The Knuth-Bendix Completion Algorithm

William Hua

November 26, 2007

What's a word problem?

What's a word problem?

$\alpha \quad \beta$

What's a word problem?

$$
\alpha \stackrel{?}{=} \beta
$$

Under a set of identities of the form $\alpha_{k} \equiv \beta_{k}$.

What's a word problem?

$$
\alpha \stackrel{?}{=} \beta
$$

Under a set of identities of the form $\alpha_{k} \equiv \beta_{k}$.
Not easy to solve generally.

What's a word?

What's a word?

■ Same thing as a term

What's a word?

■ Same thing as a term

■ Variables: $v_{1}, v_{2}, v_{3}, \ldots$
■ Operators: f_{1}, \ldots, f_{N}

- f_{k} has degree d_{k}

What's a word?

■ Same thing as a term

■ Variables: $v_{1}, v_{2}, v_{3}, \ldots$
■ Operators: f_{1}, \ldots, f_{N}

- f_{k} has degree d_{k}

$$
\begin{aligned}
W & \rightarrow v_{k} \\
W & \rightarrow f_{k} \underbrace{W \ldots W}_{d_{k}}
\end{aligned}
$$

Tree structure

Ordering on words

1 Can find a well-ordering for pure words
2 Can't do this in general for words with variables

Ordering on words

1 Can find a well-ordering for pure words
2 Can't do this in general for words with variables
For an identity $\alpha_{k} \equiv \beta_{k}$, assuming $\alpha_{k}>\beta_{k}$, we have the reduction $\alpha_{k} \rightarrow \beta_{k}$.

Completeness

Definition

A set of reductions is complete if for any irreducible words $\alpha \neq \beta$, we have $\alpha \not \equiv \beta$.

Completeness

Definition

A set of reductions is complete if for any irreducible words $\alpha \neq \beta$, we have $\alpha \not \equiv \beta$.

Complete iff the lattice condition holds:

Superpositions

$$
\sigma\left(\lambda_{1}, \mu, \lambda_{2}\right)
$$

- λ_{1} and λ_{2} are words
- μ is a subword of λ_{2}

■ λ_{1} "looks like" μ

Superpositions

$$
\sigma\left(\lambda_{1}, \mu, \lambda_{2}\right)
$$

- λ_{1} and λ_{2} are words
- μ is a subword of λ_{2}

■ λ_{1} "looks like" μ

■ Replace the μ in λ_{2} with λ_{1} to get $\sigma\left(\lambda_{1}, \mu, \lambda_{2}\right)$
■ $\sigma\left(\lambda_{1}, \mu, \lambda_{2}\right)$ must "look like" λ_{2}

Let's try it. . .

$$
\begin{align*}
& e \cdot a \rightarrow a \tag{1}\\
& a^{-} \cdot a \rightarrow \tag{2}\\
&(a \cdot b) \cdot c \rightarrow \tag{3}\\
&(b \cdot(b \cdot c)
\end{align*}
$$

Let's try it. . .

$$
\begin{align*}
e \cdot a & \rightarrow a \tag{1}\\
a^{-} \cdot a & \rightarrow e \tag{2}\\
(a \cdot b) \cdot c & \rightarrow a \cdot(b \cdot c) \tag{3}\\
a^{-} \cdot(a \cdot b) & \rightarrow b \tag{4}
\end{align*}
$$

Let's try it. . .

$$
\begin{align*}
e \cdot a & \rightarrow a \tag{1}\\
a^{-} \cdot a & \rightarrow e \tag{2}\\
(a \cdot b) \cdot c & \rightarrow a \cdot(b \cdot c) \tag{3}\\
a^{-} \cdot(a \cdot b) & \rightarrow b \tag{4}\\
e^{-} \cdot a & \rightarrow a \tag{5}
\end{align*}
$$

Let's try it. . .

$$
\begin{align*}
e \cdot a & \rightarrow a \tag{1}\\
a^{-} \cdot a & \rightarrow e \tag{2}\\
(a \cdot b) \cdot c & \rightarrow a \cdot(b \cdot c) \tag{3}\\
a^{-} \cdot(a \cdot b) & \rightarrow b \tag{4}\\
e^{-} \cdot a & \rightarrow a \tag{5}
\end{align*}
$$

etc.

Until finally...

(1)
$e \cdot a \rightarrow a$
(9)
$e^{-} \rightarrow e$
(2)

(10)
$a^{--} \rightarrow a$
(3) $(a \cdot b) \cdot c \rightarrow a \cdot(b \cdot c) \quad$ (11) $\quad a \cdot a^{-} \rightarrow e$
(4) $a^{-} \cdot(a \cdot b) \rightarrow b$
(13) $a \cdot\left(a^{-} \cdot b\right) \rightarrow b$
(8)
$a \cdot e \rightarrow a$
(20) $(a \cdot b)^{-} \rightarrow b^{-} \cdot a^{-}$

