Introduction Lindenmayer Systems

Presented by: FanFan Huang

Outline

- What is a L-System
- Types of L systems
- What is a Language (in terms of L systems)
- Drawing Fractals
- Trees

What is a Lindenmayer system

- System having the structure $G = \langle \Sigma, h, \omega \rangle$
- Σ an alphabet
 - an atomic set of symbols example: {a,b,c}, {1,2,3} Σ^* a set of all words over an alphabet Σ
- *h* a set of homomorphic production rules – Of form $h: \Sigma \to \Sigma^*$
 - $\text{OHOMM} n \cdot 2 / 2$ $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} \right) \cdot \frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \cdot \frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \cdot \frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right) \left(\frac{1}{$
 - Example $\Sigma = \{a\}$, $h(a) = a^2$
- ω an axiom (an initial word)

- Example
$$\omega = ab$$

D0L

Simplest type of system

$$G{=}\langle \varSigma$$
 , h , $\omega
angle$

- D: Deterministic
- 0: Rewriting that takes place is context-free
- L: Lindenmayer System

- Example
 - $G = ({a,b},{h(a)=a, h(b)=ab},ab)$

Words and Languages

- The language is constructed by:
 - Denote h^i as the ith production rule

$$-h^2 = h \circ h$$

- $-L(G) = \{\omega, h(\omega), h^{2}(\omega), h^{3}(\omega), ...\}$
- $L(G) = \{h^i(\omega) | i \ge 0\}$, where $h^0(\omega) = \omega$
- *E*(*G*) is the word sequence generated by the (same as the language at the ith step)

Language Equivalence

- We say that languages are equivalent that is $L(G_1) = L(G_2)$ iff the branching structures generated by them are isomorphic.
- Does not imply the sequences are equivalent.
- Example:

$$G_1 = \langle \{a, b\}, \{a \rightarrow b^{2}, b \rightarrow a\}, b \rangle$$

$$G_2 = \langle \{a, b\}, \{a \rightarrow b, b \rightarrow a^2\}, a \rangle$$

$$L(G_1) = L(G_2)$$

0L

• All the rules of D0L

$$G{=}\langle \varSigma$$
 , h , $\omega
angle$

- Remove D for deterministic
- Difference is in production rules

• Example:

$$G = (\{a\}, \{a \rightarrow a , a \rightarrow a^2\}, a)$$

E0L

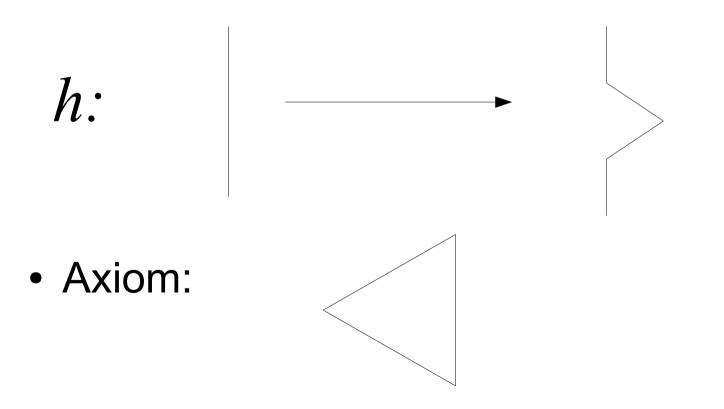
- Form: $G = \langle \Sigma, h, S, \Delta \rangle$
- Known as the Extension to 0L
- Allows for use of symbols not in the final form
- *S* Axiom (may contain aux symbols)
- Δ Target alphabet (no aux symbols)

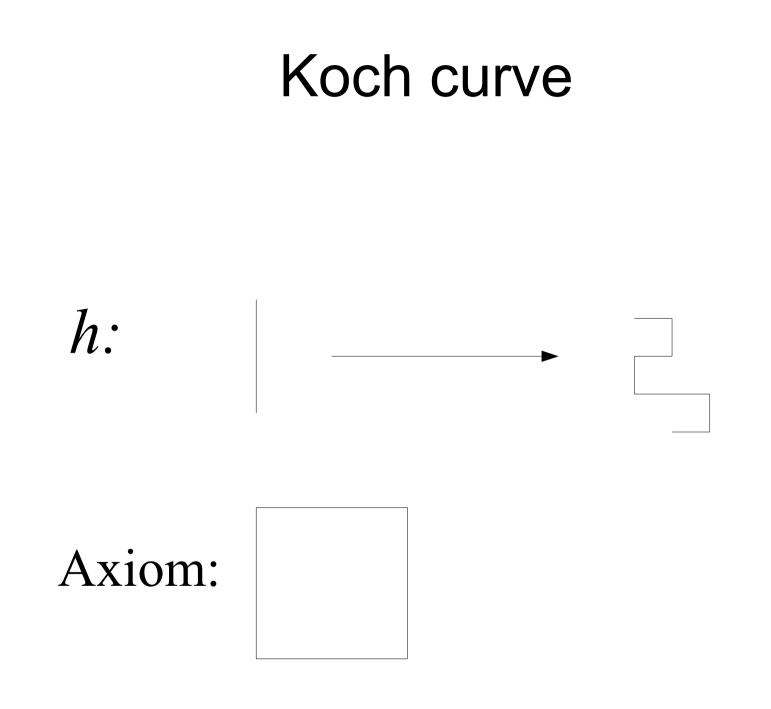
Lindenmayer Systems

- Also referred to as L systems
- D0L
- 0L
- E0L
- C0L
- DT0L
- EDT0L
- *1L
- (there are many)

Tree drawing and fractals

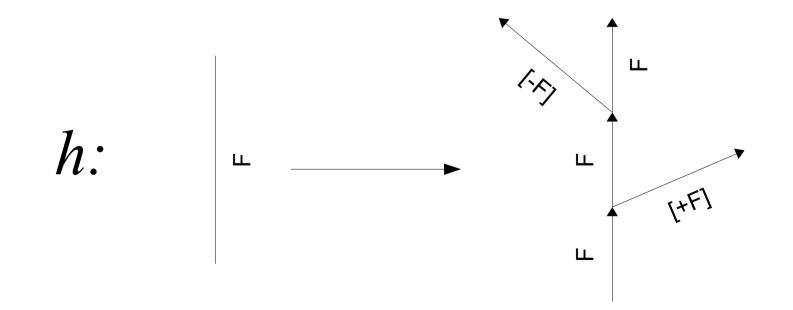
• So far we've considered term rewriting as symbols, consider the following:

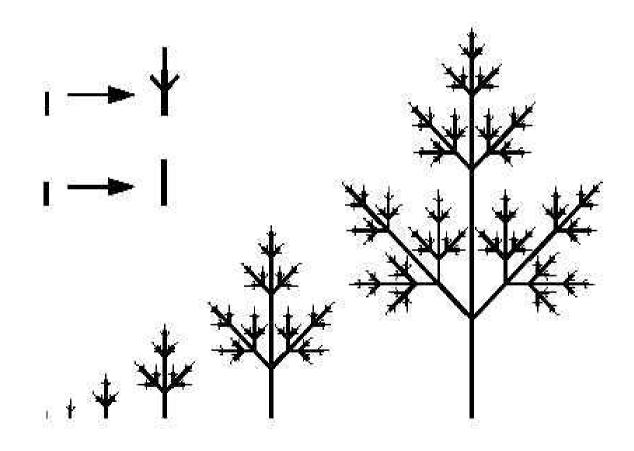


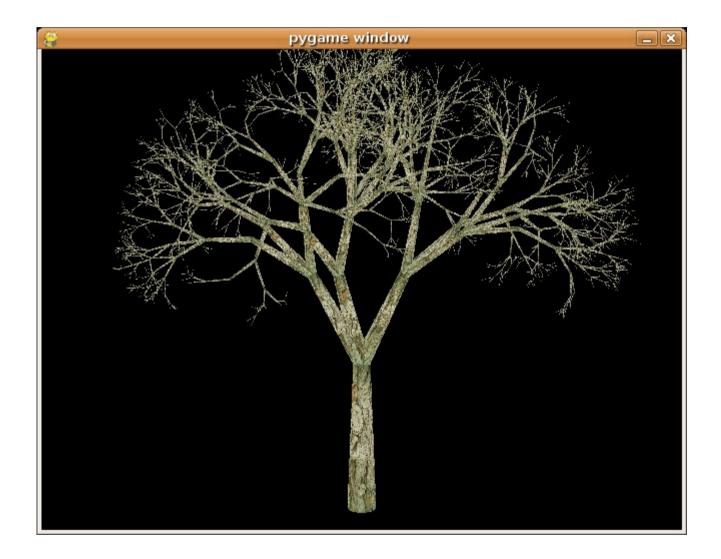


Growing trees

- Bracketed L-Systems
- Add brackets as a form of denoting branching structure.
- We can draw trees!







References

- Rozenberg & Salomaa (1980): The mathematical theory of L systems
- Prusinkiewicz & Hanan (1989): Lecture notes in biomathematics v. 79
- http://escience.anu.edu.au/lecture/cg/Revisal/Image/artifi2.jpg
- http://www.wooster.edu/cs/studentCoursework/theory/Images/3DBush.jpg
- http://cgg.ms.mff.cuni.cz/thesis/novy/3dplant.jpg
- http://tobbe.nu/media/attachments/20070216/tree-texture2.png
- http://www.uweb.ucsb.edu/~svetlin/cs280%20final/03.jpg