CAS 701 TERM REWRITING

Hong Ni
Huan Zhang

Outline

- Motivation
- Introduction
- Rewrite Rules
- Basic Concept
- The TR Algorithm
- Examples
- Thoughts

Motivations

Suitable for computational processes based on the repeated application of simplification rules.

Suitable for tasks like symbolic computation, program analysis and program transformation.

Term rewriting helps to solve such tasks in a very effective and symbolic manner.

Introduction

\square Term rewriting: the initial expression is simplified in a number of rules.
\square There is a complex Left-hand side that can be simplified into the expression appearing at the right-hand side.
\square terms
\square variables

Introduction

Rewrite Rules

The initial term is gradually reduced...
\square An initial expression that is to be simplified.
\square Finding a match - there must be a match between the redex and the left-hand side of the rule.
\square redex - reducible expression
\square Replacing - the redex in the initial expression is replaced by the right-hand side of the rule.
The outcome can be called as normal form.

Basic Concepts

\square Terms
\square Substitution
\square Matching

Terms

\square Terms are defined in a prefix format
\square A single variable is a term, e.g. X, Y or Z

- The function name applied to zero or more arguments is a term, e.g. $\operatorname{add}(X, Y)$
\square Complex hierarchical structures of arbitrary depth can be defined.

Substitution

\square A substitution is an association between variables and terms.
\square For example, $\{X \rightarrow 0, Y \rightarrow \operatorname{succ}(0)\}$.
\square Substitution can be used to create new terms from old ones.
\square For example, using the above substitution and applying it to the term mul(succ(X), Y) will yield the new term mul(succ(0), succ(0)).
\square The basic idea is that variables are replaced by the term they are mapped to by the substitution.

Matching

\square A matching sets as a goal to determine whether two terms can be made equal.
\square For example, the two terms mul(succ(X), Y) and mul(succ(0), succ(0)) match since we can use the substitution $\{X \rightarrow Y, Y \rightarrow \operatorname{succ}(0)\}$ to make them identical.
\square If no such substitution can be found, the two terms cannot be matched.

Nouncl Forms

\square To get terms rewritten to a 'simplest' term, where this term cannot be modified any further from the rules in the rewriting system.
\square Unique?
$\square T=\{a, b\}$ with rules $a \rightarrow b, b \rightarrow a$. [not unique]
\square Terms can be rewritten regardless of the choice of rewriting rule to obtain the same normal form is know as confluence.

Numerals Example

- [add1] add($0, \mathrm{X}$) $=\mathrm{X}$
- [add2] $\operatorname{add}(\operatorname{succ}(X), Y)=\operatorname{succ}(\operatorname{add}(X, Y))$
- [mul1] $\operatorname{mul}(0, X)=0$
- [mul2] $\operatorname{mul}(\operatorname{succ}(X), Y)=\operatorname{add}(\operatorname{mul}(X, Y), Y)$

Initial Term T = add(succ(succ(0)), succ(succ(0)))

Logic Example

- [double neg. Eli.] $\neg \neg p=p$
- [\rightarrow Eli.] $\quad \mathrm{p} \rightarrow \mathrm{q}=\neg \mathrm{p} \vee \mathrm{q}$
- [De Morgan's laws] $\neg(p \wedge q)=\neg p \vee \neg q$
$\neg(p \vee q)=\neg p \wedge \neg q$
- [Distributivity] $(p \wedge q) \vee r=(p \vee r) \wedge(q \vee r)$

Initial Term $T=\neg(((p \wedge q) \vee r) \rightarrow \neg \neg m)$

Booleans

Initial Term T = not (or(false, and(true, not (false))))

Rewrite Rules

- [or1] or(true, true) = true
- [or2] or(true, false) = true
- [or3] or(false, true) = true
- [or4] or(false, false) = false
- [and1] and(true, true) = true
- [and2] and(true, false) = false
- [and3] and(false, true) = false
- [and4] and(false, false) = false
- [not1] not(true) = false
- [not2] not(false) = true
not (or (false, and(true, not (false))))

[or3]
not (true)
[not1]
false

Exicnsions of Teum Rowriting

\square User-defined syntax
\square Relax the strict prefix format of functions and use arbitrary notation,
$\square \operatorname{add}(0, X)=X \quad 0+X=X$
\square and(true, false) \quad true \& false
\square Conditional rules
\square One or more conditions are attached that are first evaluated in order to determine whether the rule should be applied at all
\square Traversal function
\square Reduce the number of rules

Exiensions of Term Rowriting

\square Term Rewriting Basics
\square Knuth-Bendix completion procedure
\square An algorithm for transforming a set of equations into confluent term rewriting system. When succeeds, it has effectively solved the word problem for the specified algebra
\square Lindenmayer
\square Most famously used to model the growth process of plant development

EINTD

Thank you!

