
Assurance via model transformations and their hierarchical
refinement

Zinovy Diskin, Tom Maibaum, Alan Wassyng, Stephen Wynn-Williams, Mark Lawford
McMaster University, McMaster Centre for Software Certification, Hamilton, Canada

{diskinz,maibaum,wassyng,wynnwisj,lawford}@mcmaster.ca

ABSTRACT
Assurance is a demonstration that a complex system (such as a car
or a communication network) possesses an importantproperty, such
as safety or security, with a high level of confidence. In contrast to
currently dominant approaches to building assurance cases, which
are focused on goal structuring and/or logical inference, we propose
considering assurance as a model transformation (MT) enterprise:
saying that a system possesses an assured property amounts to
saying that a particular assurance view of the system comprising
the assurance data, satisfies acceptance criteria posed as assurance
constraints. While the MT realizing this view is very complex, we
show that it can be decomposed into elementary MTs via a hierar-
chy of refinement steps. The transformations at the bottom level are
ordinary MTs that can be executed for data specifying the system,
thus providing the assurance data to be checked against the assur-
ance constraints. In this way, assurance amounts to traversing the
hierarchy from the top to the bottom and assuring the correctness
of each MT in the path. Our approach has a precise mathematical
foundation (rooted in process algebra and category theory) — a ne-
cessity if we are to model precisely and then analyze our assurance
cases. We discuss the practical applicability of the approach, and
argue that it has several advantages over existing approaches.

KEYWORDS
Assurance case, Model transformation, Block diagram, Decomposi-
tion, Substitution
ACM Reference Format:
Zinovy Diskin, Tom Maibaum, Alan Wassyng, Stephen Wynn-Williams,
Mark Lawford. 2018. Assurance via model transformations and their hierar-
chical refinement . In Proceedings of ACM Models conference (MODELS’18).
ACM, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
We understand assurance to be a demonstration that a complex
system such as a car or a communication network possesses an
important complex property such as safety or security with a suffi-
ciently high level of confidence. We then write S |= Passr, where S
stands for the system and Passr for the property; we say S satisfies
Passr or Passr holds for S . A technically more accurate formulation
would say that S satisfies Passr with acceptably high confidence if
the system is used as intended. Exploiting the idiom of a system of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS’18, Oct 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

systems for complex systems, we can say that assurance is about
property-of-properties of system-of-systems.

A standard (and perhaps the only) practical engineering way
to manage complexity is decomposition of the problem into sub-
problems; these subproblems are then themselves decomposed and
so on, until a set of “atomic” problems whose solution is known
is reached. The solution to the subproblems is then combined in
a pre-determined way to solve the original problem. Different re-
alizations of this idea for different contexts and in different terms
are abundant in engineering, science, mathematics, and everyday
life. Not surprisingly, the decomposition idea is heavily employed
for building assurance cases (ACs) — documents aimed at demon-
strating S |= Passr, which are written by the manufacturer of S and
assessed by certifying bodies1. Building ACs based on decompo-
sition is now supported by several notations and tools, primarily
Goal-Structuring Notation (GSN) and Claims-Arguments-Evidence
notation CAE. These methods and tools [1, 29] are becoming a de
facto standard in safety assurance.

The combination of two ideas — delegating the assurance argu-
ment to the manufacturer and the decomposition approach outlined
above — gave rise to the growing popularity of ACs, which have
lately emerged as a widely-used technique for assurance justifi-
cation and assessment (see, e.g., surveys [3, 25] on safety cases.).
While we do believe in the power of both ideas, we think that
the way of leveraging decomposition for assurance in GSN and
CAE diagrams is confusing for two reasons. First, users of these
notations typically intermix two decomposition hierarchies: func-
tional/goal decomposition and logical decomposition, i.e., inference
[5]. Second, data and dataflow, which we will show are crucially
important for assurance, are left implicit in GSN/CAE-diagrams.
While keeping dataflow implicit may (arguably) be acceptable for
documenting design activities, it is definitely not acceptable in as-
surance and essentially diminishes the value of GSN/CAE-based
assurance cases.

We propose another decomposition mechanism based on model
transformations. The idea is based on three observations 1-3) de-
scribed below.

1) We notice that saying S |= Passr means that data about the sys-
tem relevant for assurance, Dassr, satisfy some relevant constraints,
Cassr; that is, we define S |= Passr to be the statement DS

assr |= Cassr,
where |= can be read as either satisfies or conforms to – a phrasing
often used in the context when properties are seen as constraints.
To simplify notation, below we will omit the superscript S if it is
clear from the context. Importantly, data Dassr are to be computed
from “raw” data about the system D0 (think of physical parameters
of a car, or technical parameters of a network) rather than being

1The latter can be an independent agency or a group of experts at the manufacturer
disjoint from the AC writers.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

MODELS’18, Oct 2018, Copenhagen, Denmark Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, M. Lawford

Massr

Fassr

Cassr

Conclusion

System
Metamodel

Assr. view definition
Fassr: M --> Massr

(hierarchically
decomposed)

Exe(|=)
Assr. View

Design

Exe(Fassr)

SystemData

dataItem

con-
forms

Assr.Data

Assr. Data
Metamodel

dataItem

Figure 1: MTBA Architecture of Assurance

given immediately:Dassr = fassr(D0), where fassr refers to an assur-
ance function that inputs the raw system data and returns assurance
data. Thus, the top assurance claim S |= Passr is rewritten as a data
conformance statement fassr(D0) |= Cassr.

2) Next we notice a principal distinction between a definition
and an execution of a function, which is important for assurance.
Function fassr can be seen as an execution of a model transforma-
tion (MT) definition Fassr for data D0, i.e., fassr(D0) = F exeassr(D0).
Also, MT are defined over metamodels and can even be specified
as mappings Fassr: M0 → Massr (see [9]), whereM0 andMassr are
metamodels for, respectively, system data and assurance data. Thus
assurance can be seen as a special view of the system, where Fassr
is the view definition and fassr(D0) is the view execution. Below
we will often call transformation Fassr an assurance view. Moreover,
as metamodels typically include constraints, we can include assur-
ance constraints Cassr inMassr and thus reformulate the assurance
problem S |= Passr as a typical MT problem: does the result of a
transformation satisfy some predefined constraints encoded in the
target metamodel?

The workflow described above is specified in Fig. 1 as a block
diagram, whose nodes, shaped as directed rectangles, refer to pro-
cesses/functions and rounded rectangles refer to (meta)data; as
usual, data consist of a structure of data items that conforms to the
metamodel (think of a data graph typed over the type graph so that
the constraints are satisfied). Arrows show the dataflow in and out
of processes. The diagram also shows a new Assr. Design Block
discussed below.

3) In typical assurance domains such as safety, functions fassr
are extremely complex and from different analyses (hazard and risk
assessment and the like), whose results are subjected to complex
verification and validation procedures. Hence, the correctness of
fassr’s definition Fassr is a major issue. Here is where our third
observation applies: the decomposition mechanisms successfully
applied in those domains where functional block diagrams are used,
such as signal processing and control theory (any block can be
substituted by a block diagram with the same input and output
ports), can be applied for MTs – indeed, functional blocks are trans-
formations. Thus, we can decompose Fassr into smaller and smaller
components until we reach the level of simple functions whose
correctness can be verified by simple means. If all decomposition
steps are properly validated, and the execution of all transforma-
tion at the bottom of the hierarchy is properly verified, we can
assure that the entire top transformation Fassr has been properly
executed and produced correct results Dassr. The final constraints
check of Exe(|=), i.e., whether Dassr |= Cassr, is usually a simple

procedure whose assurance is not problematic. 2 Thus, assurance
can be viewed as establishing the correctness of a complex model
transformation via its hierarchical decomposition – hence, the title
of the paper. We will refer to the framework outlined above as the
Model-Transformation Based Assurance (MTBA).

Our plan for the paper is as follows. In the next section, we
present an overall view of MTBA, and based on it, explain the
content of the technical part of the paper (Sect. 3, 4 and 5). Sect. 6
is a discussion of the possible practical applicability of MTBA. Sect.
7 is Related and Future work, and Sect. 8 concludes.

2 MTBA IN A NUTSHELL
Many assurance techniques rely on requirement decomposition: the
high-level assurance requirements for the system are decomposed
into the corresponding requirements for subsystems and further
on until we reach the level of elementary components. (E.g, in
safety assurance, these high-level requirements are called safety
goals, in privacy protection – standardized NIST controls, and in
security, the set of system level requirements is specified in the
Protection Profile—a document identifying security requirements
for a class of security devices.) The decomposition is mainly based
on design patterns and supported by mathematical models so that
the assurance argument can be close to formal, if the mathematical
complexity is manageable, or is supplemented by testing and/or
model checking and similar techniques otherwise. We will refer to
this part as inferential assurance (IA).

Yet, however successfully we manage to decompose each system
level goal, the system goals must themselves be validated to ensure
that they are suitable (e.g., complete)—indeed, any formal procedure
begins with assumptions taken for granted (cf. axioms of ancient
Greeks). The only way to “prove” such assumptions is to rely on
observational or experimental techniques. Indeed, an assurance
case must have all assumptions validated through experimental
evidence - no loose ends! Often, this experimental justification is
validated by previous experience and expert opinion, but the use of
such expertise has to be properly organized and documented, and is
based ultimately on observational information. We will refer to this
aspect of assurance as procedural assurance (PA), since it consists
of well organized and disciplined procedures (hazard analysis in
safety assurance, security and privacy threat analyses) that can
provide enough confidence in the result.

Finally, having validated the top set of requirements and their
decomposition, to assure the correctness of the entire assurance
view execution, we need to verify the correctness of computations
at the very bottom level. E.g., we need to be sure that the library
of linear algebra operations we used for building the case was
properly tested, and the computer where this library runs does not
have hardware problems that could affect the results. We will refer
to this part of the procedure as computational assurance (CA).

Separating assurance into three parts IA, PA, and CA is not ab-
solute. They are interwoven, and procedural aspects are important

2If the last check result is negative, traceability links that are assumed to be maintained
by all operations and processes involved, would allow us to locate the source of
assurance violation.

Assurance via model transformations and their hierarchical refinement MODELS’18, Oct 2018, Copenhagen, Denmark

in all assurance activities so that IA and CA are (or should be) em-
bedded in PA. However, these terms are convenient for referencing
specific aspects of assurance.

In the next section, we consider a simple example illustrating the
notions discussed above but specifically tailored to show intricacies
of the procedural assurance and the value and role of metamodel-
ing. In Sect. 4, we consider the inferential assurance with a simple
example of embedded software safety, and show how signal pro-
cessing can be formalized in algebraic terms of tensor categories
developed by the category theory community. Sect. 5 summarizes
these ideas and shows how the hierarchical structure of assurance
can be mathematically specified and reorganized on algebraic foun-
dations borrowed from data refinement, program refinement and
model transformation. We thus obtain a common mathematical
foundation for assurance, making it amenable to solid computer
support – after all, MT is a well developed technological domain.

3 PROCEDURAL ASSURANCE (PA)
The inferential assurance part of the example of this section is very
simple, at least in our toyish view of the case, but the procedural
part is interesting enough to demonstrate the nature of procedural
assurance.

3.1 Getting started
Suppose a financial consulting agency advises its clients on how
much money they should keep to sustain a desirable life level for a
specified time period without a paycheck. To obtain a license, the
agency needs to submit to a government regulator an AC demon-
strating that policies the agency suggests do ensure financial se-
curity for its clients. A real AC would be a complex document
specifying the procedure of computing a boolean value based on
the data about the client including spending habits, about client’s
assets and expenses, and about the investment market.

Person
rskType: {c,m,r}
edType: {h,m,l}
critTime: int
/assets: real
/expns: real
/safetyMargin: int
/safe: Bool

System (meta)model

1..*

Account
type: {c,s,mm}
balance: real

Expense
cost: real

owns

mand

opt 0..*

1..*

Figure 2: Metamodel for the
example

Wewill consider an overly
simplified model of such a
case based on themetamodel
in Fig. 2. The system of inter-
est comprises a client (per-
son) X with X ’s banking ac-
counts and expenses, while
its environment comprises
employment and the invest-
ment market, which affect
X ’s assets, and other factors
affecting the expense cost.
Only three attributes of class Person are shown: rskType describes
the financial behaviour type of a person — cautious, reckless, or
medium (in-between); attribute edType evaluates the education
level — high, low, or medium, which, supposedly, affects the em-
ployability of the client; and attribute crit(ical)Time provides the
number of months the client wants to support her level of living
without a paycheck. The two other classes and three associations
in the metamodel are self-explainable (the type of account can be
Checking, Saving, or Money Market).

The assurance function fassr consists of two functions, fasset
and fexp, which compute X ’s assets and expenses in some way —

more or less straightforward for assets and possibly complicated
for expenses. (These functions are shown as operations ‘assets’ and
‘expns’ in the class diagram.) The agency evaluates the financial
situation of client X as acceptably secure if, for some some safety
margin sMargin (e.g., 50%),

((X .assets − X .expns)/X .assets) ∗ 100% > sMargin (Cassr)

Thus, assurance data for X is a triple of values

Dassr = (fasset(D), fexp(D), fsMargin(D))

with D being the system’s data, which are subjected to the final
conformance check w.r.t. assurance constraintCassr specified above.

Finding proper definitions Fasset, Fexp, and FsMargin for the cor-
responding functions above may be an issue, especially for Fexp
and FsMargin. Decomposition based on previous experience and
design patterns found are normally used in such inferential assur-
ance problems – we will discuss this in more detail in Sect. 4. For
the present section intended to show intricacies of the procedural
assurance, we first notice that the rskType attribute of a person,
which is an important input for the functions above, is actually
not a raw data item and to be evaluated based on some non-trivial
analysis rather than computed. Fig. 3 presents a simple model of
such an analysis. Any client has to engage in an interview, in which
her financial information is collected; in addition, the client fills-
in a questionnaire about her financial behaviour, which is then
carefully examined and evaluated and results in establishing the
client’s rskType and criticalTime. Perhaps, one or two more iter-
ations are needed (note the feedback loop). These data then go
to the computational/inferential blocks Fexp and FsMargin, which
finally compute assurance data Dassr typed over the metamodel
Massr. The assurance constraintCassr is specified as an invariant; in
this way, the agency can monitor the situation (which can change
as the environment changes) and make sure that all its client are
financially safe (e.g., by setting triggers and actions on the violation
of the constraint).

Note an important feature of the dataflow shown in Fig. 3: the
four metamodels in different data-places are interrelated: the class
Person they refer to is to be the same class, and there may be more
complex relationships if more complex structures are involved –
we will see that this is indeed the case in the next subsection.

3.2 Procedural assurance in practice
Within our model described above, the behavioural type of a person
(modelled by rskType), i.e., whether she is financially cautious or
reckless or in-between, is an important datum for assuring financial
security. However, assigning such a type for a client X may be a
challenging issue as people behave differently in different contexts.
Why did we assume that having three types is sufficient to compute
a reliable assurance criterion, while perhaps, we need a 5-valued
scale? Or maybe we need to consider the behavioural type as a com-
pound attribute consisting of several subtypes and “measured” by a
tuple of values? Whatever choices we have made for assigning such
a type to X , its correctness cannot be formally proved. However,
we can try to justify the assignment by referencing an established
assignment procedure.

A simple model of such a procedure is shown in Fig. 4 as a hybrid
diagram that combines workflow and structural metamodel-based

MODELS’18, Oct 2018, Copenhagen, Denmark Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, M. Lawford

Figure 3: The process in detail

Figure 4: Workflow and metamodels together

specifications. Formally, it is a metamodel but classes annotated
with stereotype ‘process’ (green with a color display) are actually
instantiated with executions of the respective processes and can
be considered as graphs of the respective “functions”. Directed
association into and from these classes show dataflow channels
while purely structural associations are undirected. We consider
that a client should only pass one Interview (for simplicity, feedback
loops specified in Fig. 2 are not allowed), which is conducted by a
trained Personnel, and fills-in two Questionnaires, each one being
based on a Method developed by a certified Agency. The rskType
assignment is the result of an Evaluation, and the commutativity
constraint [=] declares that the resulting rskType is an attribute
of that person who passed the interview – a precise description is
given by the OCL constraint on the top-left.

The Interview is Evaluated by an Expert, who should be trained
in the Methods used for developing the Questionnaires used in the
Interview. We require that two questionnaires used in an interview
were based on different methods. To specify this constraint, we first
specify a derived association ‘foundedOn’ from class Evaluation
to class Method as sequential composition of two associations as
specified by the OCL query in the top-middle of the diagram (blue
with a color display). Note that the derivable multiplicity of this
association is to be 1..2 as two questionnaires can be based on the

same method. To exclude such a case, we replace the derived multi-
plicity 1..2 (crossed-out in the diagram) by multiplicity 2. Finally,
to ensure that the Expert is indeed trained in using the methods
the questionnaires are based on, we add to the metamodel the con-
straint [subset], which states that for an evaluation self , we require
that set of methods self .foundedOn (= self .uses.basedOn) to be a
subset of self .doneBy.trainedIn (the OCL constraint in the top-right
of the diagram). We see that an accurate description of a relatively
simple procedural assurance activity needs complex metamodels
with complex constraints.

A similar narrative is undertaken for justifying the assurance
constraintCassr considered in Sect. 3.1.We need amethod for setting
the safety margin sMargin. We need an analysis of what constraints
(assurance goals) we should use to make our assurance case more
reliable. For example, we may need to require at least 75% of the
client assets to be placed in low risk investment funds, which at
once brings the issues of assuring that 75% is an acceptable fraction,
and that the estimation of low-medium-high risks of the investment
funds involved was done by a certified agency and/or is based on
another reliable source. Yet another similar constraint is to require,
say, 90% of the assets to be insured by a Federal Regulator. Then our
set of assurance goals would consist of three constraints, but the
issue of completeness of this set still persists and, of course, cannot

Assurance via model transformations and their hierarchical refinement MODELS’18, Oct 2018, Copenhagen, Denmark

be proved formally. We can, again, only rely on the procedure that
would lead us to yet another complex metamodel with complex
constraints similar to that one discussed above.

Note also that Fig. 3 actually encodes a small decomposition
hierarchy: we may make a step towards more abstract workflow
by considering blocks F and P as black-boxes and correspondingly
hiding the inner structure of their input and output metamodels.
We can make one more step up by framing blocks F and P into
one block “processRawData” with corresponding input and output
metamodels consisting of single classes: “rawData” and “assurance-
Data”.

4 INFERENTIAL ASSURANCE (IA)
We will consider the inferential part of ACs with a simple example,
and show how our main machinery—decomposition of a top assur-
ance claim into a hierarchy of refinement steps—works. Sect. 4.1
describes a simple example of goal decomposition done “manu-
ally” due to its simplicity, and demonstrate how convenient it is to
use block diagrams (BDs) for system decomposition. In Sect. 4.2,
we show how such a decomposition can be encoded algebraically
by term substitution by using standard categorical techniques. In
Sect. 4.3, we combine system and goal-requirement decompositions
into a hierarchy of what we call inferential steps and demonstrate
that wiring (and dataflow over it) is a crucial component of the
entire inferential system (a.k.a. assurance argument flow), which
makes an essential distinction from standard GSN/CAE approaches.

4.1 Design via block diagrams

Figure 5: Adaptive Cruise Control

We will consider an oversimplified model of an embedded soft-
ware system for Adaptive Cruise Control (ACC), designed to main-
tain the speed of the host car while remaining a safe distance away
from the front (also called leading) vehicle. We choose to model a
system that is intelligent enough to determine for itself the min-
imum distance required to come to a complete stop. The block
diagram in Fig. 5(a) shows a high level view of the entire system
(the host car in this case). The diagram consists of functional ele-
ments or blocks (e.g., ACC, Pwt, etc.), their interfaces (input and
output ports), and the flow of data between them (wires). The sen-
sors observe the environment and react according to the velocity
v of the vehicle (Sensor 2), and the distance d to the nearest ob-
struction ahead of it (Sensor 1). The sensors produce their estimates
of these values (v∗ and d∗ respectively) which are routed to the
ACC system along with the desired speedvset, and some data about
the road and tires Dr−t (road conditions, tire pressure, etc.). This
information is used to determine an appropriate value for the elec-
trical signal q which is sent to the powertrain in order to accelerate
(or decelerate) the car. The main functional requirement of ACC is
to keep velocity v equal to vset up to some acceptable margin as
specified by condition (R1vset : ACC) below.

v ≈ vset with some functional margin (R1vset : ACC)

However, ACC is a safety critical system, and in addition to func-
tional requirements, it must satisfy a number of safety requirements.
For example, in order to avoid a collision with the leading car (e.g.,
if it suddenly and abruptly stops due to some force majeure) the
distance kept by ACC is to be big enough to allow the full stop of
the host car as specified by condition (R1br : ACC).

d ≥ dbrake with some safety margin (R1br : ACC)

To ensure the two conditions are satisfied, we decompose ACC into
components, “decompose” the requirements into (sub)requirements
for the components, and show that if the atomic components meet
the atomic requirements, then ACC meets the “top” requirements
above. The architecture of ACC is shown in Fig. 5(b1): it consists
of two control units, ECU1 and ECU2.

ECU1 provides fulfillment of ACC’s functional requirement,
which is formalized as shown in (R2vset : ECU1): ECU1 takes the
required data and outputs the corresponding electric signal q1 for
the Motor. It may employ standard feedback control techniques
(via Sensor2) to ensure condition (R2vset : ECU1) holds.

vset − ∆fun ≤ v ≤ vset + ∆fun (R2vset : ECU1)

ECU2 is designed to ensure ACC satisfies its safety requirement
(R1br : ACC) by satisfying the (sub)requirement (R2br: ECU2), where
∆safe is some predefined safety margin.

d ≥ dbrake + ∆safe (R2br: ECU2)

To achieve this, ECU2 is itself decomposed into two functional
blocks as shown in Fig. 5(c). Block Fun1 is responsible for computing
an estimate of the braking distance d∗brake for the given velocity and
road-tire conditions in such a way that the condition (R3br:Fun1)
is met (where dbrake is the unknown real braking distance).

if data Dr−t accurate, then d∗brake > dbrake (R3br:Fun1)

MODELS’18, Oct 2018, Copenhagen, Denmark Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, M. Lawford

Block Fun2 compares this distance with distance d∗ up to some
safety margin ∆safe, and if d∗ ≥ d∗brake + ∆safe, Fun2 does noth-
ing and transmits the electric signal obtained from ECU1 without
change, q = q1. However, if the inequality above is violated, Fun2
overrides q1 and outputs an alternate value (Qbr) which ensures the
car will slow down. In this way, if the path of the car is obstructed,
ECU2 prevents a collision (and sends an alarming signal to the
dashboard, which we didn’t include into the diagram to keep it
simple).

if d∗ ≥ d∗brake + ∆safe then q = q1
else q = Qbr (R4br:Fun2)

Finally, if the last two requirements, (Rd: Sen1), and (Rv: Sen2), for
Sensors 1 and 2 are satisfied, an easy deduction over inequalities
allows us to conclude that safety requirement (R1br : ACC) is satis-
fied (the assumption that if v∗1 > v

∗
2 then d∗brake(v1) > d∗brake(v2) is

taken for granted).

d > d∗ (Rd: Sen1)
v∗ > v (Rv: Sen2)

Thus, we have decomposed the system into subsystems and
the top safety goal into (sub)requirements, and proved that the
system meets its safety goal as soon as the subsystems satisfy their
requirements.

4.2 The Algebra of Decomposition
Fig. 5 clearly shows the compositional idea behind block diagrams:
a collection of connected components is itself a component, and
in any context where a block is expected, a suitable block diagram
may be used instead. For example on the system architecture level
only the interface of ACC is known, however any block diagram
satisfying that interface (e.g., Fig. 5(b1)) may be used in its place. By
showing that the connection information present in block diagrams
can be achieved by a set of fundamental operations on components,
and that these operations form an algebra over components, this
intuitive substitution can be formalized as algebraic term substi-
tution in that algebra. The operations required to represent this
connection information are now well understood, see, e.g., [2] or
the book [7]; the latter shows that with a certain discipline of draw-
ing block diagrams, intuitive graphical manipulations with them
have precise formal algebraic meaning in the language of various
specialized monoidal categories which we will refer to with the
blanket term tensor categories.

Figure 6: Block diagrams as algebraic terms

An example of representing a block diagram as an algebraic term
is illustrated by Fig. 6. We represent the block (function) Car by

combining its components using three operations: parallel compo-
sition, sequential composition, and feedback. These operations are
used along with three predefined “signal routing” components (Id,
Dup, and Swap) to describe the connections between atomic parts
(ACC, Pwt, etc.). The signal routing components do not modify the
values of the signals, and are therefore drawn in a semi-transparent
way to show the wiring they aim to replace.

To represent the complex term for Car, it is broken down into
sub-terms which are then combined. For example, the sub-term F1
represents the composition of four blocks working in parallel and
is written as: F1 = Id ⊗ Id ⊗ Sensor1 ⊗ Sensor2, where symbol “⊗”
denotes parallel composition (or tensor product in the language of
tensor categories). The interface of this composed block integrates
the ports of the internal blocks. The sub-terms F4 and F5 are defined
similarly.

The sub-term G is the sequential composition of terms Fi : G =
F1; F2; F3; F4; F5 with symbol“;” denoting sequential composition.
In order for two blocks to be composed sequentially, the output
interface of the first block must be compatible with the input inter-
face of the second: indeed, each input port must accept the same
type of data that the corresponding output port produces. The set
of input ports of G is exactly the set of F1’s input ports, and the
set of G’s output ports is the set of F5’s output ports. Finally, the
term Car is G “plus” two feedback loops, which we need to specify
algebraically.

We present an algebraic encoding for adding loops, following
the ideas of the now classical paper [12]. We introduce one more
algebraic operation, Fbk, which connects one output of a compo-
nent to a compatible input. For some block B where signal x is both
an input and an output, we write Fbkx (B) to represent the block
diagram where these two ports are connected. In our example, Car
is written as the term Fbkd (Fbkv (G)), or (finally) as:

Car = Fbkd (Fbkv ((Id ⊗ Id ⊗ Sensor1 ⊗ Sensor2);ACC;
Pwt; (Dup ⊗ Dup); (Id ⊗ Swap ⊗ Id)))

In the language of tensor categories, operation Fbk is called trace.
There are alternative algebraic encodings for feedback loops, many
of which can be encountered in [2] and [27]. Each alternative brings
some additional structure which may (or may not) be useful de-
pending on the application domain.

Figure 7: Wiring
schema

For our purposes, it is sufficient
to write block diagrams as terms
in the following semi-formal way.
For example, we write the block dia-
gram in Fig. 5(b1) as a term ACC =
WACC(ECU1, ECU2) whereWACC is
a pattern (wiring schema) shown in
Fig. 7: its elements are to be un-
derstood as variables of the corre-
sponding types to be substituted by the corresponding con-
stants, e.g., block ACC is obtained by substituting ECU1 for B1,
ECU2 for B2 and vset for x1 etc. Similarly, we can write Car =
WCar(ACC,Pwt, Sensor1, Sensor2), and so on. (This notation can
also be accurately formalized as shown, e.g., in [28].)

Altogether, these formulas define the system design as a term
(in a signature of tensor categories) given by its AST (abstract
syntax tree) as shown in Fig. 8 – ignore the |=-half of the rectangle

Assurance via model transformations and their hierarchical refinement MODELS’18, Oct 2018, Copenhagen, Denmark

Figure 8: System design as an algebraic term

names for a while (e.g., read the label of the top node just as Car).
Diamond nodes (green with a color display) refer to the schema
of wiring the subsystems. The entire diagram is composed from
four decompositions steps shown as grey round rectangles 1...4, and
each steps can be identified by its top system Si so that S1 = Car,
S2 = Pwt etc. It is easy to see that each decomposition step is just
an algebraic equation

Si =Wi (Subi1, ..., Subini) (DSi)

where Subi j refer to subsystems of Si . E.g., S3 =W3(Sub31, Sub32),
where S3 = ACC, Sub31 = ECU1, Sub32 = ECU2 andW3 is given
by Fig. 5(b1) (and can be specified as an algebraic term shown in
Fig. 7).

The AST in Fig. 8 is almost exactly like ordinary ASTs, but with
one important distinction: (rectangle) nodes in the tree correspond
to arrows rather than objects and hence have source and target
data places for data. The data side of the story will be important
for us in Sect. 5.

4.3 From design to logic
4.3.1 Logical flow via inferential steps. The hierarchical diagram

in Fig. 8 — if read with full labels on the rectangle nodes — accu-
rately specifies the story of requirement decomposition described
in Sect. 4.1. The labels of the rectangle nodes are assertions S |= R,
where S is a system and R is a requirement, i.e., a condition S must
meet. Now each of the four decomposition steps is read as an infer-
ence — an inferential step

(Subi1 |= Ri1) ∧ ... ∧ (Subini |= Rini) ⇒ Si |= Ri (ISi)

and the entire diagram can be interpreted as a logical argument/flow
built from four pieces. By making all substitutions (both structural
and logical), we would obtain the following implication

(Sub⊥1 |= R⊥1) ∧ ... ∧ (Sub⊥N⊥
|= R⊥N⊥

) ⇒ S⊤ |= R⊤ (IS⊤)

where Sub⊥j , j = 1...N⊥ are atomic subsystems (Sensor1,...,Motor,
..., Fun2 in our case, for which N⊥ = 8), R⊥j are atomic requirement
(but each R⊥j can be a conjunction consisting of truly atomic sub

requirements R⊥⊥k), and S⊤ is a huge term resulting from all sub-
system substitutions according to the wiring. In our case, S⊤ = Car
and
S⊤ = W1(S1, ...,Pwt, ...,ACC)

= W1(S1,,W2(M,C,W), ...W3(ECU1, ECU2))
= W1(S1,,W2(M,C,W), ...W3(ECU1,W4(Fun1, Fun2)))

where Wi , i = 1..4 are wiring schemas specified in Fig. 5, and
we abbreviate component names to fit the term in one line (S1 is
Sensor1, M isMotor etc). In this way, the diagram in Fig. 8 provides
an inference over the design given by diagram Fig. 5.

Finally, we note that formula (IS⊤) is not accurate as there may
be several top requirements for the top system:R⊤ = R⊤1 ∧. . .∧R

⊤
N ⊤ .

Then (IS⊤) should be refined by conjunction

IS⊤
1 ∧ . . . ∧ IS⊤

N ⊤ ⇒ IS⊤ (IS⊤⊤)

where IS⊤
i is the inferential step

Sub⊥i1|= R⊥i1 ∧ . . . ∧ Sub⊥iN⊥
|= R⊥iN i

⊥

⇒ S⊤|= R⊤i (IS⊤
i)

(one step for every R⊤i).

4.3.2 MTBA vs. GSN. In the current practice of safety assurance,
the argument is typically presented via GSN diagrams [29]. The
latter look like our diagram Fig. 8 (and indeed, we prepared our
diagram with a GSN tool), but semantically different and sometimes
essentially different. We use such a loose formulation as there is no
accepted semantics for GSN diagrams and different users may (and
do) understand them differently (cf. [6]). However, two essential
deficiencies of the current practice of using GSN diagrams seem
to be rather common: a) system/requirement decomposition and
logical inference are intermixed in an unordered way (sometimes
merged, sometimes interleaved) while our analysis shows they
should go in parallel, b) wiring, and hence dataflow, are implicit:
while this can be (arguably) okay for design, it is unacceptable for
safety assurance!

5 DECOMPOSITION AS MODEL
TRANSFORMATION REFINEMENT

Our mostly procedural assurance case in Sect. 3 comprised a rela-
tively simple workflow and rich structural data specified by meta-
models with OCL-constraints. In contrast, the inferential assurance
case in Sect. 4 is a complex workflow specifiable by ordinary block
diagrams over very simple data types. Indeed, while a signal is a
complex dynamic entity, its static structure is very simple and is
given by its type, e.g., a distance has type RTTT – the class of real-
valued functions defined on set TTT understood as the set of time
moments, e.g., in many cases,TTT = R. Thus, data typically managed
by a block diagram have a very simple static structure – they are
either signals or tuples of signals, e.g., have type RnTTT , and hence the
metamodeling machinery is not necessary. The goal of this section
is to outline a specification frameworkin which our main machin-
ery – decomposition – can be done uniformly for both types of
assurance models. In other words, we need a general decomposition
procedure that smoothly integrates data/structure refinement and
behaviour refinement. Conceptually, the MT framework is a good
fit – MTs are complex behaviors that operate on rich data specified
by metamodels, but important technical details have to be found

MODELS’18, Oct 2018, Copenhagen, Denmark Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, M. Lawford

and accurately specified. Particularly, we will see that treating a
decomposition step as an MT refinement links our subject to the
classical area of program refinement.

In the next subsection we will discuss how functional blocks can
be specified as MTs, and in Sect.5.3 a unified framework is outlined.

5.1 From block diagrams to MTs
We will begin with a brief sketch of metamodeling to fix our nota-
tion and terminology. A metamodel is a pair M = (GM ,CM) with
GM a graph of classes and associations (with a typical additional
structure offered, say, by UML class diagrams) and CM a set of
constraints (written in, say, OCL). We will often omit the subindex
M if it is clear from the context. A data instance or a model overM
is a pair D = (GD , tD) with GD a graph of objects and links, and
tD : GD → GM a typing mapping (graph morphism) that gives each
element in GD its type in GM . Model D is called legal or valid, if
the constraints CM are satisfied. (A general formal specification of
constraint satisfaction that works for a very wide class of constraint
languages can be found in [16].)

To see how the BD2MT transformation works, let us begin with
a simple BD shown in Fig. 5(b2). Each of the wires q, trq, frc is
replaced by a respective metamodel consisting of a single class,
Mx = Ax with x ∈ {q, trq, frc} (we denote classes by A as letter
C is used for constraints). The pair of wires (d,v) gives rise to a
metamodel consisting of two classes and we writeMd,v = Ad⊗Av .
Now blocks can be seen as MT definitions: Motor: Mq → Mtrq
or Chassis: Mfrc → Md,v . For more complex BDs, we can use
the procedure we employed in Sect. 4.2. The structure of the term
(wiring) reveals that, e.g., ACC block is the following MT defini-
tion: ACC: M in

ACC → Mout
ACC, where the source model is M in

ACC =

Ad⊗Avset⊗ADr−t⊗Av and the target model isMout
ACC = Aq .

What about feedback looping? The latter can be understood as
making semantics of a block relational rather than functional: a
block with a loop specifies a relation between input and output
signals, and semantics of executing this relation as a function is
a special story often considered in terms of the least fixed point
semantics (LFP) and its derivatives. In the MT world, relational
semantics is well-known; a typical representative is QVT-R— anMT
language directly based on the relational semantics (although we
are not aware of a LFP semantics for QVT-R). Building a reasonable
mathematical model for MTs with relational semantics (feedback)
is our future work. Finally, an important distinction of MT from
BD is that the source and target metamodels can be related by
a traceability mapping (overlapped). Its accurate formalization is
rather bulky andwill appear elsewhere; it is based on the techniques
used by the graph-term rewriting community (e.g., [8, 30]).

5.2 Inference as MT refinement
Consider an inferential step, e.g., IS3 in Fig. 8 (grey square 3).
We treat block ACC as a transformation ACC: M in

ACC → Mout
ACC.

Previously we considered decomposition as a substitution based on
equality:

ACC =WACC(ECU1, ECU2),

but we can also consider it as a refinement

ACC ⊑ ACC′ =WACC(ECU1, ECU2).

The idea is well-known, but to make it work properly, we need a rig-
orous specification of the relation ⊑: what exactly does refinement
mean in our context?

Block ACC considered as a function FACC, must satisfy certain
Assume-Guarantee (AG) conditions: if the input signal satisfies
some conditions (i.e., belongs to the domain of the function), then
the output signal satisfies its own conditions too (belongs to the
codomain). We can phrase this in the MT parlance as follows: if the
input data satisfy the constraintsC in

ACC declared in the source/input
metamodel M in

ACC , then the output data satisfy the constraints
Cout
ACC in the metamodelMout

ACC. We will write this in a general way
for a component X

Din |= C in
X ⇒ F exeX (Din

X) |= C
out
X (AGX)

where F exeX is the procedure of executing the MT definition FX –
this distinction between FX and F exeX is important. (We write exeFX
in our figures because of the graphical editor limitations, and often
skip letter F and identify componentX and transformation FX .) We
will define refinement as a relation between constructs involved in
conditions (AGACC) and AGACC′ .

Substitution based on equality assumes that both ACC and ACC′

have the same input and output data, but it may be too restrictive for
practice. For example, for the general architecture in Fig. 5(a), ACC
may consider data Dr−t as a tuple/vector of unspecified dimension
while for ACC′ in diagram Fig. 5(b1), block ECU2 may demand the
metamodel (data type) to be refined and specify Dr−t as consisting
of two tuples of unspecified dimension: one for the road data and
the other for the tire data so that Dr−t = Dr ⊗ Dt. Further down in
the refinement chain, block Fun1 (a component of ECU2′), which
makes a concrete computation of the braking distance based on data
Dr−t, demands the two tuples being refined as, say, a pair of road
parameters and a pair of tire parameters, Dr = R⊗R and Dt = R⊗R.

The story above was presented in signal processing terms. In a
structurally refined metamodeling setting, it would begin with a
class Road-Tire with attribute rtData of unspecified type Any (i.e.,
formally, the union of all possible types). For ACC′, the metamodel
is refined by making Road-Tire an abstract class partitioned into
subclasses Road and Tire with, resp., attributes rData and tData
of type Any. For ECU2′, the metamodel is further refined by spe-
cializing rData by, say, a pair of attributes: ‘slipperyCoefficient’ of
type R and ‘roadSurface’ of an enumeration type «RoadSurface»
(here we deviate from the signal processing version by considering
types other than R), and similarly for tData. To make the metamod-
els even more interesting, let us assume a super-safe ACC, whose
ECU2 computes the braking distance with a greater precision. Such
ACC could require data about the road-tire contact area, which are
attributed to the corresponding association (or several of them!)
between classes Road and Tire.

Mathematically, the description above can be modeled by map-
ping min

XX ′ : M in
X → M in

X ′ between the source metamodels of a
component X and its refinement X ′, which maps an element in
M in
X to either an element inM in

X ′ or to a query/operation overM in
X ′ ,

e.g., above we used operations of union (to form an abstract class
Road-Tire as the union of classes Road and Tire in M in

X ′ so that
Road-Tire inM in

ACC is mapped to Road-Tire inM in
ACC′) and tupling

(so that attribute rData inM in
ECU2 is mapped to the tuple formed by

Assurance via model transformations and their hierarchical refinement MODELS’18, Oct 2018, Copenhagen, Denmark

Functional block, XInput data metamodel
Min

X = (Gin
X, Cin

X)
Output data metamodel

Mout
X = (Gout

X, Cout
X)

Functional block, X’Input data metamodel
Min

X’ = (Gin
X’, Cin

X’)
Output data metamodel
Mout

X’ = (Gout
X’, Cout

X’)

min
XX’ mout

XX’

Figure 9: MT refinement step

the corresponding attributes inM in
ECU2′). Such mappings are well

known in algebra under the name of Kleisli mappings (see, e.g., their
description tailored for the Models community in [9, 11]). A Kleisli
mapping between metamodels gives rise to a data restructuring
mapping between data instances in the opposite direction: if Din

X ′

is a data instance (model) overM in
X ′ , it can be restructured to a data

instance Din
X ′�X overM in

X by, first, executing the query involved in
min
XX ′ (e.g., create new objects and links by tupling given objects,

or define a new abstract (super)class generalizing several given
classes), and then renaming the results according to the mapping.
A detailed discussion and more examples can be found in [9, 11].

An important condition such data refinement must satisfy is that
for any data instance Din |= C in

X , there is a refined data instance
Din
∗ |= C

in
X ′ such that (Din

∗)
∗ = Din, where the upper star refers to the

backward data translation that forgets the extra structure inM in
X ′ .

We will refer to this condition as (RefinXX ′) and call it precondition
weakening: indeed, it requires constraints for input data in X ′ to be
not too strong. In contrast, on the target side of the transformation
story, the requirement flow needs postcondition strengthening: if a
refined data instance Dout |= Cout

X ′ , then we require (Dout)∗ |= Cout
X

Finally, we require commutativity: for any data instance Din |= C in
X ,

we require (F exeX ′ (D
in
∗))

∗ = F exeX (Din). We call diagram in Fig. 9 a
correct refinement step, if it satisfies all requirements above.

5.3 Summary
Interpreting a decomposition step as a refinement step (Sect. 5.2)
rather than an inferential step (Sect. 4.3) includes logical inference
(and thus nothing is lost with this transition) but also has an essen-
tial advantage. Now the data flow that was implicit in the “pure”
logical inference becomes an explicit and important ingredient of
the entire model. The latter includes both data refinement given
by vertical mappings in Fig. 9, and function/process refinement
given by the commutativity of the refinement diagram. This is an
accurate mathematical model of the assurance argument flow, and
it brings to assurance formal methods and techniques developed in
two domains – correctness of program refinement [19, 26] and MT
analysis [21, 22].

Thus, each of the four inferential steps in our hierarchy in Fig. 8
can be interpreted as an instantiation of the general refinement
pattern in Fig. 9 for X ∈ {Car,Pwt,ACC, ECU2}. We recall that the
direction of data refinement goes bottom-up – we restructure re-
fined data towards the pre-refined metamodel. Note that the model
we developed is conceptually multi-dimensional: our hierarchy of
refinement steps is a hierarchy of arrow squares, in which each

arrow (being a block diagram) is actually a planar object. This is a
much richer conceptual and structural landscape than offered by
basically two dimensional GSN/CAE diagrams.

6 APPLICABILITY AND IMPACT
It is premature to provide a definitive answer to the question of
how practical MTBA will prove to be in practice. In this section,
we envision how practical MTBA could be if it transitions from a
mathematical model for ACs to a method, and thus its potential as
a basis for developing practical AC methods and tools. Because of
the comprehensive approach to the problem of assurance, there is a
real opportunity to support AC development with automated tools.

The authors of survey [6] conducted in-depth interviews about
the practical use of safety ACs (SACs) with nine experts in software-
intensive safety-critical domains, including automotive, railway,
avionics and medical devices. Participants’ experience in the safety-
critical systems ranged from six to 25 years. Seven participants
were from industry (both SACs writers and assessors) and two from
universities, but with extensive experience in creating industrial-
grade SACs. The survey identified seven major challenges in using
SACs (introduced below by direct quotes), andwewill consecutively
discuss how MTBA can help to address each of them.

1 Scalability. The most significant challenge from our partici-
pants’ perspective is that of navigating and comprehending large
SACs, especially when presented using graphical form.

MTBA directly addresses the issue by structuring the entire AC
as a hierarchy of refinement steps. The latter then appears as an
elementary unit for both AC building and assessing. This was the
goal of GSN and CAE notations, but they did not fully realize it due
to a) the absence of dataflow in AC (given by wiring in MTBA), and
b) mixing requirement decomposition and logical inference in an
unordered way (sometimes merged, sometimes interleaved) while
MTBA shows they should go in parallel.

2 Managing change. Changes in software, especially in software
requirements, can result in changes in SACs.

Kokaly et al have shown in [14, 15] how model management
techniques can help to address the issue. MTBA based on MT is
directly portable to model management platforms both theoreti-
cal and practical. Moreover, traceability—fundamental for change
management—is a first class citizen in MTBA as a) the dataflow is
explicit and b) the MT model employed is traceability-based [9].

3 Requiring special skills to create. The graphic notations of
SACs are usually easy to understand. However, our participants con-
sidered that creating a convincing, well structured safety argument
requires special skills and considerable experience.

It is known that formal reasoning needs a special and extensive
mathematical training and is usually difficult for typical engineers
(including software engineers). With the current SAC tooling based
on, mainly, GSN and CAE, the task becomes even more challenging
as they force the user to flatten the multi-dimensional body of the
inferential assurance (see Sect. 5) and “dress” it into the tight one-
dimensional attire of purely logical inference. MTBA can help by a)
a clear separation of concerns into structural and logical, b) explicit
modeling of mapping by arrows, and c) bringing to assurance the
block diagram (BD) notation, which has “won” several test-of-time
awards in different engineering domains (signal processing, control

MODELS’18, Oct 2018, Copenhagen, Denmark Z. Diskin, T. Maibaum, A. Wassyng, S. Wynn-Williams, M. Lawford

theory, electrical engineering)—it appears that engineers can build
and understand BD much more easily than logical formulas.

4 Complexity of the system. ...Since most safety-critical systems
are innately complex and many systems are interconnected, capturing
the safety concerns in those systems becomes increasingly challenging.
In addition, because developing safety-critical systems often involves
experts in various disciplines, multidisciplinary collaboration in ar-
guing system safety is also important and challenging.

As mentioned in the introduction, we normallymanage complex-
ity via decomposition, which is at the heart of MTBA. In addition,
the notational basis of MTBA is BDs, which can serve well as a
common language for different engineering domains and thus facil-
itate multidisciplinary communication and collaboration. Another
facilitator provided by MTBA is a formal semantics based on well-
established mathematical patterns — a discussion and references
on how and why it works can be found in [10, Sect.2].

5 Uncertainty, trust, confidence.Many participants voiced con-
cerns about the fact that system safety always involves issues related
to uncertainty, trust, and confidence. Capturing these ‘intangible’ is-
sues and establishing trust and confidence in the safety arguments
was considered as a challenge.

None of the methodologies can make assurance a fully automat-
able technological discipline, and the intangible issue above will
always be in the way. However, mathematical models for assurance,
towards which we have made an important step, can make these
intangibles more tangible and better manageable.

6 Too "flexible". [As SACs are written by product’s manufactur-
ers, the SAC technique] may be subject to confirmation bias and/or
conflicts of interest of the manufacturers.

This is a general issue inherited in ACs and MTBA can offer
nothing radical here. However, because MTBA has a precise seman-
tic basis, we are not randomly searching through "woolly" material,
using wishful thinking; we have a solid, well defined structure to
examine for such issues as confirmation bias. Participants in the
survey would say that MTBA can help to “frame thinking about
system safety”, and they graded the average perceived importance
(IMP) of this factor of using SACs by 3.86 [6, Sect.3] (with the whole
being equal 10). We will discuss the three other factors below.

7 Incomplete information.Due to the limited integration of SAC
management in the software development process, our participants
discussed the challenges involved in gathering sufficient and accurate
information for safety arguments. This issue primarily originated
from flawed safety requirements, insufficient test coverage, and in-
complete traceability across software artifacts.

MTBA offers three mechanisms to mitigate the above. First, trace-
ability is at the heart ofMTBA see discussion on Challenge 2. MTBA
also brings a more technological view of assurance than the current
approaches as it separates assurance into blocks organized into
a high-level workflow, which can further be decomposed. In this
way, procedural assurance is managed “inferentially” — the goal
originated with the GSN/CAE approaches, but is now based on
a proper mathematical basis. Finally, MTBA’s focus on dataflow
is implicitly a focus on a disciplined and organized gathering of
information.

Besides the Framing of thinking factor of SAC usage mentioned
above, the participants identified three other factors. Two of them,
Communication with IMP=3.86 and Easiness to engage with notation

(IMP=3.14) are very well supported by MTBA with its reliance on
BDs. The last factor, Fills the gap for new systems (IMP=3.71) is a
functionality of the AC approach as a whole, and if MTBA serves it
well, it serves this factor well too.

7 RELATED AND FUTUREWORK
MTBA has several immediate technical sources. A series of seminal
papers [14, 18, 20], brought the ideas of metamodeling and model
management into assurance, but the main focus of this line of work
is on data conformance rather than dataflow. Our MT refinement
machinery is based on a) understanding transformations as Kleisli
mappings between metamodels [9], and b) Program Refinement
– a classical area with an enormous literature (e.g., [26]). Finally,
there is the recent work on string diagrams (including signal flow
graphs, block diagrams, circuits) in category theory [2, 4, 7]. We
are not aware of any prior applications from domains in the later
two areas to assurance.

The influence of GSN/CAE methods and tools on assurance
practice and research is difficult to overestimate [13, 17, 23, 25].
For the present paper, GSN/CAE were inspirational sources due to
their strong emphasis on the decomposition and the hierarchical
structure of ACs, which is a cornerstone of MTBA. They have also
been influential due to our feeling that GSN/CAE do not fully realize
the potential of the decomposition idea and should be fixed. Several
ways of formalizing ACs were suggested by Rushby in [24], but his
focus is more on the argument structure than on the very basis of
assurance.

The following issues are important for future work. Most im-
portantly, the model of assurance we presented is a posteriori with
respect to the design: we assumed that the functional system de-
sign is given and assurance just needs to check it for the assurance
property. Clearly, it would be much more effective to do assurance
concurrently with design, which is indeed done in practice but
is not reflected in our model. The latter is to be extended with a
model of functional design and its interaction with assurance. Two
other issues are more technical: we need a) an accurate notation
for specifying rich workflows over rich data structure, and b) a
precise but manageable mathematical framework for specifying
and verifying hierarchies of MT refinement.

8 CONCLUSION
We proposed a novel architecture and model for assurance cases
focused on data and dataflow. The model integrates system decom-
position and goal/requirement decomposition into an inferential
hierarchy, which is then rearranged into a hierarchy of MT refine-
ment steps. The model brings to assurance established techniques
developed in Program Refinement and MT Analysis. We also dis-
cussed possibilities of transitioning the model into a method of
building reliable assurance cases. Future work will include expan-
sion of the model, as well as developing practical methods for ACs
built using the model.

Assurance via model transformations and their hierarchical refinement MODELS’18, Oct 2018, Copenhagen, Denmark

REFERENCES
[1] Adelard [n. d.]. Claim, Argument, Evidence Notation. Adelard. Available at

http://www.adelard.com/asce/choosing-asce/cae.html.
[2] J. C. Baez and J. Erbele. 2014. Categories in Control. ArXiv e-prints (May 2014).

arXiv:math.CT/1405.6881
[3] Robin E. Bloomfield and Peter G. Bishop. 2010. Safety and Assurance Cases:

Past, Present and Possible Future - an Adelard Perspective. In Making Systems
Safer - Proceedings of the Eighteenth Safety-Critical Systems Symposium, Bristol,
UK, February 9-11, 2010, Chris Dale and Tom Anderson (Eds.). Springer, 51–67.
https://doi.org/10.1007/978-1-84996-086-1_4

[4] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. 2014. A categorical semantics
of signal flow graphs. In International Conference on Concurrency Theory. Springer,
435–450.

[5] Valentin Cassano, Thomas Maibaum, and Silviya Grigorova. 2016. A (Proto)
Logical Basis for the Notion of a Structured Argument in a Safety Case. In Formal
Methods and Software Engineering - 18th International Conference on Formal
Engineering Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016, Proceedings
(Lecture Notes in Computer Science), Kazuhiro Ogata, Mark Lawford, and Shaoying
Liu (Eds.), Vol. 10009. 1–17. https://doi.org/10.1007/978-3-319-47846-3_1

[6] Jinghui Cheng, Micayla Goodrum, Ronald A. Metoyer, and Jane Cleland-Huang.
2018. How Do Practitioners Perceive Assurance Cases in Safety-Critical Software
Systems? CoRR abs/1803.08097 (2018). arXiv:1803.08097 http://arxiv.org/abs/
1803.08097 there is a better ref to a workshopp CHASE’18.

[7] Bob Coecke and Aleks Kissinger. 2017. Picturing Quantum Processes. A First
Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University
Press.

[8] Andrea Corradini and Fabio Gadducci. 1999. An Algebraic Presentation of Term
Graphs, via GS-Monoidal Categories. Applied Categorical Structures 7, 4 (1999),
299–331. https://doi.org/10.1023/A:1008647417502

[9] Zinovy Diskin, Abel Gómez, and Jordi Cabot. 2017. Traceability Mappings as a
Fundamental Instrument in Model Transformations. In Fundamental Approaches
to Software Engineering - 20th International Conference, FASE 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer
Science), Marieke Huisman and Julia Rubin (Eds.), Vol. 10202. Springer, 247–263.
https://doi.org/10.1007/978-3-662-54494-5_14

[10] Zinovy Diskin, Harald König, Mark Lawford, and Tom Maibaum. 2017. To-
ward Product Lines of Mathematical Models for Software Model Management.
In Software Technologies: Applications and Foundations - STAF 2017 Collocated
Workshops, Marburg, Germany, July 17-21, 2017, Revised Selected Papers (Lecture
Notes in Computer Science), Martina Seidl and Steffen Zschaler (Eds.), Vol. 10748.
Springer, 200–216. https://doi.org/10.1007/978-3-319-74730-9_19

[11] Z. Diskin, T. Maibaum, and K. Czarnecki. 2012. Intermodeling, Queries, and
Kleisli Categories. In FASE (Lecture Notes in Computer Science), Juan de Lara and
Andrea Zisman (Eds.), Vol. 7212. Springer, 163–177.

[12] André Joyal, Ross Street, and Dominic Verity. 1996. Traced monoidal categories.
Mathematical Proceedings of the Cambridge Philosophical Society 119, 3 (1996),
447–468. https://doi.org/10.1017/S0305004100074338

[13] Tim Kelly. 1998. Arguing Safety – A Systematic Approach to Managing Safety
Cases. Ph.D. Dissertation. University of York.

[14] Sahar Kokaly, Rick Salay, Valentin Cassano, Tom Maibaum, and Marsha Chechik.
2016. A model management approach for assurance case reuse due to system
evolution. In Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, Saint-Malo, France, October 2-7, 2016,
Benoit Baudry and Benoît Combemale (Eds.). ACM, 196–206. https://doi.org/10.
1145/2976767

[15] Sahar Kokaly, Rick Salay, Mehrdad Sabetzadeh, Marsha Chechik, and Tom
Maibaum. 2016. Model management for regulatory compliance: a position pa-
per. In Proceedings of the 8th International Workshop on Modeling in Software
Engineering, MiSE@ICSE 2016, Austin, Texas, USA, May 16-17, 2016. ACM, 74–80.
https://doi.org/10.1145/2896982.2896985

[16] Harald König and Zinovy Diskin. 2017. Efficient Consistency Checking of
Interrelated Models. In Modelling Foundations and Applications - 13th Euro-
pean Conference, ECMFA 2017, Held as Part of STAF 2017, Marburg, Germany,
July 19-20, 2017, Proceedings (Lecture Notes in Computer Science), Anthony
Anjorin and Huáscar Espinoza (Eds.), Vol. 10376. Springer, 161–178. https:
//doi.org/10.1007/978-3-319-61482-3_10

[17] Adelard LLP. 1998. Adelard Safety Case Development Manual. Technical Report.
http://www.adelard.com/resources/ascad/.

[18] Yaping Luo, Mark van den Brand, Luc Engelen, John M. Favaro, Martijn Klabbers,
and Giovanni Sartori. 2013. Extracting Models from ISO 26262 for Reusable Safety
Assurance. In Safe and Secure Software Reuse - 13th International Conference on
Software Reuse, ICSR 2013, Pisa, Italy, June 18-20. Proceedings (Lecture Notes in
Computer Science), JohnM. Favaro andMaurizioMorisio (Eds.), Vol. 7925. Springer,
192–207. https://doi.org/10.1007/978-3-642-38977-1_13

[19] T. S. E. Maibaum. 1997. Conservative Extensions, Interpretations Between Theo-
ries and All That!. In TAPSOFT’97: Theory and Practice of Software Development.

40–66.
[20] Sunil Nair, Jose Luis de la Vara, Mehrdad Sabetzadeh, and Lionel C. Briand.

2014. An extended systematic literature review on provision of evidence for
safety certification. Information & Software Technology 56, 7 (2014), 689–717.
https://doi.org/10.1016/j.infsof.2014.03.001

[21] Bentley James Oakes, Javier Troya, Levi Lucio, and Manuel Wimmer. 2015. Fully
verifying transformation contracts for declarative ATL. In 18th ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems, MoD-
ELS 2015, Ottawa, ON, Canada, September 30 - October 2, 2015, Timothy Leth-
bridge, Jordi Cabot, and Alexander Egyed (Eds.). IEEE Computer Society, 256–265.
https://doi.org/10.1109/MODELS.2015.7338256

[22] Lukman Ab. Rahim and Jon Whittle. 2015. A survey of approaches for verifying
model transformations. Software and System Modeling 14, 2 (2015), 1003–1028.

[23] David J Rinehart, John CKnight, Jonathan Rowanhill, andDependable Computing.
2015. Current Practices in Constructing and Evaluating Assurance Cases With
Applications to Aviation.

[24] John Rushby. 2010. Formalism in safety cases. In Making Systems Safer. Springer,
3–17.

[25] John Rushby. 2015. Understanding and Evaluating Assurance Cases. SRI-CSL-15-
01 (2015).

[26] Steve Schneider. 2001. The B-Method: An Introduction. Palgrave Macmillan.
[27] Peter Selinger. 2010. A survey of graphical languages for monoidal categories.

In New structures for physics. Springer, 289–355.
[28] David I Spivak. 2013. The operad of wiring diagrams: Formalizing a graphical

language for databases, recursion, and plug-and-play circuits. arXiv preprint
arXiv:1305.0297 (2013).

[29] The GSN Working Group 2011. Goal Structuring Notation. The GSN Working
Group. Available at http://www.goalstructuringnotation.info/.

[30] Uwe Wolter, Zinovy Diskin, and Harald König. 2018. Graph Operations and
Free Graph Algebras. In Graph Transformation, Specifications, and Nets - In Mem-
ory of Hartmut Ehrig (Lecture Notes in Computer Science), Reiko Heckel and
Gabriele Taentzer (Eds.), Vol. 10800. Springer, 313–331. https://doi.org/10.1007/
978-3-319-75396-6_17

http://www.adelard.com/asce/choosing-asce/cae.html
http://arxiv.org/abs/math.CT/1405.6881
https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-3-319-47846-3_1
http://arxiv.org/abs/1803.08097
http://arxiv.org/abs/1803.08097
http://arxiv.org/abs/1803.08097
https://doi.org/10.1023/A:1008647417502
https://doi.org/10.1007/978-3-662-54494-5_14
https://doi.org/10.1007/978-3-319-74730-9_19
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1145/2976767
https://doi.org/10.1145/2976767
https://doi.org/10.1145/2896982.2896985
https://doi.org/10.1007/978-3-319-61482-3_10
https://doi.org/10.1007/978-3-319-61482-3_10
http://www.adelard.com/resources/ascad/
https://doi.org/10.1007/978-3-642-38977-1_13
https://doi.org/10.1016/j.infsof.2014.03.001
https://doi.org/10.1109/MODELS.2015.7338256
http://www.goalstructuringnotation.info/
https://doi.org/10.1007/978-3-319-75396-6_17
https://doi.org/10.1007/978-3-319-75396-6_17

	Abstract
	1 Introduction
	2 MTBA in a nutshell
	3 Procedural Assurance (PA)
	3.1 Getting started
	3.2 Procedural assurance in practicework

	4 Inferential assurance (IA)
	4.1 Design via block diagrams
	4.2 The Algebra of Decomposition
	4.3 From design to logic

	5 Decomposition as model transformation refinement
	5.1 From block diagrams to MTs
	5.2 Inference as MT refinement
	5.3 Summary

	6 Applicability and impact
	7 Related and future work
	8 Conclusion
	References

