

Linear Temporal Logic

Presented by

Kevin Browne Fei Zhao

November 19, 2007

Introduction to Temporal Logic

- Why Temporal Logic?
 - Formulae statically true or false for a given model in classical propositional, predicate logic
 - Most systems are dynamic
 - Property verification for concurrent, reactive systems
- Temporal Logic
 - Formulae are not statically true or false in a model
 - Models are transitions systems
 - Dynamic notion of truth

Linear Temporal Logic

- Timeline is the underlying structure of time in Linear Temporal Logic
- We assume time in LTL is isomorphic to the natural numbers
- Under this assumption, time in LTL:
 - Is discrete
 - Has an initial moment with no predecessors
 - Is infinite into the future
- Timeline is a set of paths: $t_0 t_1 t_2 \dots$

Linear vs. Branching

- Linear-time Temporal Logic
 - Time as a set of paths
 - Each path is a sequence of moments
 - At each moment, only one possible next future moment
- Computational Tree Logic (Branching)
 - Time as a tree
 - Root as present moment
 - Branches out into the future

Linear vs. Branching (Intuition)

(Alessandro Artable, "Formal Methods")

Syntax

The rules for generating Linear Temporal Logic (LTL):

- Each ϕ is a formula
- If ϕ and ψ are formulae then $\neg \phi$, $\phi \land \psi$, $\phi \lor \psi$, $\phi \lor \psi$, $\phi \to \psi$ are formulae
- If ϕ and ψ are formulae then X ϕ , F ϕ , G ϕ , ϕ U ψ , ϕ W ψ , ϕ R ψ

Syntax (cont'd)

Defined in Backus Naur Form:

```
\begin{split} \phi &:= p \mid \mathsf{True} \mid \mathsf{False} \\ &\mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \not \Rightarrow \psi \\ &\mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{G} \phi \mid \phi \mathbf{U} \psi \mid \phi \mathbf{W} \psi \\ &\mid \phi \mathbf{R} \psi \end{split}
```

Atomic propositions: $p \in Atoms$ Boolean operators: $\land \lor \neg \rightarrow$ Temporal operators: **X G F U W R**

Well Formed Formulae

The well formed formulae in LTL follow the same rules as well formed formulae in classical propositional logic, plus the rules for temporal operators.

The following are **NOT** well formed formulae:

- $\circ~{\boldsymbol{U}}$ r since ${\boldsymbol{U}}$ is a binary operator, not unary
- $^\circ$ p ${\bm G}$ q since ${\bm G}$ is a unary operator, not binary

• **G F** $_{P}$ \rightarrow **F**(q \vee s)

- p **W** (q **W** r)
- **F** (p → **G** r) ∨ ¬ q **U** p
- **F** p ∧ **G** q → p **W** r

Syntax Examples

More Practical Syntax Examples

•
$$((x = 0) \land (x + 3)) \rightarrow \mathbf{X} (x = 3)$$

- lottery-win \rightarrow **G** rich
- send \rightarrow **F** receive
- start-lecture \rightarrow talk **U** end-lecture
- born \rightarrow alive **U** dead

Transition System

Timeline as a linear time structure $M=(S, \rightarrow, L)$ where

- S is a set of states,
- \rightarrow is a transition relation such that every s \in S has some $r\in$ S with s \rightarrow r
- L:S → PowerSet (Atoms) is a labeling of each state with a set of atomic propositions in Atoms.

Semantics are given with respect to a path $\pi = s_1 s_2 s_3 \dots$

Suffix of trace starting at s_i is defined as $\pi_i = s_i s_{i+1} s_{i+2} \dots$

Transition System Example

 $M = (S, \rightarrow, L)$ is as follows:

 $S = {S1, S2, S3}$

 $L(S1) = \{p,q\}$ $L(S2) = \{p,r\}$ $L(S3) = \{q,r\}$

Transition System Example

The set of paths is limited by what we can construct from the given states and transitions. So

 $\pi = \mathsf{SI}, \mathsf{S$

and

 $\pi = SI, SI, S3, S2, S3, S2, \dots$

are in M (read: can be defined by it). But

π = S1,S1,S3,S2,**S1,S1**....

is not!

Semantics

- π |= True
- not $\pi \mid$ = False
- $\pi \models p$ iff $p \in L(s_1)$ $(\pi = s_1 s_2 s_2 ...)$
- $\pi \mid = \neg \phi$ iff not $\pi \mid = \phi$
- $\pi \models \phi \land \psi$ iff $\pi \models \phi$ and $\pi \models \psi$
- $\pi \models \phi \lor \psi$ iff $\pi \models \phi$ or $\pi \models \psi$
- $\pi \models \phi \rightarrow \psi$ iff $\pi \models \phi$ if $\pi \models \psi$
- $\pi \mid = X \phi$ iff $\pi_2 \mid = \phi$ (holds iff ϕ holds at the next state)
- $\pi \models F \phi$ iff $\exists i \ge I \pi_i \models \phi$ (at some future state ϕ is true)

Semantics (cont'd)

• $\pi \models \mathbf{G} \phi$ iff $\forall i \ge I \pi_i \models \phi$

(at all the future states, ϕ is true)

- $\pi \models \phi \cup \psi$ iff $\exists i \ge I \pi_i \models \psi$ and $\forall j \le i \pi_j \models \phi$ (ϕ is true until ψ is true)
- $\pi \models \phi W \psi$ iff $(\exists i \ge I \pi_i \models \psi \text{ and } \forall j \le i \pi_j \models \phi)$ or $\forall k \ge I \pi_k \models \phi$

(ϕ is true until ψ is true, or ϕ is always true)

• $\pi \models \phi R \psi$ iff $(\exists i \ge I \pi_i \models \phi \text{ and } \forall j \le \pi_j \models \psi)$ or $\forall k \ge I \pi_k \models \psi$

(ψ is true until ϕ is true, or ψ is always true)

Semantics (Intuition) S1->S2->S3->S4->S5->S6->S7->...

p**U**q (p until q) α S1->S2->S3->S4->S5->S6->S7->... $p \mathbf{W} q$ (p weak until q) q

р

p **R** q (p release q)

р

P

p

q

Semantic Notion Applied

From this model, we can derive different (infinite) paths:

 $\pi = SI,SI,SI,SI,SI,SI,SI,SI,\ldots$

 $\pi = SI, SI, S2, S3, S2, S3, ...$

 $\pi = SI, SI, S3, S2, S3, S2, ...$

Semantic Notion Applied (Cont'd)

Given a path π , and a formula ϕ , we can now evaluate the truth of that formula.

So for:

 $\pi = SI,SI,SI,SI,SI,SI,SI,...$

 $\pi \models p$ is true

by the rule that " $\pi \models p$ iff $p \in L(s_1)$ ".

Semantics Example

Given the model to the left, we can then say for $\pi = SI,SI,S3,S2,S3,S2,S3,...$

 $π \models p$ is true $π \models q$ is true $π \models p ∧ q$ is true $π \models r$ is false $π \models F p$ is true $π \models F p$ is true $π \models X p$ is true $π \models G r$ is false $π \models G (X (X r))$ is true $π \models p U r$ is true

Another Semantics Example

Given the model to the left, we can then say for $\pi = SI,SI,S3,S2,S2,...$

- $\pi \models p \text{ is true}$ $\pi \models X p \text{ is true}$ $\pi \models X (X p) \text{ is false}$
- $\pi \models \mathbf{p} \mathbf{U} \mathbf{r}$ is false
- $\pi \models q \mathbf{U} r$ is true

$$\pi \models q \mathbf{W} r$$
 is true

- $\pi \models r \mathbf{R} q$ is true
- $\pi \models \mathbf{F} p$ is true
- $\pi \models \mathbf{F} (\mathbf{X} (\mathbf{X} p))$ is false

Same Model, Different Paths

Given the model to the left, we can then say for $\pi = SI,SI,S3,S2,S2,...$

 $\pi \models p \mathbf{U} r \text{ is } \mathbf{FALSE}$

But for:

 $\pi = SI, S2, S2, S2,$

 $\pi \models p \mathbf{U} r \text{ is } \mathbf{TRUE}$

Truth is no longer static for a given model. Different paths may evaluate differently for the same formula!

Further Definitions

- **Entailment**: $f \models y \text{ iff } \forall M, \forall i \in N. (M, \pi_i) \models f \Rightarrow (M, \pi_i) \models y$
- **Equivalence**: $f \equiv y$ iff $\forall M$, $\forall i \in N$. $(M, \pi_i) \models f \Leftrightarrow (M, \pi_i) \models y$
- Satisfiable: An LTL formula φ is satisfiable iff there exists a linear time structure $\mathbf{M} = (\mathbf{S}, \rightarrow, \mathbf{L})$ such that $\mathbf{M}, \pi \models \varphi$. Any such structure defines a model of φ .
- **Valid**: A formula ϕ is valid iff for all linear time structures **M** = (S, \rightarrow ,L), we have **M**, π |= ϕ , and write |= ϕ .

Examples:

Some significant validities

- |= **G** ¬ p ≡ ¬ **F** p
- |= **F** ¬ p ≡ ¬ **G** p
- $|= \mathbf{X} \neg \mathbf{P} \equiv \neg \mathbf{X} \mathbf{P}$

Satisfiable or valid

- $p \rightarrow F q$ satisfiable formula but not valid
- **G** ($p \rightarrow F q$) $\rightarrow (p \rightarrow F q)$ valid formula

Conclusion

- Linear Temporal Logic is a useful and accessible framework for modeling systems which involve changes occurring over time!
- Questions?

Bibliography

Logic in Computer Science, Michael Huth and Mark Ryan

Handbook of Theoretical Computer Science (Temporal and Modal Logic, Ch. 16), E.Allen Emerson

Formal Methods (Lecture 3: Linear Temporal Logic), Allesandro Artale