
CAS 701

TERM REWRITING

Hong N i

Huan Zhang

Outline

 Motivation

 Introduction

 Rewrite Rules

 Basic Concept

 The TR Algorithm

 Examples

 Thoughts

Motivations

 Suitable for computational processes based on

the repeated application of simplification rules.

 Suitable for tasks like symbolic computation,

program analysis and program transformation.

 Term rewriting helps to solve such tasks in a

very effective and symbolic manner.

Introduction

 Term rewriting: the initial expression is simplified in

a number of rules.

 There is a complex Left-hand side that can be

simplified into the expression appearing at the

right-hand side.

 terms

 variables

Introduction

Rewrite rules

R1

R2

…

Rn

Initial Term T

The Rewriting Algorithm

Normal Form T’

Rewrite Rules

The initial term is gradually reduced…

 An initial expression that is to be simplified.

 Finding a match - there must be a match between
the redex and the left-hand side of the rule.

 redex – reducible expression

 Replacing – the redex in the initial expression is
replaced by the right-hand side of the rule.

The outcome can be called as normal form.

Basic Concepts

 Terms

 Substitution

 Matching

Terms

 Terms are defined in a prefix format

 A single variable is a term, e.g. X, Y or Z

 The function name applied to zero or more arguments is a term,

e.g. add(X, Y)

 Complex hierarchical structures of arbitrary depth

can be defined.

Substitution

 A substitution is an association between variables and

terms.

 For example, {X0, Ysucc(0)}.

 Substitution can be used to create new terms from old

ones.

 For example, using the above substitution and applying it to the

term mul(succ(X), Y) will yield the new term mul(succ(0), succ(0)).

 The basic idea is that variables are replaced by the term

they are mapped to by the substitution.

Matching

 A matching sets as a goal to determine whether two

terms can be made equal.

 For example, the two terms mul(succ(X), Y) and mul(succ(0),succ(0))

match since we can use the substitution {XY, Ysucc(0)} to

make them identical.

 If no such substitution can be found, the two terms

cannot be matched.

Select a redex R in T’

Select a rule li = ri

Match li with R

Yes

No

Yes

Replace R in T` by ri

[substitution]

Yes

Return T’ as result

Set T’ to T

No

No

l1 = r1

l2 = r2

ln = rn

…….

Rewrite
Rules

Initial Term
T

Normal Form
T’

 To get terms rewritten to a ‘simplest’ term, where

this term cannot be modified any further from the

rules in the rewriting system.

 Unique?

 T = {a, b} with rules ab, ba. [not unique]

 Terms can be rewritten regardless of the choice of

rewriting rule to obtain the same normal form is know

as confluence.

• [add1] add(0, X) = X

• [add2] add(succ(X), Y) = succ(add(X, Y))

• [mul1] mul(0, X) = 0

• [mul2] mul(succ(X), Y) = add(mul(X, Y), Y)

Rewrite Rules

Initial Term T = add(succ(succ(0)), succ(succ(0)))

add (succ (succ(0)), succ (succ(0)))

succ (add (succ(0), succ (succ(0))))

succ (succ (add (0, succ (succ(0)))))

succ (succ (succ (succ (0))))

[add1]

[add2]

[add2]

• [double neg. Eli.] p = p
• [Eli.] p q = p ∨ q
• [De Morgan’s laws] (p∧q) = p ∨ q

(p∨q) = p ∧ q
• [Distributivity] (p∧q)∨r = (p∨r)∧(q∨r)

Rewrite Rules

Initial Term T = (((p∧q)∨r)m)

(((p∧q)∨r) m)

(((p∨r)∧(q∨r)) m)

(((p∨r)∧(q∨r))m)

(((p∨r)∧(q∨r)) ∨ m)

[Eli.]

[double neg. eli]

[Distributivity]

(p∨r)∧(q∨r) ∧ m

[De Morgan’s Laws

(p∨r)∧(q∨r) ∧ m

[double neg. eli]

• [or1] or(true, true) = true

• [or2] or(true, false) = true

• [or3] or(false, true) = true

• [or4] or(false, false) = false

• [and1] and(true, true) = true

• [and2] and(true, false) = false

• [and3] and(false, true) = false

• [and4] and(false, false) = false

• [not1] not(true) = false

• [not2] not(false) = true

Rewrite Rules

Initial Term T = not (or(false, and(true, not (false))))

not (or(false, and(true, not (false))))

not (or(false, and(true, true)))

not (or(false, true))

not (true)

[or3]

[and1]

[not2]

false

[not1]

 User-defined syntax

 Relax the strict prefix format of functions and use

arbitrary notation,

 add(0, X) = X 0 + X = X

 and(true, false) true & false

 Conditional rules

One or more conditions are attached that are first

evaluated in order to determine whether the rule should

be applied at all

 Traversal function

 Reduce the number of rules

 Term Rewriting Basics

 Knuth-Bendix completion procedure

 An algorithm for transforming a set of equations into

confluent term rewriting system. When succeeds, it has

effectively solved the word problem for the specified

algebra

 Lindenmayer

Most famously used to model the growth process of

plant development

Thank you !

