McMaster University
 CAS 701
 Department of Computing and Software
 Fall 2007
 Dr. W. Kahl
 Exercise Sheet 2

 CAS 701 - Logic and Discrete Mathematics in Software Engineering

 CAS 701 - Logic and Discrete Mathematics in Software Engineering}

17 October 2007

1 Lattice Basics

Lattices can be defined as ordered sets of the form (L, \leq) or as algebras of the form (L, \vee, \wedge). Work out the details to show that these two ways to define the notion of lattice are equivalent.

2 Sublattices

(a) Define "sublattice".
(b) List all different (i.e., non-isomorphic) sublattices of M_{3}.
(c) List all different sublattices of N_{5}.

N_{5}

M_{3}

3 Distributive Lattices

Let L be a lattice. Prove that the following are equivalent:
(a) The equation $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$ holds in L.
(b) The equation $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$ holds in L.
(c) The equation $(x \vee y) \wedge(x \vee z) \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \vee(y \wedge z)$ holds in L.
(d) L has no sublattice isomorphic with N_{5} and no sublattice isomorphic with M_{3}.

4 Join-irreducibility [Burris-Sanka. 1.1.10]

If L is a finite lattice, show that every element is of the form $a_{1} \vee \ldots \vee a_{n}$ where each a_{i} is join-irreducible.

5 Ideals [Burris-Sanka. 1.2.5 and 1.3.2]
If L is a lattice, then

- a lower segment of L is a downward-closed subset $S \subseteq L$, i.e., whenever $s \in S$ and $x \in L$ with $x \leq s$, then $x \in S$;
- an ideal of L is a nonempty lower segment that is closed under \vee.

Show that the set $I(L)$ of ideals of L forms a lattice under with the ordering \subseteq. Show that, if L is distributive, then the lattice $(I(A), \subseteq)$ is distributive, too.

