
1

Can Product Specific Assurance Case
Templates be Used as Medical Device

Standards?
Alan Wassyng, Neeraj Kumar Singh, Mischa Geven, Nicholas Proscia,

Hao Wang, Mark Lawford and Tom Maibaum

Abstract—International standards are a key ingredient in the quality assurance of software intensive medical devices. One problem
with such standards is that they often describe a life-cycle process that should be used to develop the system, rather than describe
acceptance criteria to be applied to the system itself, thus guaranteeing safety directly in terms of the artefact’s attributes. In the past
few years, the U.S. Food and Drug Administration (FDA) introduced a (strong) recommendation that manufacturers submit an
Assurance Case in their submission for approval to market an infusion pump. This reflects a move towards a more product/evidence
based approach to certification, compared with the primarily process based certification used in the past. The perceived advantage of
an Assurance Case is that it obliges the manufacturer to make an explicit argument regarding the safety/security/reliability of their
product, under expected operating conditions. Taking this idea one step further, we explore whether there are benefits to using an
Assurance Case Template as a new kind of standard, replacing existing process standards, and we describe some benefits of doing
this.

F

1 INTRODUCTION

R ECENTLY, the U.S. Food and Drug Administration
(FDA) introduced a (strong) recommendation that

manufacturers submit an Assurance Case1 that demon-
strates the safety, security and reliability of any new infusion
pump they want to market [2]. The motivation for this
change in practice at the FDA, which previously required
compliance with a process based standard, was the alarming
rate of infusion pump failures [2], and the harm that this was
inflicting on patients. These problems were apparent across
a wide segment of manufacturers, and were occurring in
spite of the fact that we have a number of international
standards governing the manufacture of software intensive
medical devices [3], as well as standards related to electrical
and mechanical safety. A problem with many international
standards of this type is that they make the unfounded
assumption that following a life-cycle designed to produce
safe, secure and reliable systems, will result in a system
that achieves this. Having manufacturers use these “good”
processes is, indeed, advantageous. It is simply not true that
their use guarantees a “good” product [4]; this is true both
in principle and in practice, as noted just above. We need
to evaluate the quality of the product before declaring it
fit for purpose. Of course, we can, and should, make our
standards specify acceptance criteria on the product as well
as on the process, but we do not have a good track record
in this regard. The advantage of an assurance case is that
its structure encourages (or should encourage) us to make
our reasoning explicit as to why we believe that a system
is safe, secure and reliable. The purpose of this paper is
to propose that we use a product domain assurance case

1. The FDA refers to it specifically as a Safety Assurance Case, em-
phasizing the safety aspect of the case, and has published an updated
version of the Guidance document [1].

template (described later in this paper – see Section 4.1.3) as a
new kind of standard for software intensive medical devices
within that product domain. This de-emphasizes how the
device is produced in favour of creating an explicit safety
argument for it.

2 THE ROLE OF STANDARDS

The construction of a standard is a community effort and
reflects a state-of-the practice approach to the subject matter
of the standard. The purpose of a standard that relates to
the development of medical devices is typically to specify
requirements on the process used to develop the medi-
cal device, or requirements on the medical device itself.
A useful standard will include acceptance criteria on the
process and/or product that will help to reduce variance
in conformance to critical properties of the device, such as
safety, security and reliability. In any industrial domain, we
can typically find a number of international standards that
fulfill this role. In addition, if the domain is regulated, as is
the medical device domain, the government appointed reg-
ulator in the country in which the device is to be marketed
will likely issue regulatory requirements that may reference
international standards. In many regulatory jurisdictions,
compliance with relevant standards and regulatory guide-
lines is a necessary prerequisite to obtaining approval to
market that device.

3 PROBLEMS WITH STANDARDS

A useful definition of a standard is given by the ISO:
Standards are documented agreements containing technical

specifications or other precise criteria to be used consistently
as rules, guidelines or definitions of characteristics, to ensure

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2015.2462720

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



2

that materials, products, process and services are fit for their
purpose [3].

The use of standards has several potential benefits as
described in Section 2. However, there are also problems and
limitations with current standards that affect how useful
they are in governing the development and certification of
software intensive systems. Below, we summarize potential
weaknesses in current standards.
Most software related standards are primarily process
based: Other than requirements on test results, most current
standards (from IEC, ISO and IEEE, for example) place
requirements on the development process rather than on the
product itself. As a result, compliance with such a standard
is not a totally convincing reason for believing that the
developed product is safe, secure and reliable; at best it is a
statistical guarantee about the class of devices and not at all
about a particular device.
Outdated standards: Process based standards encode best
practice at the time they were written, and may eventually
prevent developers from adopting best practice [5].
Complex and ambiguous: Many standards are incredibly
complex, and are often hundreds of pages in length. Com-
mon terminology can have different meaning in different
standards, and different terminology may be used for simi-
lar concepts [6]. There are usually good reasons for a specific
clauses in the standard, but little or no rationale is included,
and so the argument as to why non-compliance with any
particular clause will lead to a lower quality product is
typically also absent.
Checklist based completeness: Standards promote checklist
based task completion that does not consider the technical
quality of the process or the product – acceptance crite-
ria are typically woefully inadequate or missing. Checklist
completeness may be used to simplify the task of quality
assurance, but without adequate acceptance criteria it can-
not begin to succeed in evaluating the safety, security and
reliability of the developed product.
Lack of design and technical detail: The majority of stan-
dards address software life-cycle processes, software devel-
opment activities, and guidelines that aim to develop high-
integrity software, without giving sufficient design and
technical details, nor any particular software engineering
methods to achieve the normative requirements [7].
Excessive documentation: Blind compliance with standards
may produce excessive documentation. Lack of rationale
and explicit acceptance criteria may lead manufacturers to
produce documentation that is either not required or does
not contribute to the development of a quality product.
They do this to comply with perceived requirements in the
standard, or because they are not sure what is required
and over-compensate. This consumes resources in both the
development and approval processes, and much of it may
not contribute to system safety (for instance) at all.
Not adopted by small companies: The majority of small
companies perceive existing process standards as being
focused at large organizations. Small companies do not
have the resources to implement some of the process re-
quirements in standards (consider team independence, for
example) [8].

4 A NEW KIND OF STANDARD

The problems described in Section 3 are not insurmountable,
and there are a number of approaches available to us that
could be effective. However, it occurred to us that there is
an alternative approach that may be more effective. This
approach is based on Assurance Cases.

4.1 Assurance Cases
An Assurance Case is a modern generalization of the Safety
Case [9], and safety cases have been in use for over 50
years, especially in the United Kingdom. An assurance case
provides a structure in which the developer of a product
makes a claim regarding critical properties of the product
(e.g., safety, security, reliability), and then presents an ar-
gument that validates that claim. The argument typically
uses a decomposition of that claim into sub-claims that are
eventually supported by evidence. There are a number of
notations and tools for assurance cases, the most popular
notation being Goal Structuring Notation (GSN), developed
by Tim Kelly [9]. Figure 1 gives an idea of what an assur-
ance case may look like, represented in GSN. It is taken
from the GSN Community Standard website [10]. Goals in
GSN represent claims; Solutions in GSN represent evidence;
Strategies in GSN are used to explain why and how a claim
was decomposed into specific sub-claims; Justifications in
GSN are used to explain why a strategy was chosen and
is appropriate; and so on.

4.1.1 Perceived Benefits of Assurance Cases
There are many benefits of assurance cases expressed by
communities that have been using them. These benefits
range from the explicit, detailed documentation of the ‘case’,
to the traceability of evidence to a specific claim facilitated
by the structure of the ‘case’. A major benefit that is often
expressed is that the argument related to the validity of the
claim(s) is made explicit in the assurance case, and that
this facilitates determining whether or not the top claim in
the structure is valid – or, what confidence we have that the
claim is valid. A well-structured assurance case can facilitate
the identification of gaps between claims, arguments, and
evidence in the constructed ‘case’.

4.1.2 Problems with Assurance Cases
Every methodology has its problems. Assurance Cases are
no different. There are a few important problems we want
to highlight.
Argumentation: The most important problem with many
current assurance cases is that the argument linking claims
to sub-claims and eventually to evidence is simply not
explicit. We say this because current assurance cases make
explicit the structure of claim decomposition and the link of
evidence to a specific sub-claim. While this structure is
useful, this is not the same as making the argument explicit
so that we can determine its validity. For example, consider
Figure 1 again. G1 (the top-level claim) is decomposed
into two sub-claims, G2 and G3. Usually there would be
a strategy component that explains why this decomposition
was selected. In this case there is no strategy provided. So,
let us turn to the decomposition of G3 into the sub-claims
G7 and G8. In this case there is a strategy provided, S2.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2015.2462720

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

Fig. 1. GSN Community Standard Example [10]

Also, S2 simply puts into words the same information we
can glean from the arrows and the descriptions of G7 and
G8. Of course, this example is only being used to describe
how the GSN components may be used to document an
assurance case, and perhaps real assurance cases are not like
this at all. Unfortunately, many are. However, we cannot
cite publications to support our view. We have seen real,
industrial assurance cases that lack this explicit reasoning
– but, like many such cases, they are proprietary and we
cannot cite them. More importantly, even if the strategy
were better worded, at best it would describe a rationale
for decomposing G3 into G7 and G8 – it would not provide
an argument as to why, if G7 and G8 are both proven to be
valid, it would follow that G3 must be true. This is what is
missing. We should point out that this is not an inherent flaw
in assurance cases, it is simply reflective of current practice.
One-off structures: Another problem with assurance cases is
that if every assurance case is structured differently, it will
be extremely difficult for both developers and regulators
to build experience in detecting flaws in assurance case
structure/arguments in their domain [11]. This is especially
true for regulators of medical devices, such as the FDA who
have to evaluate thousands of submissions every year.
Top-level decomposition: Safety Cases have often been
structured by showing how all (known) hazards have been
eliminated or mitigated. We are convinced that this is not
the best strategy for structuring assurance cases, even when
we are assuring safety. Our opinion is that we have to show
that the system (medical device in our case) “produce[s]
the consequences for which it was designed” [12]. This is
important because if the system does not deliver on the
behaviour its users expect, those users often find work-
arounds, which can seriously impact the safety we thought

we had assured. For instance, we have heard discussion on
the use of radiation machines, where, in the case of obese
patients, a protective cone has been removed because other-
wise the patient could not be treated at all. Such behaviour
is often considered to be unlikely during the development
of the hazard analysis, and may not have been mitigated
adequately. In addition, the system has to be as safe and
secure as we can make it, in the face of unknown hazards as
well.
Safety should be designed-in: Almost all researchers in
the safety community know that safety is designed into a
system right from the start. Proponents of safety/assurance
cases have made it clear that an assurance case is not
something that is documented after the system is built to be
presented to a regulator [13]. However, for whatever reason,
that message does not seem to be universally recognized.
Too many assurance cases seem to be developed solely to
convince a regulator that the system is safe and secure, and
are thus documented after system development has been
completed, or perhaps, while the system is being developed.
We are not able to cite specific examples, but can simply say
that other researchers have made the same observation [14],
[15].

4.1.3 Suggested Solutions

Argumentation: We need to provide both the strategy (a top-
down explanation of why the claim decomposition was cho-
sen), and the argument (bottom-up rigorous reasoning that
demonstrates that the combined effect of the decomposed
claims implies that the parent claim is valid). Strategies in
current assurance cases seem quite superficial and often
say little more than we can see from the graph structure
itself. The strategy should provide the insight that led to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2015.2462720

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

the decomposition of a (sub-)claim, and this should include
decisions made to support the bottom-up argument we
believe is essential. This bottom-up argument will require
expertise in argumentation that is currently not wide-spread
– in fact, other than researchers who are still divided as to
how to structure these arguments (this level of knowledge
would not be common in any engineering community),
many users of GSN seem unaware that there is a problem.
The combination of strategy and argument helps us build
much more robust ‘cases’. Interestingly, the original plans
for GSN and earlier work on GSN such as [16] are very much
in the spirit of what we have said here. There was explicit
realization that the bottom-up argument is also required. As
mentioned earlier, this is not a deficiency in assurance cases
– but it is a pervasive problem in many current assurance
cases. A standardized template, as described below, could
help in this regard.
Standardized template: A number of solutions to limiting
the variety of assurance cases have been proposed. Two
of these are closely related – safety case patterns [9], and
assurance case templates [11]. Safety case patterns were orig-
inally described as “A means of documenting and reusing
successful safety argument structures” [9]. The idea here
is that an assurance case could be composed primarily of
well-known (decomposition) patterns. This is reminiscent of
design patterns [17], that are widely used in software design.
An extension of this idea is an assurance case template,
which is an almost complete assurance case structure that
can be determined before development starts, in which
missing details are provided during development, and some
elements may be modified during development. We be-
lieve this works well within a specific product domain.
For instance, we may use one assurance case template for
infusion pumps, and a different one for radiation treatment
machines. The assurance case template approach includes
a complete, documented argument, examples of evidence
and associated acceptance criteria that must accompany the
‘case’. The argument and evidence would continue to drive
development even when the template has a placeholder for
details relevant to the specific device. This would enable
modifications to the ‘case’, since the effect of the modifica-
tion would be known and the argument then could be re-
constructed. An assurance case template for insulin pumps
was described briefly in [18]. Without templates or patterns,
developers will still reuse components from previously con-
structed assurance cases. However, this reuse has the same
problems associated with it as those described in [19], that
is:

• artefacts being reused inappropriately;
• reuse occurring in an ad-hoc fashion;
• loss of knowledge;
• lack of consistency/process maturity;
• lack of traceability;

and to this we can add – the underlying argument may
not be understood well enough.
Top-level decomposition: We decided early in our work that
we should not structure the decomposition of the assurance
case claims by mitigation of all identified hazards. This, then
raises the question as to how we do structure it. The answer
seemed straightforward. We should do what we have been

G1
Device adequately provides the 
consequences for which it was 
designed, with tolerable risk of 
adverse effects, in its intended 
operating environment

S1
If we could build perfect systems 

we could decompose G1 into: 
Requirements describe system; 

Implementation complies with 
requirements. ...

R1
Argument to show that if G2, 

G3, G4, G5 are satisfied, then 
G1 is valid

G2
System requirements 
are correct, include nec-
essary safety & security 
constraints, as well as 
operator requirements, 
including safe & secure 
HMI

G3
System implementation 
adequately complies 
with its requirements, 
and has not added any 
unmitigated hazards

G4
System is robust with 
respect to reasonably 
anticipated changes and 
is maintainable over its 
lifetime - changes will 
not degrade safety, se-
curity and reliability

G5
System maintains safe 
behaviour in the pres-
ence of hardware mal-
function

To keep from cluttering the 
diagram we have not included 
other GSN components, such 
as assumptions, context, 
justifications, etc New component: 

R for “reasoning” (since 
A for “argument” is already
in use). The argument will 
normally require significant 
space and so we have 
arranged that the R
component is loosely joined 
to the S component and can 
be hidden when not required 
so as not to unnecessarily 
complicate the diagram 

Fig. 2. Top-level Claim Decomposition

doing for years in terms of how we plan our current projects.
This leads to the top-level structure shown in Figure 2.
This figure cannot show enough detail because of length
constraints on the paper. S1 and R1 would be more detailed,
and relevant assumptions, justifications and context would
help in understanding the thoroughness of the approach, as
well as lay the foundations for the appropriate arguments.
The claims and evidence related to mitigation of hazards are
now embedded lower down in the structure. For example:
the claim that system level hazards have been identified and
mitigated is in a sub-claim path below G2, and the claim that
there are no unmitigated hazards (at all) forms a sub-claim
path below G3. If we are intent on implementing an iterative
hazard analysis, this seems an appropriate and effective way
to do it.
Planning a safe and secure system that is fit for purpose:
Anyone who has developed a safety-critical software in-
tensive system knows that the system is designed to be
safe and secure when development is planned (as well as
deliver functionality that will serve the needs of its users).
It is not built on the hope that it will be safe. We use our
knowledge and experience of what did or did not work for
previous, similar systems. We plan a development process,
and put in place checks and balances to monitor the quality
of our product and process as we proceed. Some of this
knowledge is captured in the standards we have to comply
with. There is also knowledge in the corporate memory,
and in process documents developed by the company. An
assurance case template is an excellent way of documenting
this knowledge. We discuss how to do this, as well as the
benefits of using an assurance case template, in more detail
in Section 4.2.

4.2 Assurance Case Templates as Standards
Once we had decided to use an assurance case template
to drive development and both specify and monitor com-
pliance with acceptance criteria on product and process, it
occurred to us that we should consider replacing existing
standards by such a template. We acknowledge that there
is much work to be done to validate the feasibility and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2015.2462720

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

efficacy of this approach. However, this paper is a first step
in reporting on initial work we have done in exploring this
option, and to exhort others to consider it, discuss it, and to
build example templates.

In addition to assurance case researchers exhorting de-
velopers to build the assurance case early in the devel-
opment cycle, our interest in using the assurance case, in
the way we describe below, was inspired by the work of
John Knight and colleagues on Assurance Based Development
(ABD) [20]. After working on using assurance case tem-
plates and exploring their potential to replace standards, we
were informed of a talk given by John Knight [21], in which
he outlined the use of an assurance case as an alternative to
the avionics standard DO-178B.

Most of our work is involved in how to build and
evaluate the software in software intensive systems. How-
ever, we realize that there is more to these systems than
software – and there are a variety of standards that apply to
the manufacture of a medical device. The assurance cases
we build are assurance cases for the safety, security and
reliability of the complete system. It may be that there are
aspects of existing standards that do not currently fit easily
within the type of assurance case template we envisage.
Our intent is to explore how they can be incorporated. In
the meantime, the assurance case template may need to be
supplemented by such standards.

With reference to Section 3, we briefly indicate how an
assurance case template based standard would help allevi-
ate some of the problems with standards that we identified.
Not primarily process based: It should be clear from the top-
level decomposition (Figure 2) of the assurance case tem-
plate we designed that the template is not primarily process
based. Confidence in the argument will be dependent on
the specific product evidence obtained and the degree to
which the acceptance criteria are met. The template will not
jettison all process related requirements. Even in product
focused certification approaches, a process, sometimes just
phases in an idealized process, is important in obtaining
relevant evidence and overall confidence in the quality of
the product [4].
Takes longer to become outdated: Assurance case template
based standards may need updating less often than pro-
cess based standards. Process based standards are updated
when the state of the practice changes as regards how we
believe we can achieve the quality goals relevant for that
domain. The actual goals, evidence and acceptance criteria,
if we actually identified them, may not have changed. An
assurance case template is more focused on the evidence,
argument and acceptance criteria, and as such, will be less
likely to need to be changed as frequently.
Coping with complexity in the document: This new standard
will be complex, in that it will be large and more detailed
than many existing standards. It should be a lot easier to
make it unambiguous in that it will be more internally
consistent. The structure of the template makes this easier
to achieve than in existing standards, that do not have the
same explicit argument structure. Good assurance case tools
that take advantage of the structure will make it easier to
negotiate such a standard.
Less prone to checklist compliance: We have to be cognizant
of the fact that a template always opens the door for ‘mind-

less compliance’ – similar to the checklist based complete-
ness problem we observed in current standards compliance.
However, the integral assumptions, evidence requirements
and acceptance criteria accompanying the assurance case
should mitigate against this. In addition, the template will
not contain details for the specific product; these have to be
obtained during the development of the product, and then
documented in the template.
Appropriate technical guidance: With more explicit direc-
tion than in current standards, together with (again) evi-
dence requirements and acceptance criteria, developers will
know what is expected of them, and will not need to
produce unnecessary documentation in the hope that it
strengthens their regulatory case.
May be easier for smaller companies to adopt: Explicit
direction will also make it possible for small companies
to comply with standards more easily than they can now.
However, the technical requirements may be more stringent
and require better trained people.

4.2.1 Community Development
To use an assurance case template as a standard, we have
to develop the template in much the same way we do
conventional standards. We need contributions from all
stakeholders – industry, academia, and regulatory bodies.
Each assurance case template has to reflect the expectations
of the product domain, and in particular, must result in
compliance with the requirements imposed by the appro-
priate integrity level. It must also result in compliance with
the principle of As Low As Reasonably Practicable (ALARP),
with regard to the residual risk in the product. There are
real benefits in having the template developed as a com-
munity effort. Templates evolved through community de-
velopment should benefit from input from a diverse group
of experts. Members of industry can provide valuable input
on practical development processes, members of academia
can propose enhancements driven by their research to be
tested in practice, and members of regulatory agencies can
use the vast data collected from adverse events to further
enhance them. Flaws found in a template can be corrected
in a timely way to prevent multiple occurrences of similar
mistakes. Every developer in the domain would use the
latest approved template. The principal benefits are thus
similar to those that apply to community development of
standards, namely that communal expertise can be more
than the expertise of a chosen few, and that industry is
more likely to ‘buy-in’ to the effort required to comply as
well as recognize the benefits of compliance. Specifically
for assurance case templates, there is important and much
needed consensus to obtain as to what evidence to produce
and the acceptance criteria to be used.

4.2.2 Further Benefits
One of the ideas behind using the template as a stan-
dard is that the template will provide better guidance to
developers than a traditional standard could. One of the
major differences in using an assurance case template as
a standard is that, currently, standards actually represent
minimum requirements on the development process (and
some aspects of the product). We envisage the template
as much more definitive, as well as explicitly including

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2015.2462720

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

evidence and acceptance criteria to satisfy compliance with
ALARP.

A crucial assumption in all the research and devel-
opment related to assurance cases is that they provide a
structure that, with the information contained within the
structure, presents a compelling demonstration that the
system of interest possesses the properties and attributes
claimed in the assurance case. This is certainly true when
the assurance case is well-structured (the argument at the
base of the assurance case is valid) with relevant evidence
tied to specific sub-claims.

An assurance case template describes lifecycle artefacts
that provide the evidence needed to support sub-claims
of the system. It also describes acceptance criteria on that
evidence. Once the developer fills in the details relevant
to the specific system they are building, examination of
this evidence helps the regulator build confidence in the
validity of the assurance case that is presented. The use of a
community developed assurance case template will help in
three important ways:

• the argument on which the ‘case’ is based should
be solid since people with the requisite skill and
knowledge to build and confirm the argument will
be members of the team;

• most developers will use the template without much
modification, filling-in details in appropriate places.
This will allow regulators to build expertise in eval-
uating the cases submitted to them.

• Regulators, like the FDA, are loathe to prescribe in
any detail how manufacturers should manufacture
the device. An assurance case template fits this kind
of regime splendidly since the template typically
details much more what – evidence and acceptance
criteria – than it does how to attain the evidence or
how to achieve the acceptance criteria.

In earlier sections (see for example Section 4.1.2) we
noted that most industrial assurance cases today are pro-
prietary. This is a great pity since manufacturers cannot see
examples of good (and bad) assurance cases that would help
them build their own expertise. One additional benefit of a
community assurance case template is that it would not be
proprietary. It would be available to all (although judging
by current practice it may be expensive), and would serve
not only as a standard in the traditional sense, but would
also serve as an example of a good assurance case.

4.2.3 Evidence of Benefits
FDA Approved infusion pumps have resulted in patient
deaths due to buffer overflows in their software [22] despite
the fact that such errors are easily detectable using commer-
cially available static analysis tools. In its latest guidance, the
FDA now recommends that, to help demonstrate software
safety, a manufacturer should provide a static analysis of all
software in the infusion pump system [1]. This effectively
becomes evidence for, amongst other things, demonstrating
that the manufacturer has a high degree of confidence that
the system will be free from runtime errors such as buffer
overflows. By making explicit the recommended claim (the
software is free from common runtime errors), argument
(because static analysis found no unresolved anomalies),

and evidence (results of the static analysis), the FDA is
providing clarity on known hazards and their mitigations,
while not preventing a manufacturer from innovating in
how they deal with the issue by, for example, using a
strongly typed language and certified compiler. In fact, the
assurance case presents the capability for the manufacturer
to build confidence in their defence-in-depth approach by
showing that the use of a static analysis tool was augmented
by the use of the strongly typed language and certified
compiler.

5 CONCLUSION

We have proposed that we use a product domain assur-
ance case template as a standard for the development and
licensing of medical devices within that product domain.
Assurance cases are growing in acceptability as an excellent
methodology for determining the confidence we have that a
medical device is safe, secure and effective. Taking this one
step further, if we develop an assurance case template, an
almost complete assurance case with placeholders for yet to
be determined sub-claims and details of generated evidence,
then even at this early stage, there seems to be sufficient
reason to believe that eventually we will be able to use
such a template instead of current process based standards
to guide both development and regulatory evaluation of a
medical device.

ACKNOWLEDGMENTS

The authors recognize the support of the Ontario Research
Fund – Research Excellence, IBM, and the Southern Ontario
Smart Computing Innovation Platform. We thank Paul Joan-
nou for his many difficult to deal with questions, as well as
John Knight, Tim Kelly, John McDermid and John Rushby
for all their work as well as discussion that has guided our
own research. We also wish to thank the anonymous review-
ers who challenged us to substantiate claims and improve
the paper in numerous ways. They succeeded in making us
think more deeply about certain aspects of the work, and
contributed significantly to improving our original version.

REFERENCES

[1] U.S. Food and Drug Administration, Infusion Pumps Total Product
Life Cycle: Guidance for Industry and FDA Staff, Food and Drug
Administration Std., December 2014, OMB Control Number: 0910-
0766.

[2] ——, Total Product Life Cycle: Infusion Pump - Premarket Notification
[510(k)] Submissions, Food and Drug Administration Std., April
2010.

[3] IEC 62304, Medical Device Software – Software Life Cycle Processes,
International Electrotechnical Commission Std., May 2006.

[4] T. Maibaum and A. Wassyng, “A product-focused approach to
software certification,” Computer, vol. 41, no. 2, pp. 91–93, Feb
2008.

[5] R. Bloomfield and P. Bishop, “Safety and assurance cases:
Past, present and possible future - an Adelard perspective,” in
Making Systems Safer, Proceedings of the Eighteenth Safety-Critical
Systems Symposium, Bristol, UK, C. Dale and T. Anderson,
Eds. London: Springer London, 2010. [Online]. Available:
http://www.springerlink.com/index/10.1007/978-1-84996-086-1

[6] P. Joannou and A. Wassyng, “Understanding integrity level con-
cepts,” Computer, no. 11, pp. 99–101, 2014.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2015.2462720

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

[7] M. Huhn and A. Zechner, “Arguing for software quality in
an IEC 62304 compliant development process,” in Leveraging
Applications of Formal Methods, Verification, and Validation - 4th
International Symposium on Leveraging Applications, ISoLA 2010,
Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part
II, 2010, pp. 296–311. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-16561-0 30

[8] S. Basri and R. V. O’Connor, “Understanding the perception of
very small software companies towards the adoption of process
standards,” in Systems, Software and Services Process Improvement,
ser. Communications in Computer and Information Science,
A. Riel, R. O’Connor, S. Tichkiewitch, and R. Messnarz, Eds.
Springer Berlin Heidelberg, 2010, vol. 99, pp. 153–164. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-15666-3 14

[9] T. Kelly, “Arguing safety – a systematic approach to managing
safety cases,” Ph.D. dissertation, University of York, September
1998.

[10] GSN Community, GSN Community Standard, Std., Rev. Ver. 1,
2011. [Online]. Available: http://www.goalstructuringnotation.
info/documents/GSN Standard.pdf

[11] A. Wassyng, T. Maibaum, M. Lawford, and H. Bherer,
“Software certification: Is there a case against safety cases?”
in Foundations of Computer Software. Modeling, Development, and
Verification of Adaptive Systems, ser. Lecture Notes in Computer
Science, R. Calinescu and E. Jackson, Eds. Springer Berlin
Heidelberg, 2011, vol. 6662, pp. 206–227. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21292-5 12

[12] N. R. Council, D. Jackson, and M. Thomas, Software for Dependable
Systems: Sufficient Evidence? Washington, DC, USA: National
Academy Press, 2007.

[13] T. P. Kelly and J. A. McDermid, “A systematic approach to
safety case maintenance,” Reliability Engineering & System Safety,
vol. 71, no. 3, pp. 271–284, Mar. 2001. [Online]. Available:
http://dx.doi.org/10.1016/s0951-8320(00)00079-x

[14] T. Kelly, “Are safety cases working,” Safety Critical Systems Club
Newsletter, vol. 17, no. 2, pp. 31–33, 2008.

[15] C.-L. Lin and W. Shen, “Generation of assurance cases for medical
devices,” in Computer and Information Science, ser. Studies in
Computational Intelligence, R. Lee, Ed. Springer International
Publishing, 2015, vol. 566, pp. 127–140. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-10509-3 10

[16] R. Weaver, J. Fenn, and T. Kelly, “A pragmatic approach to
reasoning about the assurance of safety arguments,” in Proceedings
of the 8th Australian Workshop on Safety Critical Systems and Software
- Volume 33, ser. SCS ’03. Darlinghurst, Australia, Australia:
Australian Computer Society, Inc., 2003, pp. 57–67. [Online].
Available: http://dl.acm.org/citation.cfm?id=1082051.1082056

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995.

[18] Y. Chen, M. Lawford, H. Wang, and A. Wassyng, “Insulin Pump
Software Certification,” in FHIES 2013: 3rd International Symposium
on Foundations of Health Information Engineering and Systems, ser.
LNCS, vol. 8315. Springer, 2013, pp. 87–106.

[19] T. P. Kelly and J. A. McDermid, “Safety case construction and reuse
using patterns,” in SafeComp 97. Springer, 1997, pp. 55–69.

[20] E. A. Strunk and J. C. Knight, “The essential synthesis
of problem frames and assurance cases,” Expert Systems,
vol. 25, no. 1, pp. 9–27, 2008. [Online]. Available: http:
//dx.doi.org/10.1111/j.1468-0394.2008.00452.x

[21] J. Knight, “Advances in software technology since 1992,” in
National Software and Airborne Electronic Hardware Conference, ser.
FAA 2008, 2008. [Online]. Available: http://www.cs.virginia.edu/
%7Ejck/publications/FAA.SW.AEH.2008.PDF

[22] U. Food and D. Administration, “Baxter healthcare Pte.
Ltd. colleague 3 cxe volumetric infusion pump 80frn,”
MAUDE Adverse Event Report Catalog Number 2M9163,
2007, http://www.accessdata.fda.gov/SCRIPTs/cdrh/cfdocs/
cfMAUDE/Detail.cfm?MDRFOI ID=914443.

Alan Wassyng is Director of the McMaster Centre for Software Cer-
tification, and one of its founders. He is an Associate Professor in
the Department of Computing and Software at McMaster University,
Canada, and has been involved in development and certification of
safety-critical software intensive systems for more than 25 years.

Neeraj Kumar Singh received his Ph.D in Computer Science from Henri
Poincaré University, Nancy 1 (now the University of Lorraine), France, in
2011. He is a postdoctoral researcher in McMaster University’s Centre
for Software Certification. His research interests include formal meth-
ods, software engineering, software and system certification, and cyber-
physical systems.

Mischa Geven is a Masters candidate in the Department of Computing
and Software at McMaster University, currently developing an assurance
case template for generic insulin infusion pumps as part of an M.A.Sc.
thesis on the development and certification of such devices.

Nicholas Proscia is a Masters candidate in the Department of Comput-
ing and Software, McMaster University, currently completing an M.A.Sc.
thesis on improving the software development process.

Hao Wang is an Associate Professor at Aalesund University College,
Norway. He was recently a Research Scientist at IBM Canada R&D
Centre, seconded to the McMaster Centre for Software Certification
specifically to collaborate on research on the generic insulin infusion
pump.

Mark Lawford is the Associate Director of the McMaster Centre for
Software Certification, and one of its founders. He is a Professor in
the Department of Computing and Software, and has more than 15
years experience integrating formal techniques with practical industrial
software engineering applied to safety-critical real-time control systems.

Tom Maibaum received his Ph.D., in 1974 from University of London.
He has held academic positions at University of Waterloo, Imperial
College, and King’s College, London. He holds a Canada Research
Chair in Foundations of Software Engineering at McMaster University,
and is a founder of its Centre for Software Certification.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MDAT.2015.2462720

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


