Introduction Lindenmayer Systems

Presented by: FanFan Huang

Outline

- What is a L-System
- Types of L systems
- What is a Language (in terms of L systems)
- Drawing Fractals
- Trees

What is a Lindenmayer system

- System having the structure $G=\langle\Sigma, h, \omega\rangle$
- Σ an alphabet
- an atomic set of symbols example: $\{a, b, c\},\{1,2,3\}$
- Σ^{*} a set of all words over an alphabet Σ
- h a set of homomorphic production rules
- Of form $h: \Sigma \rightarrow \Sigma^{*}$
- Example $\Sigma=\{a\}, h(a)=a^{2}$
- ω an axiom (an initial word)
- Example $\omega=a b$

DOL

- Simplest type of system

$$
G=\langle\Sigma, h, \omega\rangle
$$

- D: Deterministic
- 0: Rewriting that takes place is context-free
- L: Lindenmayer System
- Example
$-G=(\{a, b\},\{h(a)=a, h(b)=a b\}, a b)$

Words and Languages

- The language is constructed by:
- Denote h^{i} as the $\mathrm{i}^{\text {th }}$ production rule
- $h^{2}=h \circ h$
- $L(G)=\left\{\omega, h(\omega), h^{2}(\omega), h^{3}(\omega), \ldots\right\}$
- $L(G)=\left\{h^{i}(\omega) \mid i \geq 0\right\}$, where $h^{0}(\omega)=\omega$
- $E(G)$ is the word sequence generated by the (same as the language at the $\mathrm{i}^{\text {th }}$ step)

Language Equivalence

- We say that languages are equivalent that is $L\left(G_{1}\right)=L\left(G_{2}\right)$ iff the branching structures generated by them are isomorphic.
- Does not imply the sequences are equivalent.
- Example:

$$
\begin{gathered}
G_{1}=\left\langle\{a, b\},\left\{a \rightarrow b^{2,} b \rightarrow a\right\}, b\right\rangle \\
G_{2}=\left\langle\{a, b\},\left\{a \rightarrow b, b \rightarrow a^{2}\right\}, a\right\rangle \\
L\left(G_{1}\right)=L\left(G_{2}\right)
\end{gathered}
$$

OL

- All the rules of DOL

$$
G=\langle\Sigma, h, \omega\rangle
$$

- Remove D for deterministic
- Difference is in production rules
- Example:

$$
G=\left(\{a\},\left\{a \rightarrow a, a \rightarrow a^{2}\right\}, a\right)
$$

EOL

- Form:

$$
G=\langle\Sigma, h, S, \Delta\rangle
$$

- Known as the Extension to OL
- Allows for use of symbols not in the final form
- S Axiom (may contain aux symbols)
- Δ Target alphabet (no aux symbols)

Lindenmayer Systems

- Also referred to as L systems
- DOL
- OL
- EOL
- COL
- DTOL
- EDTOL
- *1L
- (there are many)

Tree drawing and fractals

- So far we've considered term rewriting as symbols, consider the following:
- Axiom:

Koch curve

Growing trees

- Bracketed L-Systems
- Add brackets as a form of denoting branching structure.
- We can draw trees!

Further Examples

References

- Rozenberg \& Salomaa (1980): The mathematical theory of L systems
- Prusinkiewicz \& Hanan (1989): Lecture notes in biomathematics v. 79
- http://escience.anu.edu.au/lecture/cg/Revisal/Image/artifi2.jpg
- http://www.wooster.edu/cs/studentCoursework/theory/Images/3DBush.jpg
- http://cgg.ms.mff.cuni.cz/thesis/novy/3dplant.jpg
- http://tobbe.nu/media/attachments/20070216/tree-texture2.png
- http://www.uweb.ucsb.edu/~svetlin/cs280\ final/03.jpg

