
Something is Rotten in the State of Documenting Simulink Models

Vera Pantelic, Alexander Schaap, Alan Wassyng, Victor Bandur and Mark Lawford
McMaster Centre for Software Certification, McMaster University,

1280 Main St W, Hamilton, ON L8S 4K1, Canada
{pantelv, schaapal, wassyng, bandurvp, lawford}@mcmaster.ca

Keywords: Model-Based Development, Simulink, Software Documentation, Embedded Software, Software Require-
ments Specification, Software Design Description

Abstract: In this paper we draw on our experience in the automotive industry to portray the clear need for proper docu-
mentation of Simulink models when they describe the implementations of embedded systems. We effectively
discredit the “model is documentation” motto that has been hounding the model-based paradigm of soft-
ware development. The state of the art of documentation of Simulink designs of embedded systems, both
in academia and industrial practice, is reviewed. We posit that lack of proper documentation is costing in-
dustry dearly, and propose that a significant change in development culture is needed to properly position
documentation within the software development process. Further, we discuss what is required to foster such a
culture.

1 Introduction

We have witnessed first-hand, in industry, and es-
pecially while working with large automotive orig-
inal equipment manufacturers (OEMs) and automo-
tive suppliers, the detrimental effect of non-existent
or poor software documentation. Other researchers
also have traced the poor quality of software engi-
neering practices in industry to the lack of appro-
priate software documentation (Sousa and Moreira,
1998). Some, most notably David Parnas, have iden-
tified improper software documentation as the prime
cause of industry’s erratic record regarding software
quality (Parnas, 2011). While the cost of lack of
proper documentation is hard to measure, we provide
anecdotal evidence that illustrates its effects in devel-
opment and maintenance of production-scale embed-
ded systems in Simulink/Stateflow. We believe that
these effects often translate to large financial losses
for companies.

“Models are documentation” has followed model-
based design (MBD) since its early phases, primarily
promoted by tool vendors (e.g. (Barnard, 2005; Brück
et al., 2002)). However, our experience clearly indi-
cates that any developer that has ever been tasked with
reverse-engineering a large industrial-scale Simulink
model understands all too well that a Simulink model
is not complete enough documentation. A Simulink
model is only one view of the system being imple-
mented – albeit an executable one. However, differ-

ent stakeholders need different views: the developer
of model A needs to understand the model’s inner-
working, while the developer of model B, which in-
terfaces with A, needs to know only the interface of
A. It is important to note here that we mean both the
syntax and semantics of the interface. Simulink pro-
vides the syntax of the interface of A. Additional doc-
umentation is necessary to provide the semantics. In
addition, the developer of A needs to document ratio-
nale of design decisions made in the implementation
of A. The crucial problem is that this additional in-
formation is rarely documented, even though history
teaches us how important it is (Sagoo et al., 2014).

From our experience, many developers appreciate
the benefits of good software documentation. Refac-
toring large industrial-scale Simulink models is prac-
tically impossible without good documentation. In
fact, developers have asked us on different occasions
to help them document Simulink models as – or,
rather, because – they were going through a gruelling
process of refactoring another engineer’s model. Fur-
ther, the same developers cited “lack of documenta-
tion culture” as the main cause for not creating and/or
properly maintaining software documentation – pro-
duction and proper maintenance of documentation is
not part of the companies’ values and expected be-
haviour of their developers. Documentation efforts
are not appreciated, and thus seldom rewarded, even
during (intense) reverse-engineering activities when
their benefits become painfully obvious.



This paper surveys the state of the art in the docu-
mentation of Simulink implementations of embedded
systems, in both academia and industry. In particu-
lar, we present our experience distilled from collab-
orations with multiple automotive OEMs and suppli-
ers to illustrate the industrial need for good documen-
tation of Simulink models of embedded controllers.
Also, we address existing work and existing tool sup-
port, and discuss their possible extensions that could
provide proper support for the documentation pro-
cess. Therefore, our position is that proper Simulink
model documentation would be a cost-effective so-
lution for proper maintenance of production-scale
Simulink models. However, this would require a large
cultural change in how the industry perceives docu-
mentation. This change would require investment in
providing technical support for efficient creation and
maintenance of documentation, including proper tool-
ing to support these activities.

The rest of this paper is structured as follows:
Section 2 describes what documents would be useful
companions to Simulink models and why. Section 3
presents some of our relevant experience with indus-
trial Simulink models and explains why these docu-
ments are crucially important for large modeling ef-
forts. Section 4 reviews currently available support
for documenting Simulink models and Section 5 de-
scribes our position on the need for cultural change
regarding software documentation. We conclude in
Section 6.

2 Documenting Simulink Models:
What and Why?

The application layer of embedded automotive
software is often designed in Simulink/Stateflow. For
large controllers, the design consists of dozens of
large Simulink/Stateflow models, where the largest
models contain hundreds of thousands of blocks and a
few tens of thousands of subsystems. Each Simulink
model is typically assigned to one developer. There-
fore, a Simulink model corresponds to a software
module, in the spirit of the module’s definition as a
responsibility assignment (Parnas, 1972).

In this context there are many reasons why soft-
ware documentation is essential, and they all revolve
around communication. Every document communi-
cates a different aspect of the software, offering a
useful abstraction to its users. These aspects need to
be communicated between domain experts, software
developers, managers/supervisors, reviewers, testers,
maintainers, certification authorities, and users. Doc-
umentation is critical not only for communication

in the forward development process but also during
maintenance. In particular, traceability is now rec-
ognized to be essential in achieving and maintain-
ing safety, security and dependability (Mader et al.,
2013). Traceability includes bi-directional links be-
tween system development artifacts, as well as be-
tween entities in development and verification, and
between system development documents and assur-
ance cases. Without adequate traceability, change im-
pact analysis becomes fragile, and incremental de-
velopment a nightmare. Thus, our documentation
must include the capability to record links between
all these entities – far beyond what is achievable in
Simulink alone. In regulated industries, documenta-
tion is needed for compliance with relevant standards.
In particular, in the automotive industry proper soft-
ware documentation is required by ISO 26262 (ISO,
2011). However, the standard imposes almost no re-
quirements on the content and format of the docu-
ments. This is not surprising – software standards
typically fail to do so.

Just as in traditional software development, when
developing software in Simulink/Stateflow, two doc-
uments are crucial (Bialy et al., 2017; Schaap et al.,
2018). The first is the model’s Software Requirements
Specification (SRS), specifying the model’s black-box
behaviour. The document acts as a contract between
the model’s developer and the developers of other
models that interact with it. It is a document that
dictates what the model should implement. Also, the
SRS is a reference document for verification activi-
ties, where it can be used as a testing oracle. Most
importantly, the SRS describes what the software
must do at a higher abstraction level than would ever
be possible when describing exactly how the soft-
ware will achieve the required behaviour – as is the
case in Simulink. As further motivation for SRSs
in the automotive domain, ISO 26262 strongly rec-
ommends requirements-based testing for electronic-
software components, no matter what Automotive
Safety Integrity Level (ASIL) they are assigned.

The second document is the Software Design De-
scription, describing a model’s internal design that
satisfies its requirements. It captures design deci-
sions and anticipated changes, and is written and used
by the model’s developers in both development and
maintenance. The document structure should reflect
the model’s subsystem1 hierarchy, documenting the
interface and internal design for each important sub-
system (Schaap et al., 2018). As described earlier in
Section 1, Simulink provides a syntactic definition of
interfaces, but it is important that we also provide a

1Simulink uses a notion of subsystem to organize large
models hierarchically.



semantic definition of the interfaces. The semantic
definition has to be added to Simulink, either locally
within the model, or in external documentation. The
semantic definition often needs to be supported by ra-
tionale, trace-links to requirements, etc. This kind of
information is extremely difficult or even impossible
to reconstruct years after the initial development of
the model. This document is therefore crucially im-
portant, as the maintainers are typically not the orig-
inal developers. Regarding the syntactic definition
of the interface of a Simulink subsystem, although
contained within the subsystem, this definition does
not currently have an explicit representation within
Simulink. This is due to the fact that, besides the
explicit data flow from and into a subsystem repre-
sented using input and output ports, Simulink subsys-
tems can communicate via implicit data flow mech-
anisms – data stores (analogous to variables in tra-
ditional programming languages) and Goto/Froms. A
proposal has been made on how to explicitly docu-
ment the syntactic definition of a model’s complete
interface (Bender et al., 2015).

3 Current Practice is Not Good
Enough

In general, software documentation is often out-
dated, non-existent, poorly written and generally un-
trustworthy (Parnas, 2011; Lethbridge et al., 2003).
The same is true specifically of documentation in
MBD with Simulink (Rau, 2002; Ackermann et al.,
2010; Bialy et al., 2017; Schaap et al., 2018). Our ex-
perience in the automotive industry corroborates this
perception. There is a fundamental difference be-
tween software engineering and traditional engineer-
ing disciplines in that, in software development, there
is no immediate material cost associated with produc-
ing some prototype of the final product. In traditional
engineering, there is a tangible cost above time and
effort in building a prototype. Thus, even before a
prototype is attempted, initial analyses and prelimi-
nary requirements are documented. Since we want
to reap as many benefits as possible from the cost of
the prototype(s), lessons learned in terms of rationale,
design choices etc., are recorded for later use during
the construction of the prototype. However, with soft-
ware there is the perception that it costs nothing to
quickly and sloppily “hammer out” code to see if we
can make it work as intended. In software, this initial
artifact is the first nail in the coffin of proper docu-
mentation. To make matters worse, industrial culture
regards this initial quick and dirty prototype as initia-
tive on the developers’ part and as a meaningful first

step toward a solution. Under this type of work cul-
ture, effective documentation is promptly and effec-
tively short-cut, with all subsequent effort invested in
evolving this initial artifact.

3.1 Stories

To illustrate the impact of lack of (proper) documen-
tation of Simulink/Stateflow models in industry, we
summarize some of our experience gained through
interactions with automotive industrial partners. The
following stories highlight the large development and
maintenance costs attributable to a lack of appropriate
documentation.
Anecdote 1 A module of an automotive controller
implemented a complicated optimization algorithm in
Simulink. During the maintenance phase of the soft-
ware development life cycle, the module was identi-
fied as an efficiency bottleneck, and a domain expert
was tasked with refactoring it. However, the model it-
self was sparsely documented, and additionally, used
another algorithm that itself was sparsely documented
in the literature. Furthermore, it was not clear why
some corner cases were implemented in a particular
way: the rationale was lost as the original develop-
ers of the model were no longer available. Another
complication was that the rationale for the design de-
cisions for using certain Simulink blocks over others
was also lost. In the reverse-engineering process, the
domain expert had to repeatedly consult an engineer
who was the only one in the company with a deep
understanding of the model. This is a quite common
scenario that we experienced on many occasions: the
maintenance efforts typically involve consulting dif-
ferent experts in an attempt to understand the model,
resulting in a large waste of valuable resources. In this
particular case, the domain expert had spent several
months reverse-engineering the module and ended up
consulting us for help in documenting the algorithm
of interest. To the best of our knowledge, the perfor-
mance bottleneck was never addressed.
Anecdote 2 A collaboration with an industrial part-
ner included development of the plan for the migra-
tion of the existing software to AUTOSAR, the open
automotive software architecture (AUTOSAR, 2018).
In particular, the network interfaces, including CAN
(Controller Area Network), SPI (Serial Peripheral In-
terface) and LIN (Local Interconnect Network), as
well as diagnostics, were non-compliant with AU-
TOSAR, thus requiring an overhaul of the exist-
ing solution, including a new, AUTOSAR-compliant
mechanism for communication at the application
layer, where Simulink models were used. How-
ever, the existing communication/diagnostics mech-



anisms/blocks at the Simulink level were poorly doc-
umented. The lack of proper documentation rep-
resented a notable hurdle in the development of
the migration plan that instigated numerous inter-
actions with both engineers at the application level
(Simulink) and the base software level.

Both stories above clearly depict the costs associ-
ated with inadequate documentation. During the soft-
ware maintenance phase, trying to understand under-
documented models leads to waste of valuable re-
sources. Reverse-engineering is notoriously difficult,
even for domain experts: a great amount of time and
effort in addition to domain-specific knowledge is re-
quired to reverse-engineer models. Further, reverse-
engineering is not always necessarily completely suc-
cessful: even if the how (which is doable with a lot
of effort) and the what (which is incredibly difficult
to differentiate from how) are discoverable, the why
is likely not. Additionally, some non-functional re-
quirements as well as timing requirements, may not
be recovered through reverse-engineering.

3.2 The Model is Not the
Documentation

Both anecdotes above effectively refute the “model is
the documentation” myth. As the stories illustrate,
and as we have seen on many other occasions, docu-
mentation of the design of a model that captures de-
sign rationale is a crucial artifact that, ideally, con-
tains the information that makes reverse-engineering
efforts largely unnecessary, or at least significantly
easier and more effective. Further, documenting de-
sign during the design process enhances the problem-
solving process by enabling designers to better under-
stand the problem and have a firmer grasp on different
possible solutions.

The “code is the documentation” paradigm that
existed (sometimes still exists) in traditional software
engineering, is analogous to the MBD catchphrase
that the “model is the documentation”. Years ago,
Parnas (Parnas, 2011) discredited it by arguing that
different views, with different abstractions from de-
tailed code, are needed. The same holds for models.

4 Current Support for Simulink
Documentation

4.1 Related Work

Academia has shown little interest in documenting
Simulink models. There exist several causes for this

situation. First, the research lacks exciting theoret-
ical underpinning. Second, industry has not shown
much interest. Given the pressures of releasing often
and cutting down on development costs, industry of-
ten lets documentation efforts lapse.

Rau notes some of the common problems with
creating and maintaining software documentation for
Simulink models (Rau, 2002), namely, that it is often
ambiguous, inconsistent, non-existent, incomplete,
and tedious to create. This is attributed to documenta-
tion being a separate artifact from the implementation
in addition to being created at a different time, it being
generally informal and unstructured, with redundancy
between both documents themselves as well as be-
tween documentation and model. Rau then sets prin-
ciples for effective production and use of documenta-
tion in development with Simulink. First, Rau advo-
cates for an integration between a model and its docu-
mentation. MathWorks later provided support for this
principle by introducing a special kind of Simulink
block: DocBlocks allow one to embed descriptive text
in a Simulink model. Further, Requirements Man-
agement Interface (RMI) allows linking to external re-
quirements documents to create traceability from the
model to the requirements, as Rau advocates. In his
own demonstration, Rau uses custom blocks to docu-
ment signals in order to produce the model/subsystem
interface. MathWorks has added fields for e.g. spec-
ifying units for subsystem ports, but otherwise the
generic Description block property can be used to doc-
ument signals textually.

The next important principle emphasized by Rau
is structuring and formalizing documentation, while
offering developers placeholders to fill in (Rau, 2002).
While Rau does not elaborate this principle, the con-
tents for both SRS and SDD for Simulink models are
discussed in (Bialy et al., 2017). Further, Schaap et al.
define the (minimal) contents of the Software Design
Description (SDD) for Simulink models and propose
tool support to semi-automate the generation of SDDs
(Schaap et al., 2018).

4.2 Tool Support

Along with the possibility of embedding documen-
tation within a model, the key is the ability to gener-
ate external documents. MathWorks’ Simulink Report
Generator generates reports in various formats from
Simulink models at the press of a button. However,
the default templates offered by the tool only extract
information already present in the executable part of
the model – resulting documents consist primarily of
block parameter tables and are, consequently, of lim-
ited use. Additionally, formatting a resulting report



(MS Word document) can be quite difficult. For ex-
ample, formatting tables, heading font sizes and num-
bering, or eliminating unnecessary space between el-
ements such as headers and contents, can be no-
toriously hard. Furthermore, disabling components
(deleting sections) of the template sometimes causes
unexpected behaviour. Lastly, there is no search func-
tionality built into the tool’s graphical user interface
(GUI), which makes developing a larger template te-
dious. To create traceability to requirements, there is
the RMI, but documents must be in specific locations
relative to the model. Traceability from external re-
quirements to portions of a model is possible as well,
but is even more fragile. While these are the build-
ing blocks for the approach advocated by Rau (Rau,
2002), they do not constitute a practical approach on
their own since the usability deficiencies will deter
most developers.

The approach of (Schaap et al., 2018) prescribes a
(customizable) SDD template and provides guidance
on its contents. Developers add documentation via
customized template-prescribed DocBlocks in either
text or RTF format. The reports are then generated via
Simulink Report Generator. The benefit of defining
the structure is consistency across the organization
and less developer effort to produce documentation.
Once the DocBlocks have been filled in by the devel-
oper, document generation and formatting are fully
automated. Also, documentation of syntactic subsys-
tem interfaces is fully automated using the Signature
Tool (Bender et al., 2015). This automation allows
developers to focus on writing useful contents such
as rationale for design decisions. Since the work of
Schaap et al. proposes minimal content for an SDD,
an organization is likely to want to customize the SDD
template. Customization, however, would present a
tedious task given the formatting issues with the un-
derlying Simulink Report Generator as the report gen-
eration engine.

The tool support for authoring, analysis, and man-
agement of requirements is much better than the pre-
sented tool support for documenting a model’s inter-
nal design. Since Simulink R2017b+, MathWorks of-
fers the Simulink Requirements toolbox. By default,
Simulink Requirements provides a developer with ID,
Summary, Description and Rationale columns for re-
quirements; however, custom attributes can be added
for sets of requirements. In this way, for example,
anticipated changes can be expressed. The require-
ments can then be linked to tests, models and code.
Simulink Requirements allows for requirements to be
expressed using natural language only.

4.3 Templates

Like Rau (Rau, 2002), Bialy et al. (Bialy et al., 2017)
and Schaap et al. (Schaap et al., 2018), we deem pre-
cisely defined content of the SDD as critical to the suc-
cessful utilization of documentation in software de-
velopment and maintenance processes. Our experi-
ence with industry partners clearly confirms this. In
our collaboration with an automotive OEM, we have
witnessed a case where, while the basic structure (ta-
ble of contents) of the SDD was defined, the required
content was not precisely specified. For example,
the template prescribed that the architectural view of
a Simulink model be included in the model’s SDD.
However, the term was not defined anywhere and no
requirements were imposed on the section’s content,
leading to inconsistent SDD documents throughout
Simulink models of the same controller. Numerous
similar issues lead to an ineffective use of documen-
tation and, ultimately, its abandonment. The incon-
sistency problem caused by the lack of common un-
derstanding of the term architectural view was not
surprising: after all, there exists no single agreed-
upon definition for software architecture (Garlan and
Perry, 1995). However, we found out that even some
terms that are well rooted and used within the soft-
ware community, were largely misunderstood. For
example, the SDD required rationale for design de-
cisions to be documented. The concept of rationale,
however, was poorly understood among the develop-
ers: many of them mistook it for the purpose of the
subsystem. This is in part due to many of the de-
velopers in the embedded software industry lacking
software engineering background (Bialy et al., 2017).
Organizations ought to document their processes and
describe resulting artifacts within internal documents
(as standards, guidelines, and/or procedures), includ-
ing precise definition of all relevant terms. In addi-
tion, for example, in the approach of Schaap et al.,
described earlier, the terms and concepts as defined in
a document can be leveraged from within documen-
tation templates and included in the generated docu-
mentation, where appropriate.

5 Documentation Culture

Recognizing that documentation in Simulink
model development is necessary is only part of the
solution to the problem of unmaintainable Simulink
models. Developing a sustained standard of doc-
umentation that includes conventions and notations
that prove useful in all aspects of the development
and maintenance of these models is also necessary.



We propose a culture of documentation as an effec-
tive way of maintaining such a standard.

We intend “culture” here to take on its usual mean-
ing, as a set of shared beliefs, attitudes, values, etc.
within an organization. Because culture is cohesive,
a culture of documentation would allow a belief and
understanding that documentation is just as important
as the artifact it documents to span the organizational
hierarchy. For such a culture to develop, support is
required on several fronts. Change management is
notoriously challenging, and there are some proven
approaches to it (Anderson and Anderson, 2010). In
support of these well documented approaches, we dis-
cuss some aspects specific to our suggestion.

5.1 Coming from the Top

It is vital that managers emphasize long-term com-
pany concerns with respect to the development of
software intensive products. Consequences of com-
pany software development culture are not as intuitive
as they may be in other engineering disciplines. For
example:

• Managers must foster the idea that quality must
be “designed in” from the start. Too often, man-
agers promote too early development of design
and even code simply because it is so easy to
create software. Creating software in an ad hoc
manner is not the same as creating, documenting
and using a methodical approach to plan and de-
sign high quality software that provides a safe and
dependable product. Early “solutions” often turn
out to be mirages – the closer we get to them the
more we realize that they do not deliver what they
promised, and when they do successfully deliver
on the required functionality, they are likely to
degrade during maintenance simply because they
were not designed with adequate foundations to
start with. A civil engineer, for example, will not
build a structure without first performing a slope
stability analysis. Ignoring necessary analyses is
devastating in any engineering discipline, but with
software the devastating effects are often not re-
alized until too late, and then amortized over the
lifetime of the software.

• In the vast majority of industrial cases, software
is not maintained by those who created it. An
awareness must be developed that newcomers will
likely handle the software during its maintenance
phase – and the original developers may not be
available for discussion! In addition, the implica-
tions of software developers having to reverse en-
gineer these artifacts sometime in the future were
documented in an earlier section.

On the technical side, the change in culture re-
quires templates, standards, procedures and guide-
lines to support effective creation, use and mainte-
nance of documentation. We discuss this next.

5.2 Supporting standards, guidelines,
templates

Successfully fostering a culture of documentation re-
quires a policy that enforces the production and main-
tenance of documentation during the software life-
cycle. This policy should impose the existence of
documentation templates, but as we have seen, tem-
plates alone are not enough. While templates pre-
scribe the format and content of the documentation,
they are not nearly as useful if, for example, develop-
ers are unaware of the terminology used in the docu-
ments; the notations to be used; or the process of doc-
umentation maintenance as part of the change man-
agement process. Therefore, internal documents (be
they guidelines, standards, procedures, or a combina-
tion thereof) are needed to precisely define the devel-
opment processes including the software documen-
tation activities and the artifacts to be generated by
their application. Process documents rarely, if ever,
provide enough detail in the process steps to ensure
that the results of applying the process consistently
achieve the quality attributes desired. There are many
reasons for this. Two of the most important are: i) it
is difficult to document process steps to that level of
detail; and ii) most companies like to leave things less
well-defined so that developers have more freedom to
do what they think is right in a given situation. One
way of combating this that seems acceptable to most
developers, is to be more prescriptive in the content
and format of the generated documentation.

5.3 Rigour

In other engineering disciplines, documentation typ-
ically uses mathematics to specify and describe sys-
tems precisely; unfortunately, this is not the case
with software documentation where natural language
is prevalent. However, natural language suffers from
ambiguity. Many methods for formal specification of
requirements exist, for instance tabular expressions
(Wassyng and Janicki, 2003). We advocate the use
of mathematics to make documents more precise and
leverage some advanced verification tools. Formal re-
quirements can be automatically checked for consis-
tency and completeness. Crucially, they can be used
as a basis for automatic test generation and for for-
mal verification of Simulink designs against require-
ments. In fact, advanced commercial tools exist for



automatic test generation and formal verification of
Simulink models (e.g., MathWorks’ Simulink Design
Verifier (SDV) and Reactis by Reactive Systems).

5.4 Automate, automate, automate

Automation of routine tasks is essential to the de-
velopment and maintenance of software (Hunt and
Thomas, 2002). Proper tools are essential in sup-
porting documentation efforts. Existing tool support
for documentation of Simulink models is not yet ade-
quate. For example, Simulink Report Generator needs
to undergo major improvements to be used as a proper
engine for automatic generation of reports from de-
fined templates. The tool described by Schaap et al.
(Schaap et al., 2018) is an academic tool that lever-
ages Simulink Report Generator and needs to be im-
proved to provide easier template customization as
well as a GUI for, at least, configuration.

MathWorks’ Simulink Requirements toolbox can
also be enhanced. As mentioned before, adding fields
for anticipated changes would improve the quality
and usefulness of the requirements in preparing a de-
sign that may be more robust with respect to future
changes. Simulink Requirements can store require-
ments only in ASCII text or MS Word. However, if re-
quirements are formalized using Simulink/Stateflow,
as Simulink/Stateflow models outside of Simulink
Requirements, they can be linked to their textual rep-
resentation in Simulink Requirements using traceabil-
ity links provided by the combination of the Simulink
Requirements and Simulink Test toolboxes. Tests
could be derived using Simulink Test or Simulink De-
sign Verifier (SDV). SDV tests can be imported into
Simulink Test, and could then be linked to require-
ments and designs.

6 CONCLUSIONS

We have presented empirical evidence that indus-
trial practice demonstrates a need to properly docu-
ment Simulink models. The anecdotes we presented
may be few, but they are drawn from more than five
years of experience working closely with automotive
industrial partners on their Simulink models. They
are representative of what we observed in general. We
also presented the case for a cultural change that we
believe is required to improve both the quality and
status of documentation in the MBD process in in-
dustry. These changes require substantial resources,
as well as direction and commitment from manage-
ment. We believe that the required resources and ded-
ication will pay off in the long term. As immedi-
ate future work, a systematic approach would exam-
ine the Simulink models documentation practices in

the automotive industry and help define more precise
documentation requirements. This work would pave
the way to creating effective documentation stan-
dards, defining more concrete actions in implement-
ing the documentation culture, and developing better
tool support.

REFERENCES

Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shel-
ton, C., and Latronico, E. (2010). Automatic require-
ment extraction from test cases. In Barringer, H., Fal-
cone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Rosu, G., Sokolsky, O., and Tillmann, N., editors,
Runtime Verification, volume 6418 of LNCS, pages 1–
15. Springer Berlin Heidelberg.

Anderson, D. and Anderson, L. A. (2010). Beyond Change
Management. Pfeiffer, San Francisco, California.

AUTOSAR (2018). AUTOSAR – enabling innova-
tion. https://www.autosar.org. [Online; accessed
November, 2018].

Barnard, P. A. (2005). Software development principles ap-
plied to graphical model development. In AIAA Mod-
eling and Simulation Technologies Conference and
Exhibit, San Francisco, CA, USA. American Institute
of Aeronautics and Astronautics.

Bender, M., Laurin, K., Lawford, M., Pantelic, V., Ko-
robkine, A., Ong, J., Mackenzie, B., Bialy, M., and
Postma, S. (2015). Signature required: Making
Simulink data flow and interfaces explicit. Science
of Computer Programming, 113, Part 1:29–50.

Bialy, M., Pantelic, V., Jaskolka, J., Schaap, A., Patcas, L.,
Lawford, M., and Wassyng, A. (2017). Software En-
gineering for Model-Based Development by Domain
Experts. In Griffor, E., editor, Handbook of System
Safety and Security, pages 39–64. Syngress, Boston,
1st edition.

Brück, D., Elmqvist, H., Mattsson, S. E., and Olsson, H.
(2002). Dymola for multi-engineering modeling and
simulation. In Proceedings of Modelica, volume 2002.
Citeseer. Online at https://www.modelica.org/
events/Conference2002/index_html.

Garlan, D. and Perry, D. (1995). Introduction to the special
issue on software architecture. IEEE Transactions on
Software Engineering, 21(4):269–274.

Hunt, A. and Thomas, D. (2002). Ubiquitous automation.
IEEE Software, 19(1):11.

ISO (2011). ISO 26262: Road vehicles – functional safety,
International Organization for Standardization (ISO).

Lethbridge, T. C., Singer, J., and Forward, A. (2003). How
software engineers use documentation: the state of the
practice. IEEE Software, 20(6):35–39.

Mader, P., Jones, P. L., Zhang, Y., and Cleland-Huang,
J. (2013). Strategic traceability for safety-critical
projects. IEEE Software, 30(3):58–66.

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules. Communications of the
ACM, 15(12):1053–1058.

https://www.autosar.org
https://www.modelica.org/events/Conference2002/index_html
https://www.modelica.org/events/Conference2002/index_html


Parnas, D. L. (2011). Precise Documentation: The Key to
Better Software, pages 125–148. Springer Berlin Hei-
delberg, Berlin, Heidelberg.

Rau, A. (2002). Integrated specification and documentation
of Simulink models. International Automotive Con-
ference.

Sagoo, J., Tiwari, A., and Alcock, J. (2014). Reviewing
the state-of-the-art design rationale definitions, repre-
sentations and capabilities. International Journal of
Design Engineering, 5(3):211–231.

Schaap, A., Marks, G., Pantelic, V., Lawford, M., Selim,
G., Wassyng, A., and Patcas, L. (2018). Documenting
Simulink designs of embedded systems. In Proceed-
ings of the 21st ACM/IEEE International Conference
on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings, MODELS ’18, pages
47–51, New York, NY, USA. ACM.

Sousa, M. J. C. and Moreira, H. M. (1998). A survey on
the software maintenance process. In Proceedings of
1998. International Conference on Software Mainte-
nance, pages 265–274. IEEE.

Wassyng, A. and Janicki, R. (2003). Tabular expressions in
software engineering. Proceedings of 2003. Interna-
tional Conference on Software and System Engineer-
ing (ICSSEA’03), pages 1–46.


