Fadil AI Turki

An Escape!

How do we read this:

$$
R=\{A \mid A \text { not } \in A\} ?
$$

R is the set of all sets that do not contain themselves as members

Russell's Paradox

$\mathbf{R} \in \mathbf{R} \Leftrightarrow \mathbf{R}$ not $\in \mathbf{R}$

Attempts to a new Foundation of Mathematics

Set Theory is the foundation Mathematics..

- Ernst Zermelo: (ZFC) : more Axioms to Frege's
- Russell's Type Theory
- Alonzo Church: λ - Calculus
- and others..

Alonzo Church 1903-1995

In the 1930's

- Tried to base mathematics on functions .. not on sets
- a new tool for investigating recursion theory
- a new paradigm : Funcitonal Programming

> Alan Turing 1912-1954

At the same time!

- Godel's arithmetic formal language \rightarrow Turing Machines
- \rightarrow Theory of Computation
- Entscheidungsproblem : Decision Problem
- Halting Problem illustrated undecidable
- Church-Turing Thesis
- Turing Machines $\Leftarrow \boldsymbol{\lambda}$ - Calculus

Church vs Turing

Church

- Invented a Formal System
- Defined what is a computational function in the system

Turing

- Invented a set of machines
- Defined what is a computational function via the machines
\rightarrow Functional Programming
\rightarrow Imperative Programming

What is λ - Calculus?

- Formal System
- Investigates:
- Funciton Definiton
- Funciton Applicaiton
- Recursion

Some Feel the Calculus

- an Expression = a function with 1 argument
- an Argument = a function with 1 argument
- value of a function = a function with 1 argument

Some Feel of the Calculus

Functions:

- Have no names
- Define expressions (actions) applied to arguments

How Does it Look Like?

(λ x.x) 3

function arg exp applied to

Formal Definition

- V : a variable - idenitifer
- $\boldsymbol{\lambda}$ V.E : an abstraction (definition)
- V: variable
- E: lambda expression
- E E`: an application of \(E\) with an agrument \(\mathbf{E}^{`}\)

Some Examples

- $(\lambda x . x) a=a$
- ($\lambda x . y) a=y$
- (λ x.xa) $a=a a$
- (λ x.xx) a = aa
- $(\lambda x . x x)(\lambda$ y.y $)=(\lambda$ y.y $)(\lambda$ y.y $)$

Free and Boound Variables

- Variables are either free or bound
- $\lambda \mathbf{x} . \mathbf{x y}$: \mathbf{x} : bound, \mathbf{y} : is free
- \mathbf{x} is associated to a $\boldsymbol{\lambda}$

Free and Bound Formally

Free Variables in $\boldsymbol{\lambda}$ are defined inductively:

- in an expression V (a variable): V is free
- in an expression $\boldsymbol{\lambda}$ V.E: all occurrences are free in E except for \mathbf{V}. Here, \mathbf{V} is bound.
- in an expression E E', free occurrences are all free occurrences in \mathbf{E} and $\mathbf{E}^{`}$

Free and Bound Examples

-(λ xy.yx) (λ x.y)
-(λ x.zx) (λ y. $y x)$

Changing Bound Variables

α - conversion

- a means to rename bound variables
- $\lambda x . x \rightarrow \lambda y . y$
- $\lambda x . \lambda x . x \rightarrow \lambda$ y. $\lambda x . x$
- $\lambda x . \lambda x . x \rightarrow \lambda$ y. $\lambda x . y$ (diff meaning!)

α - Conversion

α - conversion rules are not trivial

- renamed vars are those bound to the same abstraction

$$
\lambda x . \lambda x . x \rightarrow \lambda y . \lambda x . y
$$

- not possible if a var is captured by another abstraction

$$
\lambda x . \lambda y . x \rightarrow \lambda y . \lambda y . y
$$

Replace vars with Expressions

Substitution

Replace a variable \mathbf{V} with $\mathbf{E}^{`}$, whenever V is free in E.

For $\boldsymbol{\lambda}$ V.E

$$
E[V:=E]
$$

Substitution

Rules are defined inductively:

1. $V[V:=E]==E$
2. $W[V:=E]==W$, if W and V are different
3. (E1 E2) $[V:=E]==(E 1[V:=E] E 2[V:=E])$
4. $\left(\lambda \vee . E^{\prime}\right)[V:=E]==\left(\lambda \vee . E^{\prime}\right)$
5. ($\left.\lambda \mathrm{W} . E^{\prime}\right)[V:=E]==\left(\lambda W\right.$. $\left.E^{\prime}[V:=E]\right)$, if V and W are different and W is not free in E.
6. $\left(\lambda W\right.$. $\left.E^{\prime}\right)[V:=E]==\left(\lambda W^{\prime}\right.$. $\left.E^{\prime}\left[W:=W^{\prime}\right]\right)[V:=E]$, if V and W are different and if W^{\prime} is not free in E.

Function Application

β-Reduction
$(\lambda \mathrm{V} . \mathrm{E}) \mathrm{E}^{`} \rightarrow \mathrm{E}\left[\mathrm{V}:=\mathrm{E}^{`}\right]$

Some Conventions

- $\lambda x y \ldots z . E \equiv \lambda x(\lambda y(\ldots(\lambda z E)): 1$ arg in pure lambda
- EAB..Z \equiv (...((MA)B)...Z) : Left Associative
- Parathesis are for Clarity

Extensionality

- 2 functions are the same \Longleftrightarrow they give same resutls for all arguments
- known as $\boldsymbol{\eta}$ - conversion
- convert between $\boldsymbol{\lambda x} . \mathrm{fx}$ and f if x is not free in f.
- conversions may not be equivelent
- a program $\boldsymbol{\lambda} \mathbf{x . f x}$ terminates while \mathbf{f} does not!

How about Paradoxes?

- $\boldsymbol{\lambda}$-Calculus could not avoid the set-theoritic paradoxes
- It was a fresh air.. and brought up the new paradigm of functional programing..
- It is a minimilistic programing lanuagage.
- Used to study computibility.
- There is a lot more in $\boldsymbol{\lambda}$-Calculus

Thank You

More on $\boldsymbol{\lambda}$-Calculus:

- Wikipeida
- http://mathworld.wolfram.com
- http://planetmath.org
- A Tutorial Introduction to the Lambda Calculus by Ra'l Rojas
- A short introduction to the Lambda Calculus Achim Jung

Image: http://www.gravestmor.com

