
Resource time-sharing for IoT applications with deadlines

George Karakostas1? and Stavros G. Kolliopoulos2

1 Department of Computing and Software, McMaster University, Hamilton ON, Canada
karakos@mcmaster.ca

2 Department of Informatics and Telecommunications, National and Kapodistrian University of Athens,
Athens, Greece sgk@di.uoa.gr

Abstract. Motivated by time-sharing systems with deadlines, such as 2-way synchronization
of Digital Twins, we introduce the study of a very natural problem which can be abstracted
as follows. We are given m machines and n jobs, as well as a set of tolerance capacities uij ≥ 0
for every job j and machine i. Can we assign the jobs so that, if job j ends up on machine
i, at most uij jobs in total are processed on i? We define two natural optimization versions:
(i) Maximize the total weight of jobs that can be assigned without violating the tolerance
capacities uij , and (ii) minimize the amount ρ ≥ 1, by which capacities have to be scaled
so that all jobs can be assigned. For the first problem and its generalizations we provide
an (1 − 1/e)-approximation algorithm. For the second problem we show that it is n1/2−ε-
inapproximable and provide linear integrality gap lower bounds for two key relaxations.

Keywords: time-sharing · deadlines · tolerance capacities · scheduling

1 Introduction

An ever increasing number of applications within the framework of the Internet-of-Things (IoT)
depend on real-time response times, i.e., the ability of delivering data to and from the application,
as well as processing data, with acceptable delays [24]. These delay requirements can apply to
almost all different components of an IoT architecture. For example, the need for fast delivery of
the ‘freshest’ available sensor data to cyber-physical systems has lead to the recent concept of the
Age-of-Information [25], i.e., the scheduling of data transmission so that the largest latency between
data generation at a source and its delivery to the application is minimized. A different approach
to the requirement for timely data delivery and processing is the imposition of delay constraints
(as opposed to delay as objective in AoI), that can guarantee the real-time nature of the system.
An example of this latter approach is the concept of Digital Twins (DT) [17,21]. These are virtual
replicas of physical systems (PS), which capture a subset of the PS’s features, maintain a 2-way
synchronization of DT and PS states, and can store data relevant to the PS in order to perform
computationally-heavy tasks, such as prediction and data analytics.

The 2-way synchronization requires that a DT performs periodically its data transmission and
task processing, and is expected to finish both within a given period, thus assuring the data ‘fresh-
ness’. With the proliferation of DTs, the time-sharing of critical resources, such as wireless channels
and CPUs, by many DTs simultaneously puts a strain on the satisfaction of these timing require-
ments, and motivates the scheduling problem we introduce in this work as follows: A DT j with a
synchronization period Tj , needs cj CPU cycles in order to complete its data processing task (for

? Research supported by an NSERC Discovery grant.

2 G. Karakostas and S. G. Kolliopoulos

simplicity we assume the data transmission time is negligible). DT j’s task is executed on a server
i of CPU frequency fi together with the tasks of K other DTs, which share the CPU equally and
continuously with j. In order for j’s task to finish on time, the inequality Kcj

fi
≤ Tj must hold (j

gets every K-th cycle of the CPU), which implies that K ≤ fiTj

cj
, i.e., DT j’s task can co-execute

with at most uij :=
fiTj

cj
(including itself) DTs on server i. A similar situation arises when several

DTs share a wireless channel with their PSs, using TDMA. The natural question then is how to
schedule a set of tasks with deadlines on a set of servers, when Round-Robin time-sharing is applied,
and so that all deadlines are respected.

Although time-sharing scheduling with deadlines has been the motivation, we can move one level
of abstraction higher, ignore the provenance of uij above, and ask the following general question,
which is a very natural one and can apply to settings well beyond IoT. Given a set of n distinct
balls, a set of m distinct bins, and a set of nm nonnegative integers uij , can the balls be placed
in the bins so that if the j-th ball is placed in bin i, at most uij balls in total are placed in bin i?
Note that some tolerance capacities uij can be equal to 0, i.e., job j cannot be assigned to machine
i. The formal definition of the problem we examine is the following.

Machine-Sharing with Tolerance Capacities (MSTC)
Input: Set of n jobs J , set of m machinesM, tolerance capacities uij ∈ Z≥0 for all (i, j) ∈M×J .
Output: An assignment σ : J → M such that |σ−1(σ(j))| ≤ uσ(j)j ∀j ∈ J , or NO if no such
assignment exists.

For job j ∈ J , M(j) denotes the set of machines on which j can be assigned, i.e., M(j) = {i ∈
M | uij > 0}. Similarly, for i ∈ M, J (i) = {j ∈ J | uij > 0}. With this notation in place, MSTC
can be equivalently formulated as finding a feasible solution to the following quadratic program:∑

i∈M(j)

xij ≥ 1 ∀j ∈ J (QP)

xij ·
∑

k∈J (i)

xik ≤ uij ∀j ∈ J ,∀i ∈M(j)

xij ∈ {0, 1} ∀i ∈M,∀j ∈ J (i)

MSTC can be easily seen to be NP-complete (e.g., via a reduction from SAT). To the best of
our knowledge, this is the first time that the problem has been studied. The coverage problem with
group budget constraints defined and studied in [4] comes perhaps closest to the spirit of MSTC.
Assignment problems with forbidden pairs of assignments have been studied in the literature (e.g.,
[8]), but are incomparable to MSTC.

Problem MSTC gives rise to two natural optimization versions. Let every job j have a weight
wj ≥ 0. One can ask for a maximum-weight set of jobs that can be assigned to machines without
violating any tolerance capacities, together, possibly, with additional constraints. An immediate
additional constraint is to require that no more than k machines can be used, but more natural
constraints include job costs and a budget that should not be exceeded, or resource augmentation
(e.g., more UAVs used as relays at a location to increase the number of available channels [18]),
or bundles of jobs that have to be executed on a machine, or combinations of the above. We call
this general family of problems the Maximum Machine-Sharing with Tolerance Capacities
(MMSTC). The second problem derived from MSTC is a congestion version of the original that
asks for the smallest scaling factor that one can multiply all tolerance capacities with, so that there
is a feasible assignment for all jobs.

Resource time-sharing for IoT applications with deadlines 3

Definition 1. For ρ ≥ 1, an assignment σ is ρ-feasible if for all j ∈ J , |σ−1(σ(j))| ≤ ρ · uσ(j)j .

The Scaled Machine-Sharing with Tolerance Capacities (SMSTC) asks for the minimum
scaling factor ρ, such that there is a ρ-feasible assignment. The case of SMSTC where the tolerance
capacities uij are equal to a common value Ti, for all j ∈ J (i), is the famous scheduling problem
with machine deadlines problem for which Lenstra et al. gave a 2-approximation [16]. Our problem
is more general, as every job has its own upper bound on the completion time of machine i, namely
uij . The algorithm of [16] assumes a size pij for every job j and machine i. In the negative results
we provide for SMSTC every job j has unit size on the set of machines M(j) it can be assigned
to.

MMSTC in its simplest form (only tolerance capacities constraints) via an appropriate refor-
mulation (see Section 2) can be efficiently reduced to the Separable Assignment Problem (SAP)
of [9], and also to Maximum Coverage with Group Budgets, defined in [4], with an implicit set
system that describes feasible packings of jobs. The simple randomized rounding of [9] yields an
(1− 1

e)-approximation, but cannot handle the additional constraints mentioned above. Based on an
equivalent formulation of MSTC presented in Section 2, we also design an (1− 1

e)-approximation al-
gorithm for the simplest version of MMSTC (cf. Theorem 2), using the more sophisticated dependent
rounding technique of [10, 22] on a configuration LP relaxation. Unlike [9] though, the dependent
rounding and the results presented in Section 3.2 can be extended to include the additional con-
straints. The requirement that no more than k machines are used can still be (1− 1

e)-approximated
by the algorithms of [2, 5] that generalize [9] to matroidal constraints. In Section 3.3 we show how
dependent rounding can be extended to also give a (1− 1

e)-approximation for this case (cf. Theorem
4), as a template to deal with job costs, resource augmentation, required job bundles, or combi-
nations of the above. Our algorithm can be extended to handle arbitrary integer job sizes pij , for
j ∈ J and i ∈M(j), at the cost of a (1 + ε) scaling of the capacities.

Unfortunately, SMSTC turns out to be much harder to approximate. Using a reduction from
3D-Matching, we show that there is no polynomial-time (n1/2−ε)-approximation algorithm for
SMSTC, unless P = NP (cf. Theorem 7). Here n = |J |. The bound holds even when every job j
has the same tolerance capacity uij = uj on every machine inM(j). In order to tackle the problem
algorithmically, we explore two key relaxations. First, we study the configuration LP, a powerful
linear relaxation that was introduced in the context of the cutting stock problem [6, 12] and has
been used among other for bin packing [15,19] and scheduling problems with assignment restrictions
(e.g., [1,14,23]). Applied to the SMSTC problem, it is strictly stronger than the natural LP that has
assignment variables xij for job-machine pairs. We prove that the configuration LP has an integrality
gap of Ω(n) for congestion even when there are only two distinct tolerance capacity values, every
job j has the same tolerance capacity uj on every machine, and each job can be assigned to at
most two machines (cf. Theorem 5). The second relaxation we consider is the formulation resulting
from the quadratic program (QP) by relaxing the integrality constraints. Notably, this is a non-
convex program. Still we show that it has an integrality gap of at least m, the number of machines.
The lower bound holds again when every job has a machine-independent tolerance capacity (cf.
Theorem 6). Hence, rounding the fractional solution of these two key formulations cannot give a
non-trivial approximation factor. We leave the closing of the gap between Theorem 7 and Theorem
5 (or Theorem 6) as an open problem.

4 G. Karakostas and S. G. Kolliopoulos

2 An equivalent formulation of MSTC

In this section we give an equivalent formulation of the MSTC problem. Recall that we are given as
input a setM of machines, a set J of jobs and a set {uij ∈ Z≥0 | (i, j) ∈M×J}. For i ∈M, let d(i)
denote |J (i)|. Sort the capacities uij , j ∈ J (i), in non-decreasing order uij1 ≤ uij2 ≤ . . . ≤ uijd(i) .
Let mi denote the number of distinct values in the sequence uij1 , uij2 , . . . , uijd(i) . Denote these
distinct values in increasing order as ūi1 < ūi2 < . . . < ūimi . Each machine i ∈M consists of a set
Si of mi submachines where submachine k ∈ Si has capacity ūik. The set J (i, k) of jobs that can
be assigned to submachine k ∈ Si consists of

{j ∈ J (i) | uij ≥ ūik}.

Similarly, the set of submachines of machine i to which job j can be assigned is denotedM(i, j).
A submachine assignment of the jobs in S ⊆ J is a mapping ψ : S → ∪i∈MSi such that

(i) ∀j ∈ S, ψ(j) ∈ M(i, j) and (ii) for all i ∈ M, at most one of the sets ψ−1(k), k ∈ Si, is
nonempty. In words, every job j in S is assigned to a submachine of a machine in M(j) and for
every machine i ∈M, at most one of the submachines in Si can be “open”. In analogy to Definition
1, the submachine assignment ψ is ρ-feasible, for ρ ≥ 1, if ∀i ∈M,∀k ∈ Si, |ψ−1(k)| ≤ ρūik.

Clearly the two problem formulations are equivalent, i.e., there is a ρ-feasible assignment σ if
and only if there is ρ-feasible submachine assignment ψ. In the following sections we will choose
each time the problem formulation (with or without submachines) that is more convenient.

3 Approximation algorithms for MMSTC

In this section we consider the family of MMSTC problems. The simplest version is the following:
Given input {uij ∈ Z≥0 | (i, j) ∈ M× J}, and a function w : J → Q≥0 that assigns weights to
jobs, find a maximum-weight S ⊆ J for which there is a 1-feasible assignment.

3.1 Linear relaxation with configurations

For machine i and submachine k ∈ Si, a subset C ⊆ J (i, k) is a configuration if |C| ≤ ūik. The
set of these configurations is denoted C(i, k). The configuration LP, denoted (CLP), has a variable
xi,Ck

for each machine i, submachine k ∈ Si, and configuration Ck ∈ C(i, k):

max
∑
j∈J

wj

∑
i∈M

∑
k∈Si

∑
Ck : j∈Ck

xi,Ck

 (CLP)

∑
k∈Si

∑
Ck

xi,Ck
≤ 1 ∀i ∈M (1)

∑
i∈M

∑
k∈Si

∑
Ck:j∈Ck

xi,Ck
≤ 1 ∀j ∈ J (2)

xi,Ck
≥ 0 ∀i ∈M,∀k ∈ Si,∀Ck ∈ C(i, k) (3)

The set of constraints (1) ensures that each machine is assigned at most one configuration and
that at most one submachine is open. Constraints (2) ensure that each job is assigned at most once.

Resource time-sharing for IoT applications with deadlines 5

Clearly, an integer solution to (CLP) corresponds to a 1-feasible assignment for a maximum-weight
subset of J . For a configuration Ck, let w(Ck) :=

∑
j∈Ck

wj . The dual of (CLP) is the following:

min
∑
i∈M

yi +
∑
j∈J

zj (D-CLP)

yi +
∑
j∈Ck

zj ≥ w(Ck) ∀i ∈M,∀k ∈ Si,∀Ck ∈ C(i, k) (4)

y, z ≥ 0 (5)

A solution for (D-CLP) (and, therefore, (CLP)) can be computed using the ellipsoid algorithm as
follows: Given a candidate solution (y∗, z∗) to (D-CLP), its separation oracle has to solve

∑
i∈M |Si|

instances of a knapsack-like problems, which we denote Kpn. Fix i ∈ M, k ∈ Si. Consider a Kpn
instance with J (i, k) being the set of items and knapsack capacity ūik. Every item j has a size
sj = 1 and a (possibly negative) value vj = wj − zj . The oracle returns a violated inequality iff
there is a feasible packing in the knapsack with total value that exceeds yi. The Kpn instance can
be solved by the obvious greedy algorithm in O(n log n) time.

3.2 Dependent-rounding algorithm

In this section we present our dependent rounding for the simplest version of MMSTC, i.e., finding
and integral solution of (CLP). Although the approximation result we obtain in Theorem 2 can also
be obtained by the simple randomized rounding for SAP in [9], this section provides the algorithmic
foundations for the extensions of Section 3.3.

Let x∗ be an optimal solution of (CLP). Without loss of generality we can assume that∑
k∈Si

∑
Ck

x∗i,Ck
= 1, ∀i ∈M.

The vector x∗ induces on each machine a probability distribution on the submachines in Si.We will
use dependent rounding to choose one configuration per machine and ensure that a near-optimal
fraction of jobs is scheduled.

Srinivasan [22] (see also [10]) has provided a technique to sample algorithmically from a distri-
bution with the following properties. Consider any sequence of t reals P = (p1, . . . , pt) such that
pi ∈ [0, 1] and

∑
i pi is an integer l. Ft is defined as a family of distributions over vectors in {0, 1}t.

A member D(t; P) of the family Ft guarantees the following properties on any vector (X1, . . . , Xt)
sampled from D(t;P).

(A1) (probability preservation) ∀i,Pr[Xi = 1] = pi.

(A2) (degree preservation) Pr[|{i : Xi = 1}| = l] = 1.

(A3) (negative correlation) For all S ⊆ [t] we have Pr[(
∧
i∈S(Xi = 0)] ≤

∏
i∈S Pr[Xi = 0] and

Pr[(
∧
i∈S(Xi = 1)] ≤

∏
i∈S Pr[Xi = 1].

Theorem 1 ([22]). Given P = (p1, . . . , pt) there is a linear-time algorithm that generates a sample
from distribution D(t;P).

6 G. Karakostas and S. G. Kolliopoulos

Let Ci denote the disjoint union of the sets of configurations in
⊔
k∈Si

C(i, k) whose corresponding
variable has a nonzero value in the solution x∗ of (CLP). Every configuration in Ci belongs to a
unique C(i, k). Denote by x∗|i the restriction of vector x∗ to the entries corresponding to the
configurations in Ci. To simplify notation, set ti = |Ci|. We define a distribution D(ti; x

∗|i) that
satisfies properties (A1), (A2), (A3) for each machine i ∈ M. Observe that in our setting l = 1.
The rounding algorithm is the following.

Algorithm DepRound
For all i ∈M, do independently:

1. Using the algorithm of Theorem 1, sample from D(ti;x
∗|i) to obtain vector X(i) ∈

{0, 1}ti . By Property (A2), X(i) has a unique entry equal to 1.
2. Assign the configuration C that corresponds to the nonzero entry of X(i) to machine i.

Theorem 2. Algorithm DepRound runs in polynomial-time and outputs a 1-feasible assignment
for a set of jobs S whose expected total weight is at least (1− 1/e) times the optimum of the (CLP)
relaxation.

Proof. Let C denote the disjoint union
⊔
i∈M Ci. That is, every configuration in C corresponds to a

unique (i, k) pair. For j ∈ J , let zj be the random variable that takes value 1 if job j is assigned by
Algorithm DepRound and zero otherwise. Our analysis is quite similar to the analysis in [22] for
Maximum Coverage versions of Set Cover. We slightly abuse notation and index the entries of the
vectors X(i) by the corresponding configurations. Since every configuration C belongs to a unique
Ci we omit the superscript i as well.

Pr[zj = 1] =1− Pr[
∧

C∈C:C3j
(XC = 0)]

≥1−
∏

C∈C:C3j
Pr[XC = 0] (6)

=1−
∏

C∈C:C3j
(1− x∗C) (7)

Inequality (6) follows from the “negative correlation” property (A3) and Equality (7) from property
(A1). Define z∗j :=

∑
C∈C:C3j x

∗
C . Thus the fractional amount by which job j is scheduled and the

objective value of the solution x∗ is equal to
∑
j∈J wjz

∗
j . Using the AM-GM inequality and the fact

that z∗j ≤ 1, it is easy to see that ∏
C∈C:C3j

(1− x∗C) ≤ (1− z∗j /s)s

where s is the maximum number of configurations in the support of x∗ that a job belongs to. By
calculus, 1− (1− z∗j /s)s ≥ (1− (1− 1/s)s) · z∗j > (1− 1/e) · z∗j . ut

The results in this section can be easily extended to the case where every job j has an integer
size pij ≥ 1 for i ∈M(j) and an assignment σ of set S ⊆ J is ρ-feasible if

∀j ∈ S,
∑

k∈σ−1(σ(j))

pσ(j)k ≤ ρ · uσ(j)j .

Resource time-sharing for IoT applications with deadlines 7

By rounding the job sizes as explained in [1] we can solve in polynomial time the Configuration LP
while using configurations whose size is at most (1+ε) the capacity of the corresponding submachine.
As an alternative, standard techniques [3,13] can be used to bring the capacity violation factor into
the approximation factor instead. Applying the algorithm DepRound yields the following (also by
simple randomized rounding [9]):
Theorem 3. If every job j in J has an integer size pij , for i ∈M(j), one can in polynomial-time
compute a set of jobs S whose expected total weight is at least (1 − 1/e) times the optimum of the
(CLP) relaxation and an assignment for S that is (1 + ε)-feasible for any arbitrary constant ε > 0.

3.3 Constraint extensions of MMSTC

The techniques of the previous section can be extended to derive a good approximation for the
extensions of MMSTC, as mentioned in Section 1. More specifically, an (1 − 1

e)-approximation of
the objective can be obtained for the following additional constraints:

Coverage: No more than k machines can be used.
Bundles of required jobs: Given k bundles of jobs C1, . . . , Ck, maximize the total scheduled job

weight, while scheduling all bundles on machines.
Required machines: Given a set of machines A ⊆M, the machines in A must be used.
Resource augmentation: Given integers l1, . . . , l|M|, the schedule can use at most li copies of

the i-th machine.
Budget: Given assignment costs cij for all jobs j on machines i, and a budget B, the total cost of

scheduled jobs cannot exceed the budget B.

In the full version of this abstract, we show that the dependent rounding of Section 3.2 can be
extended to (1− 1

e)-approximate these versions, or their combinations, while not violating the the
coverage, resource augmentation, bundles of required jobs constraints, required machines, and not
violating the budget and capacity constraints by much (or, alternatively, not at all with an ε cost
to the approximation factor, for any ε > 0). As a template for dealing with the extra constraints,
in this abstract we show how this can be done for the Coverage-MMSTC, which requires that
no more than k machines can be used. Since this constraint by itself happens to be matroidal, the
algorithms of [2, 5] also achieve an approximation factor of (1− 1

e).
To simplify our exposition, we will assume that we have guessed the exact number of machines

k0 ≤ k used by the optimal solution (by ‘guessing’ we mean the exhaustive enumeration of k0
values, and the output of the maximum obtained solution). Formulation (CLP) can be extended by
adding a special empty configuration C∅:

max
∑
j∈J

wj

∑
i∈M

∑
k∈Si

∑
Ck : j∈Ck

xi,Ck

 (CovCLP)

∑
i∈M

xi,C∅ = m− k0 (8)∑
k∈Si

∑
Ck

xi,Ck
+ xi,C∅ = 1 ∀i ∈M (9)

∑
i∈M

∑
k∈Si

∑
Ck:j∈Ck

xi,Ck
≤ 1 ∀j ∈ J (10)

xi,Ck
≥ 0 ∀i ∈M, k ∈ Si, Ck ∈ C(i, k) ∪ {C∅} (11)

8 G. Karakostas and S. G. Kolliopoulos

Note that it can still be the case of assigning an empty configuration in Ci to i, but that doesn’t
matter (it means that eventually fewer than k0 machines are used by the solution).

If w is the (unrestricted) dual variable corresponding to (8), then the objective of (D-CLP)
becomes

∑
i∈M yi +

∑
j∈J zj + (m − k0)w, and the constraints w + yi ≥ 0, ∀i ∈ M are added.

The separation oracle of (D-CLP) can be easily extended to solve the new dual LP, and, therefore
compute the optimal solution x∗ to (CovCLP). The dependent rounding of Section 3.2 becomes
the rounding procedure of [10] on a bipartite graph G = (A,B,E), constructed as follows: Each
distribution D(ti; x

∗|i) gives rise to a star with machine i at its center, and the configurations of
Ci in the support of x∗ at the leaves. Side A contains the machines/centers of these stars, while the
leaves of the stars are vertices in side B. We add another vertex C∅ to B, and connect all vertices
i ∈ A with x∗i,C∅ > 0 to C∅.

Note that variable x∗i,Ck
corresponds to edge (i, Ck). We require a rounding of these variables

that achieves degree 1 for all vertices in A, and degree k0 for vertex C∅ in B (we don’t care about
the degrees of the rest of the nodes in B). The dependent randomized rounding of [10] satisfied these
requirements with probability 1 (property (A2)). Moreover, as is proven in Theorem 4.4 of [20], the
configurations in B are negatively correlated (property (A3)), i.e., the indicator random variables
XC of configurations C being picked or not are negatively correlated, and this for arbitrary fractional
degree bounds on the vertices of B ([20, p. 684]). Hence, (6) carries through, and, together with
the known lower bound for the Maximum Coverage problem [7], we have the following (also by the
algorithms of [2, 5]):

Theorem 4. A solution for problem Coverage-MMSTC that is 1-feasible and assigns in expec-
tation at least (1− 1/e) times the optimal weight of jobs can be computed in polynomial time. This
factor is best possible, unless P = NP.

Similarly to Theorem 3, Theorem 4 can be extended to the case where job j has an integer size
pij , for i ∈M(j).

4 Minimizing Congestion

In this section we consider the SMSTC problem. Given input {uij ∈ Z≥0 | (i, j) ∈ M× J}, find
the minimum ρ ≥ 1 for which there is a ρ-feasible assignment for the set J . We show integrality
gap lower bounds in Section 4.1 and a hardness of approximation result in Section 4.2.

4.1 Integrality gaps for SMSTC

Let P be a valid mathematical programming relaxation for computing an assignment for the jobs
in J . For f ≥ 1, we say that P has an integrality gap of at least f for congestion if there is an
instance I = {uij | (i, j) ∈ M× J} for which P is feasible, but P has no integer feasible solution
for any instance Iρ = {ρ · uij | (i, j) ∈M×J} with ρ < f.

We start by showing an integrality gap for the Configuration LP relaxation. We define an
instance Ξ where each job will have the same capacity on each machine it can be assigned to.
The set of machines consists of three blocks of machines, blocks A, B and C. Each machine has
two submachines, one with large and one with small capacity. Accordingly we refer to the big and
the small submachine of a given machine. All machines within the same block X have the same
large and small capacities at their two submachines. These capacity values are denoted UX and uX
respectively.

Resource time-sharing for IoT applications with deadlines 9

q

A

F1

F2G

C1 C2 B2

p1 p2

B1

Fig. 1: Instance Ξ used in the integrality gap construction.

Block A consists of a single machine with UA = 2k and uA = 2, where k ≥ 2 is a positive integer
of our choice. We refer to this single machine as machine A.

Block B consists of 2 machines, B1 and B2. The submachine capacities are UB = 2k and uB = 2.

Block C consists of 2 machines, C1 and C2. The submachine capacities are UC = 2k and uC = 2.

All jobs have processing time (height) 1. They are partitioned into two sets, those that can only
be assigned to small submachines and those that can be assigned to big and small submachines. By
slightly abusing terminology we refer to the corresponding sets as small and large jobs respectively.
In what follows when we say that a job may be assigned to the big submachine of machine x it is
implied that it can also be assigned to the small submachine of x.

The set of large jobs consists of the disjoint union of two sets F and G. Set F contains 2k jobs
divided into 2 groups F1, F2 each containing k jobs. G consists of k jobs.

– The jobs of F can be assigned to the big submachine of machine A. The jobs of Fi, can be
assigned to the big submachine of machine Bi, i = 1, 2.

– The jobs of G can be assigned to the big submachines of machines C1, C2.

The set of small jobs consists of the disjoint union of two sets P and Q.

– P contains 2 jobs p1, p2 that can be scheduled on the small submachine of machine A. Moreover
pi can be assigned on the small submachine of machine Ci, i ∈ {1, 2}.

– Set Q contains 1 job, call it q. Job q can be scheduled on the small submachine of machines
B1, B2.

10 G. Karakostas and S. G. Kolliopoulos

See Fig. 1 for a depiction of the instance Ξ. The Configuration LP for congestion minimization is
the following. ∑

k∈Si

∑
Ck

xi,Ck
≤ 1 ∀i ∈M (CCLP)

∑
i∈M

∑
k∈Si

∑
Ck:j∈Ck

xi,Ck
≥ 1 ∀j ∈ J

xi,Ck
≥ 0 ∀i ∈M,∀k ∈ Si,∀Ck ∈ C(i, k)

Lemma 1. Linear program (CCLP) has a feasible half-integral solution x for the instance Ξ.

Proof. There is a feasible half-integral solution where to every submachine a configuration of x-
value 1/2 is assigned. The jobs in F ∪ G ∪ P ∪ Q can be assigned exactly to two machines each
and in x they are split equally among these two machines. It is easy to see that these split jobs (of
width 1/2 and height 1) can be packed into configurations of width 1/2 and height that does not
exceed the capacity of the corresponding submachine. ut

Lemma 2. Any integer solution for the instance Ξ that leaves no job unassigned has a congestion
of at least k/4.

Proof. There are two possible cases for a feasible solution.
Case 1. There is an i ∈ {1, 2} such that at least half of the jobs in Fi are not scheduled on Bi.

I.e., there is an i ∈ {1, 2} such that the big submachine of Bi contains less than half of the jobs
in Fi. Therefore at least k/2 jobs from Fi are scheduled on machine A. If some job pj from P is
present on A, then pj experiences a congestion of at least (k/2)/(uA) = k/4. If no job from P is
present on A, each machine of block C hosts exactly one job from P . For every i ∈ {1, 2} at least
half of the jobs in G must end up on a machine Ci∗ , for some i∗ ∈ {1, 2}. The corresponding small
job pi∗ experiences a congestion of at least (k/2)/uC = k/4.

Case 2. For every i ∈ {1, 2}, less than half of the jobs in Fi are not scheduled on Bi. I.e.,
for every i ∈ {1, 2} the big submachine of Bi contains at least half of the jobs of Fi. There is an
i∗ ∈ {1, 2} such that the job q is assigned to Bi∗ . Then this small job experiences a congestion of
at least (k/2)/(uB) = k/4. ut

The total number n of jobs in the instance Ξ is equal to 3(k+ 1). We have proved the following
theorem.

Theorem 5. The integrality gap of the Configuration LP (CCLP) for minimizing congestion on
an instance of n jobs is at least (n− 3)/12 even when (i) there are only two distinct capacity values
(ii) every job j has the same tolerance capacity on every machine in M(j) (iii) each job can be
assigned to at most two machines.

Define (QP-F) to be the relaxation of (QP) where the integrality constraints are replaced by

xij ≥ 0 ∀i ∈M,∀j ∈ J (i).

The instance Ξ we used in Theorem 5 is infeasible for (QP-F). We define a new instance Υ. Let
m = U be the number of machines, for some integer U ≥ 2. The number n of jobs is m(U − 1) + 1.

Resource time-sharing for IoT applications with deadlines 11

Recalll that for a positive integer t, [t] denotes the set {1, 2, . . . , t}. Each machine i ∈ [m], has a
cluster Ji = {jil | l ∈ [U − 1]} of U − 1 “private” clients that can only be assigned to i and have
each tolerance capacity U. The remaining single job out of the n, call it job 1, can be assigned to
all machines, with tolerance capacity ui1 = 1, for all i. The set of jobs is J = {1} ∪

⋃m
i=1 Ji. In any

feasible integer solution, there is a machine i∗ ∈ [m] that processes job 1. In order to service the
jobs in Ji∗ a congestion of U has to be incurred.

There is a feasible fractional solution to (QP-F). For every i ∈ [m] and for every job d = jil ∈ Ji,
set xi,d = 1. For every i ∈ [m], set xi1 = 1/U. Because U = m, job 1 is completely serviced. It is
easy to see that all capacity constraints are met.

Theorem 6. The integrality gap of (QP-F) with respect to congestion is at least m, where m is the
number of machines in the instance. This holds even when (i) there are only two distinct capacity
values (ii) every job j has the same tolerance capacity on every machine inM(j).

4.2 Hardness of approximation for SMSTC

It is well-known that the following problem is NP-complete [11].

Bounded 3D-Matching
Input: Set of triples M ⊆ A×B ×C, where A, B, and C are pairwise disjoint sets having the same
number q of elements. Every element of A ∪B ∪ C occurs in at most 3 triples.
Question: DoesM contain matching, i.e., a subsetM ′ ⊆M such that |M ′| = q and no two elements
of M ′ agree in any coordinate?

Recall Definition 1. An instance of SMSTC which has an f -feasible assignment is called an
f -feasible instance.

Given an instance I of Bounded 3D-Matching we construct an instance φ(I) of SMSTC.
For every triple in M we have in φ(I) a dedicated triple-machine. For every i ∈ [q], group together
all machines that correspond to triples whose first coordinate is ai ∈ A in a group Mi. For every
such group, add |Mi| overflow machines OFpi , p ∈ [|Mi|]. Without loss of generality we may assume
that |Mi| > 1. The reader is invited to bear in mind from now on that |Mi| ∈ {2, 3}. The total
number of machines in the instance φ(I) is |M |+

∑q
i=1 |Mi| ≤ 12q.

For i ∈ [q], we create |Mi| blocks of “dummy” jobs F pi , p ∈ [|Mi|]. Every block contains f jobs
where f > 1 is an integer we will define later. The jobs of block F pi can be scheduled only on
machine mp

i ∈Mi and on the overflow machine OFpi . The tolerance capacity of every dummy job is
f on both machines it can be assigned to. Observe that if a block of dummies ends up on a machine,
nothing else can be assigned there without incurring congestion larger than 1.

For every bj ∈ B we create a set Bj of f ′ jobs brj , r ∈ [f ′], each of which can only be scheduled on
the triple-machines that correspond to triples on which bj is the second component. The quantity f ′
is an integer larger than f and will be defined later. For every ck ∈ C we create a set Ck of f ′ jobs
crk, r ∈ [f ′], each of which can only be scheduled on the triple-machines that correspond to triples
on which ck is the third component. The tolerance capacity of these jobs is 2f ′. See Figure 2a.

Finally, there is a set of “placeholder” jobs whose mission will be to block some of the overflow
machines. In particular, for every i ∈ [q], there are di placeholder jobs with di = 1 if |Mi| = 2 and
di = 3 if |Mi| = 3. The set of placeholder jobs is denoted as {xpi }p∈[di]. The assignment possibilities
are defined as follows. Case 1: di = 1. The single placeholder job x1i can be assigned to the overflow
machines OFpi , p ∈ {1, 2}, with a tolerance capacity of 1. Case 2: di = 3. Every placeholder job can

12 G. Karakostas and S. G. Kolliopoulos

Ck

F 1
i

Bj

m3
i

m2
i

m1
i

F 3
i

OF3
i

OF2
i

OF1
i

F 2
i

(a)

x1i x2i x3i

OF1
i OF3

iOF2
i

(b)

Fig. 2: The construction for the hardness reduction of SMSTC. (a) Example of a group Mi of size
3 and the jobs that can be assigned to the triple-machines in Mi. Machine m2

i corresponds to the
triple (ai, bj , ck). (b) Allowed assignments for the three placeholder jobs xpi , p ∈ {1, 2, 3}.

be assigned to exactly two of the overflow machines OFpi , p ∈ [3], in the way shown in Figure 2b.
The tolerance capacity of each placeholder job is 2.

Remark 1. In a solution to φ(I) with congestion 1 the following hold for every i ∈ [q].

– If Case 1 holds for di, at least one overflow machine must be reserved exclusively for the
placeholder job x1i . Therefore at most one dummy block can be assigned to an overflow machine.

– If Case 2 holds for di, the placeholder jobs must be assigned on at least two overflow machines.
No more than a single dummy job may be assigned to an overflow machine that carries a
placeholder.

Lemma 3. If I is a "YES"-instance of Bounded 3D-Matching, then φ(I) is a 1-feasible instance
of SMSTC.

Proof. For all i ∈ [q] perform the following. Let τ = (ai, bj , ck) be the triple in the matching that
contains element ai. For all r ∈ [f ′] assign the jobs brj and crk to the machine mp

i ∈ Mi that
corresponds to the triple τ. The dummy jobs of block F pi are assigned to the overflow machine OFpi .
The remaining dummy jobs F p

′

i , p
′ 6= p, are assigned each to their corresponding machine in Mi.

There are |Mi|−1 available overflow machines and we can schedule the di placeholders on them. ut

Define ρ so that the following relations are satisfied

2 · ρ < f and ρ · f < f ′/3. (12)

Resource time-sharing for IoT applications with deadlines 13

Lemma 4. If I is a "NO"-instance of Bounded 3D-Matching, then φ(I) is not a ρ-feasible
instance of SMSTC.

Proof. Assume to the contrary that there is a ρ-feasible assignment σ. Fix a j ∈ [q]. Consider the
jobs brj , r ∈ [f ′]. By the structure of the instance I there are at most 3 triple-machines to which
these f ′ jobs can be assigned. Therefore in σ there is a machine that carries at least f ′/3 jobs
from Bj . By (12) a triple machine that carries even one dummy job can tolerate a total of at most
ρ · f < f ′/3 jobs. Therefore among the triple-machines that can accept the jobs of Bj at least one
must have no dummy assigned. The above holds for all j, and in each triple-machine m only jobs
from the same set Bm(j) can be assigned. Hence there must be at least q machines in M that are
empty from dummy so that each receives a job from a distinct Bj , j ∈ [q].

Claim. In a ρ-feasible assignment σ, for every i ∈ [q], exactly one triple-machine in group Mi is
empty from dummy.

Proof (of claim). We have shown that at least q machines in M must be empty from dummy. We
will show that for each i at most one machine in Mi can be empty from dummy. This will establish
the claim. We distinguish two cases.

Case 1: di = 1. Assume that in σ both machines m1
i ,m

2
i in Mi are empty from dummy. Then

the two overflow machines OF1
i ,OF2

i take each one block of dummy jobs. The placeholder job xii
must live on the same machine with f other jobs. By (12) this incurs a congestion larger than ρ, a
contradiction.

Case 2: di = 3. Assume that in σ at least two among the three machines in Mi are empty from
dummy. Then at least two overflow machines OFpi ,OFp

′

i take each one block of dummy jobs. At
least one of the three placeholder jobs x1i , x2i , x3i must live in σ on the same machine with f other
jobs. By (12) this incurs a congestion larger than ρ, a contradiction. ut

By the claim, exactly one machine from each of the q groups Mi must be empty from dummy.
Let M ′ be the set of these machines. Each machine in M ′ gets at least one member from a distinct
Bj . M

′ induces a 2D perfect matching of A×B. Similarly, a triple machine that carries a dummy
job can tolerate at most ρ · f < f ′/3 jobs from Ck, for any k ∈ [q]. Since σ is ρ-feasible, for every
k ∈ [q] at least one job from Ck is assigned to a machine that is empty of dummy, i.e., to a machine
of M ′. Clearly, no two jobs from different Ck, Ck′ sets, with k 6= k′, can appear on the same
triple-machine. The q machines of M ′ that are empty from dummy induce a feasible 3D-Matching
of A × B × C. We have reached a contradiction. As long as f ′ is larger than a suitable constant,
setting ρ =

√
f ′

4 and f = d
√
f ′/2e+ 1 satisfies (12). ut

We conclude that unless P = NP there is no polynomial-time algorithm that on input φ(I) can
output a solution with congestion at most

√
f ′/4 times the optimum. Given that the number n of

jobs in φ(I) is equal to 2f ′q+f · |M |+
∑q
i=1 di and that q ≤ |M | ≤ 9q, we have that n = Θ(f ′q). To

keep the reduction polynomial-time it must be that f ′ = O(qc) for some constant c > 0. In other
words, f ′ = n1−ε for an arbitrary constant ε > 0 of our choice.

Theorem 7. For any constant ε > 0, there is no polynomial-time (n1/2−ε)-approximation algo-
rithm for SMSTC, unless P = NP. The result holds even when each job j has the same tolerance
capacity on each machine inM(j).

14 G. Karakostas and S. G. Kolliopoulos

References

1. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the 38th annual ACM sym-
posium on Theory of Computing (STOC). pp. 31–40 (2006)

2. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject
to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

3. Carr, R.D., Vempala, S.S.: Randomized metarounding. Random Struct. Algorithms 20(3), 343–352
(2002)

4. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications.
In: APPROX-RANDOM. LNCS, vol. 3122, pp. 72–83. Springer (2004)

5. Chekuri, C., Vondrák, J.: Randomized pipage rounding for matroid polytopes and applications. CoRR
abs/0909.4348 (2009)

6. Eisemann, K.: The trim problem. Management Science 3(3), 279 – 284 (1957)
7. Feige, U.: A threshold of ln n for approximating Set Cover. J. ACM 45(4), 634–652 (1998)
8. Ficker, A.M.C., Spieksma, F.C.R., Woeginger, G.J.: The transportation problem with conflicts. Ann.

Oper. Res. 298(1), 207–227 (2021)
9. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algorithms for

maximum separable assignment problems. Math. Oper. Res. 36(3), 416–431 (2011)
10. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to

approximation algorithms. J. ACM 53(3), 324–360 (2006)
11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory ofNP -Completeness.

W.H. Freeman and Company, New York (1979)
12. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Operations

Research 9, 849 – 859 (1961)
13. Jain, K., Mahdian, M., Salavatipour, M.R.: Packing steiner trees. In: Proceedings of the Fourteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland,
USA. pp. 266–274. ACM/SIAM (2003)

14. Jansen, K., Rohwedder, L.: A quasi-polynomial approximation for the restricted assignment problem.
SIAM J. Comput. 49(6), 1083–1108 (2020)

15. Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-dimensional bin-packing prob-
lem. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS).
pp. 312–320 (1982)

16. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel
machines. Mathematical Programming A 46, 259–271 (1990)

17. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: A survey on technical features,
scenarios, and architectural models. Proceedings of the IEEE 108(10), 1785–1824 (2020)

18. Oteafy, S.M.A.: Resource augmentation in heterogeneous internet of things via uavs. In: 2021 IEEE
Global Communications Conference (GLOBECOM). pp. 1–6 (2021)

19. Rothvoss, T.: Better bin packing approximations via discrepancy theory. SIAM J. Comput. 45(3),
930–946 (2016)

20. Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation problems. Random
Struct. Algorithms 52(4), 680–715 (2018)

21. Sharma, A., Kosasih, E.E., Zhang, J., Brintrup, A., Calinescu, A.: Digital twins: State of the art theory
and practice, challenges, and open research questions. CoRR abs/2011.02833 (2020)

22. Srinivasan, A.: Distributions on level-sets with applications to approximation algorithms. In: Proceeds-
ings of 42nd IEEE Annual Symposium on Foundations of Computer Science (FOCS). pp. 588–597
(2001)

23. Svensson, O.: Santa claus schedules jobs on unrelated machines. SIAM J. Comput. 41(5), 1318–1341
(2012)

24. Verma, S., Kawamoto, Y., Fadlullah, Z., Nishiyama, H., Kato, N.: A survey on network methodologies
for real-time analytics of massive IoT data and open research issues. IEEE Communications Surveys
Tutorials 19(3), 1457–1477 (2017)

Resource time-sharing for IoT applications with deadlines 15

25. Yates, R.D., Sun, Y., Brown, D.R., Kaul, S.K., Modiano, E., Ulukus, S.: Age of information: An
introduction and survey. IEEE Journal on Selected Areas in Communications 39(5), 1183–1210 (2021)

	Resource time-sharing for IoT applications with deadlines

