McMaster University Department of Computing and Software Dr. W. Kahl

CAS 701 Fall 2007 Exercise Sheet 2

CAS 701 — Logic and Discrete Mathematics in Software Engineering

17 October 2007

1 Lattice Basics

Lattices can be defined as ordered sets of the form (L, \leq) or as algebras of the form (L, \vee, \wedge) . Work out the details to show that these two ways to define the notion of lattice are equivalent.

2 Sublattices

- (a) Define "sublattice".
- (b) List all *different* (i.e., non-isomorphic) sublattices of M_3 .
- (c) List all *different* sublattices of N_5 .

3 Distributive Lattices

Let *L* be a lattice. Prove that the following are equivalent:

- (a) The equation $x \land (y \lor z) = (x \land y) \lor (x \land z)$ holds in L.
- (b) The equation $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ holds in L.
- (c) The equation $(x \lor y) \land (x \lor z) \land (y \lor z) = (x \land y) \lor (x \land z) \lor (y \land z)$ holds in L.
- (d) L has no sublattice isomorphic with N_5 and no sublattice isomorphic with M_3 .

4 Join-irreducibility [Burris-Sanka. 1.1.10]

If L is a finite lattice, show that every element is of the form $a_1 \vee \ldots \vee a_n$ where each a_i is join-irreducible.

5 Ideals [Burris-Sanka. 1.2.5 and 1.3.2]

If L is a lattice, then

- a lower segment of *L* is a *downward-closed* subset $S \subseteq L$, i.e., whenever $s \in S$ and $x \in L$ with $x \leq s$, then $x \in S$;
- an **ideal** of L is a nonempty lower segment that is closed under \vee .

Show that the set I(L) of ideals of L forms a lattice under with the ordering \subseteq . Show that, if L is distributive, then the lattice $(I(A), \subseteq)$ is distributive, too.