
CAS 701

TERM REWRITING

Hong N i

Huan Zhang

Outline

 Motivation

 Introduction

 Rewrite Rules

 Basic Concept

 The TR Algorithm

 Examples

 Thoughts

Motivations

 Suitable for computational processes based on

the repeated application of simplification rules.

 Suitable for tasks like symbolic computation,

program analysis and program transformation.

 Term rewriting helps to solve such tasks in a

very effective and symbolic manner.

Introduction

 Term rewriting: the initial expression is simplified in

a number of rules.

 There is a complex Left-hand side that can be

simplified into the expression appearing at the

right-hand side.

 terms

 variables

Introduction

Rewrite rules

R1

R2

…

Rn

Initial Term T

The Rewriting Algorithm

Normal Form T’

Rewrite Rules

The initial term is gradually reduced…

 An initial expression that is to be simplified.

 Finding a match - there must be a match between
the redex and the left-hand side of the rule.

 redex – reducible expression

 Replacing – the redex in the initial expression is
replaced by the right-hand side of the rule.

The outcome can be called as normal form.

Basic Concepts

 Terms

 Substitution

 Matching

Terms

 Terms are defined in a prefix format

 A single variable is a term, e.g. X, Y or Z

 The function name applied to zero or more arguments is a term,

e.g. add(X, Y)

 Complex hierarchical structures of arbitrary depth

can be defined.

Substitution

 A substitution is an association between variables and

terms.

 For example, {X0, Ysucc(0)}.

 Substitution can be used to create new terms from old

ones.

 For example, using the above substitution and applying it to the

term mul(succ(X), Y) will yield the new term mul(succ(0), succ(0)).

 The basic idea is that variables are replaced by the term

they are mapped to by the substitution.

Matching

 A matching sets as a goal to determine whether two

terms can be made equal.

 For example, the two terms mul(succ(X), Y) and mul(succ(0),succ(0))

match since we can use the substitution {XY, Ysucc(0)} to

make them identical.

 If no such substitution can be found, the two terms

cannot be matched.

Select a redex R in T’

Select a rule li = ri

Match li with R

Yes

No

Yes

Replace R in T` by ri

[substitution]

Yes

Return T’ as result

Set T’ to T

No

No

l1 = r1

l2 = r2

ln = rn

…….

Rewrite
Rules

Initial Term
T

Normal Form
T’

 To get terms rewritten to a ‘simplest’ term, where

this term cannot be modified any further from the

rules in the rewriting system.

 Unique?

 T = {a, b} with rules ab, ba. [not unique]

 Terms can be rewritten regardless of the choice of

rewriting rule to obtain the same normal form is know

as confluence.

• [add1] add(0, X) = X

• [add2] add(succ(X), Y) = succ(add(X, Y))

• [mul1] mul(0, X) = 0

• [mul2] mul(succ(X), Y) = add(mul(X, Y), Y)

Rewrite Rules

Initial Term T = add(succ(succ(0)), succ(succ(0)))

add (succ (succ(0)), succ (succ(0)))

succ (add (succ(0), succ (succ(0))))

succ (succ (add (0, succ (succ(0)))))

succ (succ (succ (succ (0))))

[add1]

[add2]

[add2]

• [double neg. Eli.] p = p
• [ Eli.] p  q = p ∨ q
• [De Morgan’s laws] (p∧q) = p ∨ q

(p∨q) = p ∧ q
• [Distributivity] (p∧q)∨r = (p∨r)∧(q∨r)

Rewrite Rules

Initial Term T = (((p∧q)∨r)m)

(((p∧q)∨r) m)

(((p∨r)∧(q∨r)) m)

(((p∨r)∧(q∨r))m)

(((p∨r)∧(q∨r)) ∨ m)

[ Eli.]

[double neg. eli]

[Distributivity]

(p∨r)∧(q∨r) ∧ m

[De Morgan’s Laws

(p∨r)∧(q∨r) ∧ m

[double neg. eli]

• [or1] or(true, true) = true

• [or2] or(true, false) = true

• [or3] or(false, true) = true

• [or4] or(false, false) = false

• [and1] and(true, true) = true

• [and2] and(true, false) = false

• [and3] and(false, true) = false

• [and4] and(false, false) = false

• [not1] not(true) = false

• [not2] not(false) = true

Rewrite Rules

Initial Term T = not (or(false, and(true, not (false))))

not (or(false, and(true, not (false))))

not (or(false, and(true, true)))

not (or(false, true))

not (true)

[or3]

[and1]

[not2]

false

[not1]

 User-defined syntax

 Relax the strict prefix format of functions and use

arbitrary notation,

 add(0, X) = X 0 + X = X

 and(true, false) true & false

 Conditional rules

One or more conditions are attached that are first

evaluated in order to determine whether the rule should

be applied at all

 Traversal function

 Reduce the number of rules

 Term Rewriting Basics

 Knuth-Bendix completion procedure

 An algorithm for transforming a set of equations into

confluent term rewriting system. When succeeds, it has

effectively solved the word problem for the specified

algebra

 Lindenmayer

Most famously used to model the growth process of

plant development

Thank you !

