is the only remaining constraint with an

explicit dependence on the xn’s. Since PBn is a function
of xn, one could potentially use its inverse to replace xn
with a function of PBn. However, such an inversion function
may not exist explicitly (and even if it does, it may be non-
convex). In its stead, we can use a convex upper bound
approximation F of the inversion of blocking probability, so
that xn ≤ F (PBn), ∀n.

Hence, the new convex optimization problem that approxi-
mates the original one when y is fixed, is the following:

min
PBn

∑N
n=1

[
PBnλnP

LL̄+ (1− PBn)λnP
Tt̄Wn

]
s.t. (10)∑N

n=1 αnF (PBn) + βyfC ≤ Bmax (11)∑N
n=1 (1− PBn)λn ≤ λ∗ (12)

Pmin
Bn ≤ PBn ≤ 1, ∀i ∈ N . (13)



After solving (10)-(13) and obtaining the PBn’s, we can
compute the largest integral x∗n which achieves a blocking
probability equal or bigger than PBn, for all n ∈ N . Algorithm
GCA (cf. Algorithm 1) codifies the solution method described
above.

Algorithm 1 General Case Approximation (GCA)
Require: λn, PT, PL, αn,Kn, β, f

C, Y, sj , dj , LjP
C
j , PDFs

of tW, tC

1: cost∗ =∞
2: for all a = 0, . . . , Y do
3: y = a/Y
4: Obtain λ∗, the upper bound of λ̃, by binary search in

[0, µC ]
5: PB, cost = solution cost of (10)-(13)
6: xint = max integral x with blocking probabilities ≥ PB

7: if cost < cost∗ then
8: x∗ = xint; y∗ = y; cost∗ = cost of x∗, y∗

9: end if
10: end for
11: return x∗, y∗

In the remainder of this paper we make the common
assumption that tasks arrive from the MDs at BS n according
to a Poisson process with mean arrival rate λn. In this case,
we can invoke the insensitivity property of the Erlang B
formula, to compute the probability of blocking at each BS
[9]. Note that typically, the Erlang B result is derived using the
M/M/N/N Markovian queue, which assumes exponentially
distributed channel upload (i.e., service) times [10]. Due to
insensitivity, the result holds for any service time distribution
with the same mean. Therefore, the blocking probability for a
task arriving at BS n can be written as

PBn =

(
λn
µW
n

)xn 1

xn!

[
xn∑
r=0

(
λn
µW
n

)r
1

r!

]−1
(14)

where µW
n denotes the mean service rate, i.e., µW

n = 1/t̄Wn .
Function (14) is convex in xn [11].

Note that due to the Poisson process job arrival assump-
tion, the channel state sampled by arriving jobs is given
by the steady-state equilibrium probability distribution of the
Markovian channel at that MD. This follows from the PASTA
rule [12].

We assume that the aggregate task arrival process at ES is
Poisson [13], and, therefore, arriving tasks sample the asymp-
totic equilibrium state distribution of ES. This approximation
is justified due to the mixing of arrivals at ES from BSs op-
erating independently, and has been verified in our simulation
experiments. In this case, the ES can be modeled as an M/G/1
queue, whose waiting time is given by the random variable
wC. Given λ̃ and knowledge of the data upload distribution,
the distribution of wC can be obtained by numerical inversion
of the probability generating function of system waiting time
for M/G/1 [14]. In this case, tCn,j,k = wC + sj/yf

C and
Pr[tWn,j,k + tCn,j,k ≤ dj ] can be easily obtained.

In order to apply algorithm GCA (Algorithm 1), the upper
bound F used in problem (10)-(13) is the following [15]:
xn ≤ λn(1 − PBn)/µW

n + 1/PBn, ∀n. Then problem (10)-
(13) becomes:

min
PBn

∑N
n=1

[
PBnλnP

LL̄+ (1− PBn)λnP
Tt̄Wn

]
s.t. (15)∑N

n=1 αn

(
λn
µW
n

(1− PBn) + 1
PBn

)
+ βyfC ≤ Bmax (16)∑N

n=1 (1− PBn)λn ≤ λ∗ (17)

Pmin
Bn ≤ PBn ≤ 1, ∀i ∈ N . (18)

Problem (15)-(18) is convex, and can be solved in time O(L),
for a polynomial L. Hence Algorithm 1 has a running time
of O(Y (L + log µC

ε )), where Y is the granularity of y, and
O(log µC

ε ) is the binary search cost of line 4 of the algorithm,
in order to get a λ∗ within ε of the optimal.

IV. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the performance of algorithm GCA (Algorithm 1) for different
system parameter values. We will assume that the jobs gener-
ated at the MDs have a fixed bit-size s and a fixed computation
load q, i.e., sj = s and qj = q for all j, and that each channel
model is a two-state Gilbert-Elliot channel [16], i.e., a Markov
chain with two states, “Good” (G) and “Bad” (B). This model
is commonly used to characterize the effects of burst noise in
wireless channels, where the channel can abruptly transition
between good and bad conditions [17]. Thus, the transition
probability matrix for wireless model k in BS n is given by
PGG
n,k , P

GB
n,k , P

BG
n,k , and PBB

n,k . Since there is only one class of
the tasks, subscript j can be dropped from the notations.

Denote πG
n,k and πB

n,k, respectively, as the stationary proba-
bilities of channels with G and B states in BS n with propaga-
tion model k. In each time slot, the channel state Markov chain
transitions in accordance with these probabilities. We assume
that each task can be uploaded at one time slot when the
channel is in the G state, hence, we can obtain the distribution
of wireless transmission time tWn,k in BS n with channel model
k, i.e., the probability that one task in BS n with channel model
k can be uploaded in l time slots is given as follows

Pr
[
tWn,k = l

]
=

{
πG
n,k, l = 1

πB
n,kP

BB
n,k

l−2
PBG
n,k , l ≥ 2

(19)

We can then calculate the mean wireless transmission time of
tasks in BS n with propagation model k as follows

t̄Wn,k =
∑∞
l=1 lPr

[
tWn,k = l

]
= 1 +

PGB
n,k

PBG
n,k

2+PGB
n,kP

BG
n,k

. (20)

Thus, we can obtain the mean wireless transmission time
of tasks in BS n: t̄Wn =

∑In
k=1 ηn,k t̄

W
n,k, where ηn,k is the

probability of tasks in BS n with channel model k. In this
case, the ES becomes an M/D/1 queueing system, tCn,j,k = tC,
for all n, j and k, and the distribution of delay is given by



[18]

Pr
[
tC ≤ t̂

]
=

(
1− λ̃

µC

) bt̂µCc∑
z=0

[
λ̃
(
z
µC − t̂

)]z
z!

e
−λ̃

(
z

µC
−t̂

)

(21)
where µC = yfC/q and t̂ is the delay tolerance for ES
execution.

For comparison, we also use a discrete event simulation
(DES) of the system using the xn’s and y values obtained
by the proposed algorithm to validate our model assumptions.
In addition, we simulate an optimal scheme (i.e., DES-based
OPT) as follows. We first obtain all the possible combina-
tions of xn’s under constraint (4); for each combination, we
calculate y from (5), (9), and then check if constraint (7) is
satisfied by the current values of xn’s and y. If not, we go
to the next combination of xn’s and repeat this procedure.
Otherwise, we use this set of xn’s and y to run the DES
for the system, and then check if (6) is satisfied. If not,
we proceed to the next combination of xn’s and repeat the
above procedure. If the constraints are satisfied, we save the
obtained energy consumption. After going through all the
possible combinations of xn’s, we obtain the minimum energy
consumption and the corresponding xn’s and y.

In the simulation, we consider a network consisting of 3
BSs. The tasks arrive at the BSs according to the Poisson
process with average arrival rates λ1 = 11, λ2 = 13 and
λ3 = 15 tasks per second. There are two propagation models at
each BS with transition probabilities PGG

n,1 = 0.9, PGG
n,2 = 0.7,

PBB
n,1 = 0.1, and PBB

n,2 = 0.3 for n = 1, 2, 3. The probabilities
of the different channel models in BS 1 are η1,1 = 0.8 and
η1,2 = 0.2; those in BSs 2 and 3 are η2,1 = 0.5, η2,2 = 0.5,
η3,1 = 0.2, and η3,2 = 0.8. The default parameters used in the
simulations are summarized in Table I.

TABLE I
DEFAULT SYSTEM PARAMETERS

Parameter Value
Size of input data of tasks s 2 Mbits
Tolerable delay of tasks d 4s
Task computation load q 3 M CPU cycles
Available ES capacity fC 75 M cycles/s
Available number of channels in BSs Kn [15 15 20]
Unit price of channel αn [1 1 1]$
Unit price of ES CPU speed β 0.5× 10−6 $
Local processing speed f 1M cycles/s
Local execution power P L 250 mW
Offloading transmission power P T 2.5 mW
Cost budget Bmax 140 $

Fig. 2 shows the total average energy consumption of
MDs versus Bmax, which is the cost budget of the network
customer. When the tolerable violation of latency ε is 1%,
the total average energy consumption of MDs for all schemes
is a constant, which means that all the tasks are executed
locally regardless of the cost budget. This is because the delay
constraints cannot be satisfied if the tasks are offloaded due
to the tight latency violation condition. When ε is 3% and
5%, some tasks are allowed to be offloaded, and the energy
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Fig. 2. Average energy consumption versus cost budget

consumption of the MDs decreases as Bmax increases for all
schemes. This happens because when the cost budget is small,
the optimization is constrained by the cost budget, which
limits the number of offloaded tasks; but with the increase
of Bmax, more channels or ES capacity can be allocated,
leading to more MDs offloading their tasks. When Bmax

becomes large, the budget constraint is not tight anymore,
and the task offloading completion is mainly affected by the
changing wireless transmission conditions. It also shows that
the average MD energy consumption decreases as ε increases
for all schemes, since larger ε makes it easier to meet the
latency constraint through offloading, which results in more
offloaded tasks and saves energy in the MDs.

By comparing the total average MD energy consumption
for ε = 3% and ε = 5% in Fig. 2, it is seen that the gap
is small when the cost budget is small, but then increases
as the cost budget increases, and finally becomes constant
as the budget constraint becomes non-tight. When the cost
budget is small, the amount of channel resources is limited,
most tasks have to be executed locally, and the value of ε has
little effect on the energy consumption of the MDs. As the
cost budget increases, more channel resources are available,
and the offloading decisions are determined by both ε and
the available channel resources. When the cost budget is
sufficiently large, the offloading decisions are less affected by
the cost budget. The figure also shows that the average MD
energy consumption using GCA is almost the same as DES,
which validates the approximations used in our solution. The
performance of GCA is also close to DES-based OPT, which
further shows good performance of the former.

Fig. 3 shows the MD energy consumption versus λn (same
for all BSs). The energy consumption increases linearly with
λn for all schemes, since both local average execution energy
and uploading average transmission energy are proportional
to the mean task arrival rate. Fig. 4 shows the average MD
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energy consumption versus CB, i.e., the available ES capacity.
When ε = 1%, the total average energy consumption of MDs
is a constant for all the schemes, since all tasks are executed
locally. When ε = 3% and 5%, offloading is possible for some
tasks, and the number of tasks that can be offloaded increases
with the ES capacity, resulting in lower energy consumption
of the MDs. Figs. 3 and 4 also show that the performance of
our GCA solution is very close to both DES and DES-based
OPT, which demonstrates the good performance of GCA and
validates the approximations in our solution.

V. CONCLUSIONS

We have studied joint wireless network and job service
allocation for mobile computation offloading. Our objective
is to minimize the total average energy consumption of MDs
for completing the arriving tasks, while satisfying the delay

constraints of tasks and the cost budget of the network
customer. An MINLP problem was formulated and an approx-
imate solution was proposed for the optimization problem by
decomposing it into a collection of convex subproblems, which
can be solved efficiently. Our results have demonstrated the
viability and efficiency of the proposed solution, which can
achieve close-to-optimum performance for a wide range of
system parameters.
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