CAS 701
TERM REWRITING

Outline

Motivation
Introduction
Rewrite Rules
Basic Concept
The TR Algorithm
Examples
Thoughts

Motivations

Suitable for computational processes based on
the repeated application of simplification rules.

Suitable for tasks like symbolic computation,
program analysis and program transformation.

Term rewriting helps to solve such tasks in a
very effective and symbolic manner.

Introduction

Term rewriting: the initial expression is simplified in
a number of rules.
There is a complex Left-hand side that can be
simplified into the expression appearing at the
right-hand side.

terms

variables

Introduction
B

Rewrite rules

R1

R2

Initial Term T

The Rewriting Algorithm

< Normal Form T’ >

Rewrite Rules

The initial term is gradually reduced...
An initial expression that is to be simplified.

Finding a match - there must be a match between
the redex and the left-hand side of the rule.

redex — reducible expression

Replacing — the redex in the initial expression is
replaced by the right-hand side of the rule.

The outcome can be called as normal form.

Basic Concepts
N

1 Terms
1 Substitution

1 Matching

Terms

Terms are defined in a prefix format

A single variable is a term, e.g. X, Y or Z

The function name applied to zero or more arguments is a term,
e.g. add(X, Y)

Complex hierarchical structures of arbitrary depth
can be defined.

Substitution

A substitution is an association between variables and
terms.

For example, {X20, Y2>succ(0)}.
Substitution can be used to create new terms from old
ones.

For example, using the above substitution and applying it to the
term mul(succ(X), Y) will yield the new term mul(succ(0), succ(0)).

The basic idea is that variables are replaced by the term
they are mapped to by the substitution.

Matching

A matching sets as a goal to determine whether two
terms can be made equal.

For example, the two terms mul(succ(X), Y) and mul(succ(0),succ(0))
match since we can use the substitution {X=2'Y, Y2>succ(0)} to
make them identical.

If no such substitution can be found, the two terms
cannot be matched.

~ Rewrite

The rewriting
algoriihim

SetT'toT
"M SelectaredexRin T

Selectarulel=r,

Match | with R

= Return T’ as result ey |

To get terms rewritten to a ‘simplest’ term, where
this term cannot be modified any further from the
rules in the rewriting system.

Unique?
T = {a, b} with rules a=2>b, b=>a. [not unique]

Terms can be rewritten regardless of the choice of

rewriting rule to obtain the same normal form is know
as confluence.

Rewrite Rules
| | e [add1] add(0, X) =X
Numerals e [add2] add(succ(X), Y) = succ(add(X, Y))
Example * [mull] mul(0, X)=0

e [mul2] mul(succ(X), Y) = add(mul(X, Y), Y)

Initial Term T = add(succ(succ(0)), succ(succ(0)))

add (succ (succ(0)), succ (succ(0)))

l [add2]
succ { add (succ(0), succ (succ(0)))])
l [add2]

succ (succ {add (0, succ (succ(0))))))

l [add1]

succ (succ (succ (succ(0))))

Rewrite Rules
* [double neg. Eli.] ——p =p
Logic - [>El] 0> q=—pV Q
& * [De Morgan’slaws] —(pAQ) = —p V —q
Exainole
'E}A{dmh‘)ub —'(IOVCI) = —p A —(

« [Distributivity] (pAQ)Vr = (pVr)A(QVY)

Initial Term T==(((pAQ) V)2 ——m)

_I('(p/\q)\/l“9 —|—|m)

l [Distributivity]
—(((pVvr)A(QVT))2|—=—m)
l [double neg. eli]

=([(pVNA(QVI)> m

[Eli.]

—(=((pVNA(QVD)) V m)
l [De Morgan’s Laws

ﬁﬁ(p\/r)/\(q\/r)] A —m

[double neg. eli]
(pvDA(QVr) A —m

Initial Term T = not (or(false, and(true, not (false))))

Rewrite Rules

'orl] or(true, true) = true not (or(false, and(true,[not (false))))
or2] or(true, false) =true l [not2]
or3] or(false, true) =true not (or(false,| and(true, true)|))
lord] or(false, false) = false l [and1]
land1] and(true, true) = true not (br(false, true))
[and2] and(true, false) = false for3]
'and3] and(false, true) = false
_ _ not (true)
[and4] and(false, false) = false ot1]
notl] not(true) = false ¢

alse

'not2] not(false) = true

(e B)

Bt hrRN R (R - ~ T ~0(5 : =0 M B) s\ ; Ay Q N o
Exiensions e Uermd Rewriiin ¢

User-defined syntax

Relax the strict prefix format of functions and use
arbitrary notation,

add(0, X) =X == 0+ X=X
and(true, false) === true & false
Conditional rules

One or more conditions are attached that are first
evaluated in order to determine whether the rule should
be applied at all

Traversal function

Reduce the number of rules

) ©
MR

E ..\\,73:"53?\ “7:\\ = :‘ D [, R A I w J APIOR) ‘ D)(aﬁ\f"v”ﬂ : :‘w_tf PR\ (]
XGOS @LF ClRMMERINCENZGLRNRE)

—

Term Rewriting Basics

Knuth-Bendix completion procedure

An algorithm for transforming a set of equations into
confluent term rewriting system. When succeeds, it has

effectively solved the word problem for the specified
algebra

Lindenmayer

Most famously used to model the growth process of
plant development

Thank you |

