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Integrated software methodologies –
An engineering approach

Alan Wassyng & Mark Lawford

McMaster Centre for Software Certification, Department of Computing and Software, McMaster University, Hamilton, Canada
e-mail: wassyng@mcmaster.ca / lawford@mcmaster.ca

We make the case for greater integration of the individual methods and documentation used in the software
development life-cycle. We illustrate practical benefits from this approach through the use of examples
drawn from a methodology that has been used to develop successful safety-critical applications. Integration
limits the number of different specifications that have to be developed and also typically results in
improved traceability from requirements through to code. We also show that integration may reduce the
burden imposed by formal verification. Integrated software toolsets are a natural consequence. This
integration is exactly what engineers do in other disciplines, and software engineers should take note of
this.

Keywords: software engineering, software process, formal methods, software requirements, software
design, software verification.

INTRODUCTION
Software engineering is gradually being recognised as an

engineering discipline. Like other engineering disciplines,
there is a mutual dependence between the engineering
discipline and its basic science foundation. Engineering uses
research from the basic sciences to develop engineering
approaches, methods, heuristics and standards. It also feeds
back suggestions for further research, both in depth and in
shifts of focus. We are at one of those stages where significant
progress can be achieved in software engineering by changing
our focus. Software engineers, like other engineers, are natu-
rally concerned with standards and process – about creating
suitable standards and processes, and managing those processes.
Other engineering disciplines discovered many years ago that
there are significant advantages to developing processes that
depend on each other for the final solution of an engineering
problem. To date, software engineers have been slow to realise
this. For many years now, we, the general software and
computing community, have conducted research in aspects of
requirements analysis and documentation, software design,
programming, testing, verification and validation, specification,
inspection, languages, compilers, and operating systems. Rele-
vant aspects of this research and experience often find their
way into the definition of software standards and development
processes. We have developed tremendous knowledge and
skills in all of these areas. In the early 1990s there seemed to
be some attempt to develop “integrated methods”, but that
thrust seems to have dissipated – except for attempts at integra-
tion through refinement and automated code generation.
Recently there has been progress in deriving architectural
design from the requirements (Khedri & Bourguiba, 2004), and
there is a small number of research efforts that target some
form of integration, the most notable of these being the work
by Van Lamsweerde and others on KAOS (Darimont et al.,
1997). However, in general, we seem to have neglected this
aspect of research, namely how the different life-cycle phases
do and should interact and how to directly use documentation
from one phase in another, related, phase. Hopefully, this paper
will encourage computer scientists and software engineers to
concentrate on research and development of methods and

software tools that are much more integrated over the software
development life-cycle than is currently the norm.

The paper is organised as follows. The first section deals with
the development of software methods, starting with typical
approaches used up until now, and then the proposed
approach, together with an example drawn from an industrial
safety-critical project. Tool support is described and some
representative related work is discussed. Finally, the conclu-
sions are presented.

A TYPICAL APPROACH
Understandably, researchers who are involved in the devel-

opment of software methods typically concentrate their efforts
on a specific phase of the software life-cycle. Their emphasis
is on the development of the best method for that phase,
dependent on the evaluation criteria they deem important. For
example, there are numerous papers on specification of soft-
ware interfaces. If we assume that the software design is
decomposed into modules (as proposed by Parnas (1972), classes
in object-orientated designs) then a module interface typically
comprises the exported constants and types and the access
programmes (methods in object-orientated designs) of that
module. Common wisdom dictates that the interface specifica-
tion describes the externally visible required behaviour of
an access programme without divulging how this will be
achieved. This has led to a number of proposed specification
methods for module interfaces. An example of this approach is
the original trace assertion method proposed by Bartussek and
Parnas (1977). (Parnas now has a revised trace-based method.)
However, the thrust of this discussion applies equally well to
other methods.

The trace assertion method used module interface call
sequences, traces, as the components of the specification. In
Parnas’s design documentation (Parnas & Clements, 1986;
Parnas & Madey, 1995) these trace assertions are then used in
the Module Interface Specification. This specification approach
can work but it has an essential flaw. The method has no
dependence on, and does not even overtly acknowledge, the
possible existence of a mathematically precise requirements
specification. If we assume the existence of a formal require-
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ments document, we may be able to use the requirements
specifications of individual functions in the design interface
specification. Similar situations exist for all phases of the soft-
ware development life-cycle. For example, if we know that the
methodology includes a detailed design document, then that
document can be used to comment on the code by including
cross-references to the design document in the code (see
Figure 11.

A BETTER APPROACH
Let us suppose that we are developing a software design

method and are considering how to document the module
interface specifications. However, we know that there is (or will
be) a method to develop a mathematically precise require-
ments document. In fact, it would be better if the developers of
the software design method have input into the requirements
method and its documentation. What is to prevent us from
using this formal specification of requirements to document
the module interfaces? After all, the abstraction level of the
requirements specification should be appropriate for the
module interface specification as well. It would certainly be an
advantage to be able to use the requirements specification to
document the module interfaces since we would not have to
develop an extra specification. We also would not have to verify
that the behaviour described by the interface specification is
the same as the behaviour described in the requirements.

There are two main reasons why it may be difficult to use the
requirements specification to document the module interfaces.
The first reason is that the requirements specification deals
with variables in the physical application domain while the
software design deals with variables inside the computer. This
situation was described by Parnas and Madey (1995), using
their now famous ‘4-variable model’ (see the top section of
Figure 1).

This model relates the monitored variables M to the controlled
variables C through a relation REQ (requirements). M and C
represent vector functions of time in the physical domain. The
monitored variables are transformed by hardware devices into
input variables I. These variables are stored in the computer (or,
at least, at the boundary of the computer) and are inputs to the
software application. The relation SOF represents the design of
the software application and so SOF operates on I to produce
the output variables O. These variables are also stored in the
computer and are transformed by hardware into the controlled
variables. The functional behaviour of the input and output
hardware devices can be represented by the relations IN and
OUT. It is clear from Figure 1 that the requirements document
will specify REQ in terms of M and C while the software design
document will specify SOF in terms of I and O.

The second reason that makes it difficult to use the require-
ments specification to document the module interfaces is that
the requirements and software design typically will be decom-
posed in totally different ways. The requirements decomposi-
tion is likely to be chosen to make the requirements document
more readable and understandable. The software design may
be decomposed to enhance the development and maintain-
ability of the software. It turns out that with some effort both of
these problems can be overcome. There are probably several
ways to achieve this. This paper describes the approach we
used.

Mismatch between requirements and design variable
Although the 4-variable model is a useful representation of

the situation, we realised in 1993, while developing the first
version of the verification method described by Moum (2000),

that we should deal with the software design in a slightly
modified way as shown in the bottom expansion in Figure 1.
Others have published similar modifications of the 4-variable
model (Bharadwaj & Heitmeyer, 2000; Thomson et al., 1999).

Instead of using I to produce O in the software design we can
include a little extra software to transform I to a close approxi-
mation of M. We call this approximation pseudo-M and denote it
by Mp. Actually, some software is necessary just to trigger the
hardware to produce I in the first place. The simple statements
to convert I to Mp add very little complexity, and the trigger
software plus the conversion software is packaged in a hardware
hiding module (Parnas, 1972) represented by SOFin. Similarly,
SOFout converts pseudo-C (Cp) to O. Since we now have repre-
sentations of M and C for the software to work with, the soft-
ware behaviour, represented by SOFreq, should be constructed
to match the behaviour described by REQ. This means that we
can solve the first of our problems, namely that the require-
ments (REQ) can be used to define the behaviour required in
the software design (SOFreq). See the discussion on ‘References’
related to Figure 7, below.

Different data-flow decompositions in requirements and
design

The second problem is not as simple to deal with. The difference
in data flow topology between requirements and design is
obvious. It is a problem for us because it is likely that the behav-
iour of a single access programme will be determined by
portions of one requirements function composed with portions
of another requirements function. If we need to describe the
behaviour of that access programme, the requirements func-
tions will not have the necessary granularity.

Let us start by assuming that the requirements specification
data-flow topology can be made to match that in the software
design. One way in which we can create such a requirements
specification is by piece-wise replacing some composition of
existing requirements functions by a new set of functions
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Figure 1. Modified four-variable model.
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that have the same behaviour as the original requirements
functions but the topology of the design. These replacement
functions are represented by what we called supplementary
functions. Since most functions in the requirements document
are described by tabular expressions we typically refer to these
supplementary functions as supplementary function tables
(SFTs).

SFTs are our solution to the second problem. We develop the
SFTs during the software design process and they are then
available to document the module interfaces and to aid in the
mathematical verification of the software design. Examples of
SFTs are shown below. The SFTs serve three important
purposes in our integrated methodology.
i) Together with the modification to the 4-variable model,

they enable us to document the module interfaces using the
requirements specification.

ii) They document how the designers decided to decompose
the requirements, so they serve as design notes.

iii) The major step in the design verification can be performed
piece-wise. See below. We call the version of the require-
ments specification that contains SFTs, the pseudo-require-
ments specification.

A DETAILED EXAMPLE
Most of the extracts in the example presented below have

been taken from a successful industrial safety-critical applica-
tion, namely a shutdown system for a nuclear power generat-
ing station that was the subject of Wassyng and Lawford (2003).

Requirements
The requirements model is a time-discrete finite state machine

with an arbitrarily small time step. The names of the monitored
variables are prefixed by m_. The names of the controlled
variables are prefixed by c_. Similarly, constant names are
prefixed by k_, internal functions caused by functional decom-
position of the requirements have names prefixed by f_, type
names are prefixed by y_ and enumerated token names are
prefixed by e_. The value of a function or variable at the
previous clock step is denoted by the name subscripted by –1,
such as f_name–1 or c_name–1. The current time is denoted by
tnow.

The vast majority of the requirements are specified using
tabular expressions (Janicki et al., 1997; Wassyng & Lawford,
2003). Comments in the tables are italicised and are enclosed
within braces. As an example, the definitions of the “Neutron
OverPower Parameter Trip and Sensor Trips” are shown in Fig-
ure 2. Roughly speaking, a sensor trip occurs when a function
that depends on a sensor value goes out of its safe range. A pa-
rameter trip depends on a function of related sensor trips.

Software design
The software design reorganises the way in which the

behaviour in the requirements is partitioned. This is done to
achieve specific goals, the major two of which are: i) the soft-
ware design should be robust under change; and ii) on the
target platform, all timing requirements will be met. Informa-
tion-hiding principles (Parnas, 1972) form the basis of the
design philosophy and the module interface specification for
each module lists exported constants and types. It also lists
all access programmes, specifies their invocation syntax and
specifies the semantic behaviour of each access programme by
referencing the appropriate requirements or pseudo-require-
ments functions. Figure 3 shows the module interface specifi-
cation for module NPParTrip, the module responsible for
evaluating and supplying the value of the controlled variable

c_NOPparmtrip. The semantic behaviour of access programme
EPTNP is thus documented by listing c_NOPparmtrip in the
references section. The internal declarations for module
NPParTrip are shown in Figure 4. The state data that stores the
current value of the NOP Parameter Trip, PTSNP is the only
state variable in this module. The constant KNUMNP (= 18) is
the number of NOP sensors.

Figure 5 shows the detailed design for access programme
EPTNP. It shows the call (shown as an external value) to
another access programme responsible for maintaining the
digital output status (SDONP in DigitalOutput), and the
explicit call to a “Get” programme (GSTNP in NPSnrTrip) that
provides current values of the 18 NOP sensor trips. In this
example there is little difference between detailed design and
interface specification.

To demonstrate the use of supplementary functions and
supplementary function tables, consider the following require-
ments and module interface specification extracts. The require-
ments extract in Figure 6 shows the formal definition of the
natural language expression “Watchdog test active”, which is
used in c_watchdog (not shown in this example), the function
that describes the status of the watchdog.

The initial version of the module interface specification of the
Watchdog module is shown in Figure 7. Note the references for
the access programs EWDOG and SWDOG. Different portions
of “Watchdog test active” are used in each of those access
programmes, so “Watchdog test active” is listed for both of
those programmes. This is because the software designer
decided that it would be better to split triggering the watchdog
test timer from the rest of the watchdog logic. The asterisk is
used  to  indicate  that  portions  of  the  function  rather  than
the complete function define the semantics of the access
programme. However, this is clearly not adequate since we do
not know exactly what portions of the function apply to each
programme.

The software designer then makes supplementary functions
to describe precisely how the function “Watchdog test active” is
split into three functions, the composition of which describes
behaviour equivalent to that of the original function. Figure 8
shows the supplementary function tables that “replace”
“Watchdog test active”. Note that only two of the three SFTs are
used in the Watchdog module. The other SFT, Received
request, is implemented in the communication module in
which the call to SWDOG takes place. (These SFTs were
produced for this paper. The project used an equivalent but
different description of the SFTs.)

Finally, we can see in Figure 9 that the references for the
access programmes in the Watchdog module now define the
semantic behaviour of the programmes precisely, since the
ambiguous requirements functions denoted with asterisks
have been replaced by relevant supplementary functions. All
supplementary function tables are defined in a section of the
software design document.

Software design verification
Motivation: In 1989 some of us were involved in the verifica-

tion of the first version of the Darlington Shutdown System
(Archinoff et al., 1990). This involved the verification of code
against a detailed specification at an abstraction level some-
where between requirements and software design. The verifi-
cation was performed “after the fact” in that the code was
developed without any formal verification in mind. It proved
extremely difficult and time-consuming to complete. Our
conclusion was that the verification step was too large. This
was a valuable lesson in the development of a safety-critical

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
a
w
f
o
r
d
,
 
M
a
r
k
]
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
1
4
:
0
5
 
2
 
N
o
v
e
m
b
e
r
 
2
0
1
0



software development methodology. This experience led us to
develop a methodology in which we would perform two
formal verifications instead of one. The first verification is to
prove the software design compliant with the requirements
specification, and the second is to prove the code compliant
with the software design. The two smaller steps proved to be
far easier than the single large step. This decision reflects our
end-to-end view of the development process, and clearly influ-
enced the overall methodology.

Design verification: One crucial problem that we had to
overcome was that the obvious proof obligation to prove that
SOF is compliant with REQ (see Figure 1) is extremely onerous.
For deterministic systems this proof obligation is:

OUT(SOF(IN(M)))=REQ(M)

I=IN(M) (1)

C=OUT(O)

It is easy to see that even for small problems this becomes very
complex and prohibitively time-consuming to perform. In
Figure 1, we can represent the function chain resulting in Mp by
an abstraction function Abstm. Similarly, we can represent the
Cp chain by Abstc. Then the proof obligation becomes:

Abstc (REQ) = SOFreq (Abstm (M))

Mp = Abstm (M) (2)

Cp = Abstc (C)

This may not appear to be more tractable than (2), but if we
verify SOFreq against the pseudo-requirements, REQp, rather
than against REQ, then we can show that

Abstc (REQp (M)) = SOFreq (Abstm (M)) (3)

can be performed piece-wise, and after that we can prove
REQp = REQ. The success of this approach depends on being

128 Transactions of the Royal Society of South Africa Vol. 65(2): 125–136, 2010

Figure 2. Requirements specification of the NOP parameter trip and sensor trips.
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Wassyng & Lawford: Integrated software methodologies 129

able to choose the individual blocks to verify and to show that
verification of those blocks implies verification of the whole. If
we assume that the data-flow topologies of the requirements
and design are equivalent we can show that we can identify
blocks in which the inputs and outputs of the block in the
requirements, are “associated with” the inputs and outputs of

the block in the design. The verification task then becomes to
prove compliance of the design block with the pseudo-
requirements block. We can also show that the total proof
obligation will be satisfied if each block’s proof obligation is
satisfied. A small example is shown in Figure 10.

The example shows that we “associate” outputs of functions

Figure 3. Example module interface specification.

Figure 4. Example module internal declarations.

Figure 5. Example access programme detailed design.
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between requirements and design using abstraction functions
Ai, i =1, 2. In this example we can identify the four individual
blocks as shown, and if we prove compliance of each of the
blocks individually, then simple substitution shows that (3) is
satisfied. Figure 10 shows the block proof obligations for that
specific example. The corresponding instantiation of (3) is
shown in the boxed equations in the figure.

So, the modified 4-variable model and SFTs are vital links
between the requirements, software design, and design verifi-
cation methods, helping us to integrate those phases of the
software life-cycle. What is important here is that we probably
would not have invented SFTs if we had not been intent on
using the requirements functions to document the module
interface specifications.

Code
The programming languages available on the hardware

platform used for the example shutdown system were a dialect
of FORTRAN 66 and Assembler. Figure 11 shows an extract
from the access programme EPTNP written in FORTRAN.

Note that some comments have been removed from the extract
so that the figure can fit on the page. Those comments are not
relevant to the discussion presented in this paper. As can be
seen, the code is a very direct, mechanical translation from the
tabular description in the software design shown in Figure 5.
The comments in the code do not try to provide the reader with
the coder’s intent or an overview of the semantic behaviour im-
plemented in the code. Rather, the comments in the code are
typically references to applicable sections in the software
design document. For example, note the comments to VCT
EPTNP (Vertical Condition Table EPTNP). This comment
serves to block off the code that implements the behaviour in
the detailed design for EPTNP.

Code verification
The code verification became one of the easier steps in our

development life-cycle. First of all, as a consequence of the
mechanical production of code from function tables in the
design, the code is extremely well-structured. It is relatively
easy to reverse-engineer a function table representation of the

130 Transactions of the Royal Society of South Africa Vol. 65(2): 125–136, 2010

Figure 6. Requirements description of “Watchdog test active”.

Figure 7. Initial module interface specification of watchdog module.
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Wassyng & Lawford: Integrated software methodologies 131

code. In the example in Figure 11, the comments in the code
inform the code verifier that the software design was described
by a function table (VCT), not by an algorithm (pseudo-code).
This helps the verifier who then knows, without reference to
the software design, that a function table must be produced
from the code so that it can be compared with the function table
in the design. The mechanical nature of these operations
certainly raises the chance of developing software tools to

automate many aspects of the code verification. These tools
have not yet been completed.

SOFTWARE TOOLS
The number of different kinds of software tools is growing

rapidly. Most of these tools are targeted at particular tasks. Not
many of them provide comprehensive support for a particular
methodology. When they do, they can be extraordinarily

Figure 8. Supplementary function tables for “Watchdog test active”.

Figure 9. Revised module interface specification of the watchdog module.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
a
w
f
o
r
d
,
 
M
a
r
k
]
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
1
4
:
0
5
 
2
 
N
o
v
e
m
b
e
r
 
2
0
1
0



successful. For example, although UML (Rumbaugh et al., 2004)
had no semantic basis, it proved to be extremely successful in
industry. The success of UML, to a large extent, can be attrib-
uted to the comprehensive tool support that was available for
it. The Software Cost Reduction (SCR) Method developed at
the US Naval Research Laboratory (NRL) (Heitmeyer, 2002;
Heitmeyer et al., 1995, 1998) is also based on Parnas’s Rational
Design Process, and also makes extensive use of tabular expres-
sions. The NRL focused quite early on the production of soft-
ware tools but these tools are usually single purpose.

Most software development tools have nothing to do with
the kind of tool we are discussing in this paper. In fact, tool
integration typically means integration of tools on a specific
platform so that users can select an appropriate tool without
leaving that platform. The tools may be related in their func-
tion, and there may even be multiple tools that perform the
same tasks. This is quite different from the type of integration
we are proposing. This integration is the use of tools in which
the output of one is likely to be used as the input of another, and
in which the tools can be used in a cooperative way. More than
anything however, integration in our context is the integration
of tools in a methodology. The tool suite is designed specifically
to support various aspects of the integrated methods.

Tools to support methodologies
Figure 12 shows the tools that were used to support the devel-

opment of the industrial safety-critical project described by
Wassyng and Lawford (2003). Some of the tools were devel-
oped specifically for the project. Other tools, such as compilers,
theorem provers and configuration management tools, are
generic commercial tools that were purchased for use on the
project. In retrospect, what is interesting is that it took a
number of years before we realised that, although we had tools
for every phase of the life-cycle and although many of those
tools were built specifically to support a particular phase, most
of the tools did not take enough advantage of how thoroughly

the life-cycle methods were integrated, as described above.
For instance, we developed tools that supported the produc-

tion of the software design document. A tool facilitated
the actual construction of the physical (Microsoft Word™)
document as well as the creation and checking of tabular
expressions. What it did not do was use information from the
requirements phase to help in the conceptual development of
the design. On the other hand, for the software design verifica-
tion phase the tool extracted information from both the
requirements and design phases to help perform automated
design verifications using PVS, a commercial theorem prover
(Lawford et al., 2000; Owre et al., 1997).

Integrated tools
As a result of our experience, we are now in a position to

describe tools that are more integrated with the life-cycle
phases and more integrated in terms of combining information
from multiple phases. In this section we will discuss three tools.
The Design Verification Tool makes use of the formal require-
ments and design documents together with the verification
report. The Identifier Extraction Tool used the source code in
the later stages of the project. The final tool we describe was
conceived but not ready for use in the project. However, it is a
good example of a tool that would never have been considered
if we had not already integrated the methods so comprehen-
sively.

The workflow for the Design Verification Tool is shown in
Figure 13. This tool automatically generated the proof obliga-
tions for the verification blocks shown in Figure 10. It made use
of the formal tabular function definitions in the requirements
document and design document together with a cross-reference
between these two documents that was provided in the design
verification report. The cross-reference was manually con-
structed, providing the break down of the blocks and the
mappings between functionality of the requirements and the
design. The proof obligations for each block were then fed into
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Figure 10. Piece-wise proof example.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
a
w
f
o
r
d
,
 
M
a
r
k
]
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
1
4
:
0
5
 
2
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Wassyng & Lawford: Integrated software methodologies 133

the automated theorem prover PVS where they were often
proven without any user interaction. Adhering to strict format-
ting guidelines in developing the requirements and design
documents facilitated the automatic extraction of the proof
obligations from Rich Text Format (RTF) versions of the docu-
ments. While the version of the tools used in the shutdown
systems redesign in 1994–2002 required that the significant
parts of the cross-reference be manually entered there is no
reason why the cross-reference could not be automated entirely,
using the References in the access programmes of the design
document such as those shown in Figure 9.

The Identifier Extraction Tool that was actually used in the
project was a rather mundane but very effective aid in the code
verification process. The software design document, the
coding procedure and the code itself were developed taking
into account what would be required during the code verifica-
tion phase. The code verification involves extracting, typing
and classifying code variables exactly as they would have been
typed and classified in the software design document. The
verifier also has to develop a function table representation of
the code (for those programmes developed from function
tables) and then compare it with the function table in the soft-

ware design. The code verification document has sections for
each code module, and each section is structured to mimic the
software design documentation of a module, with some extra
information to show the result of the checks that are per-
formed. The tool leaves a placeholder for the extracted function
table and for the check items, but creates the remaining docu-
mentation directly from the code. Since it turns out that creat-
ing the documentation showing the typed and classified
variables takes five to eight times longer than it takes to
construct a function table representation of the code, the tool
dramatically cut the cost of the code verification phase. Future
versions of the tool should be able to fill in the checks for most
of the items, but we have not yet managed to find a way of
generating the function table directly from the code.

The other tool that demonstrates the potential for integrated
tools is one that aids in the conceptual development of the soft-
ware design. During the design phase, we use information
hiding and other design quality attributes to successively
decompose modules into smaller and smaller modules. Each
draft set of modules can be analysed in terms of the “secrets”
hidden in the modules (Parnas, 1972), and the responsibility of
(service performed by) the module. The secrets come from a list

Figure 11. Code example of access programme EPTNP.
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of likely changes in the requirements document, augmented
by the software designers. The responsibilities come directly
from the requirements functions. When we performed this
phase during the project, the designers had to keep track of all
this information manually. Evaluating different decomposi-
tions is extremely time consuming and prone to error. A tool
that lists the constants required, the history encapsulated and
the requirements functions implemented in each module, as
well as the uses relationship, is a tremendous aid to the designers.
Although we do not develop supplementary functions at this
stage, simply tagging requirements functions that would be
split in the design is sufficient. This tool would not automate
the design process. It simply serves to collect information from
the requirements and partition it according to the trial decom-
position. We are still looking for ways of linking secrets to func-
tions or parts of functions that would help to generate potential

trial decompositions. We would also need functional decom-
position and composition capability in our function table tools
that is not yet attainable.

RELATED WORK
Recent works, such as Ainsworth (2008), Post et al. (2009) and

Whalen et al. (2007), advocate integrating formal verification
with the software process. Ainsworth (2008) advocates defining
a system architecture and then prototyping the development
process at the same time as the product. The idea is to quickly
implement key system functionality and apply the verification
tools to it to de-risk both meeting system requirements and
system (re-) certification – two of the most expensive parts of
safety critical software development. This approach is merited
particularly when we integrate new tools into the process.

Post et al. (2009) concluded that there is a need to link require-
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Figure 12. Tools used in a safety-critical industrial project (Wassyng & Lawford, 2006).

Figure 13. Design verification tool workflow (Wassyng & Lawford, 2006).
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ments and formal verification in the same way that most indus-
trial processes link requirements and testing. Their conclusions
are motivated by a case study involving some 50 functional
requirements for four components of a driver-assistance system
being developed by Bosch. A graduate student formalised
functional requirements into pre/post conditions in the C code
that were then model-checked. While the formal verification
found errors that were not detected by testing the effort
suffered from the “two versions of the requirements” problem –
the informal English language requirements used by the
developers and the manually translated pre/post conditions
used by the verifier. While bolting a formal method onto an
existing development process has minimal disturbance to the
company’s developers, it increases verification effort and can
lead to inconsistencies between formal and informal require-
ments. As an example of this, one of the errors missed by formal
verification but detected by testing was due to an incorrect
formalisation of a requirement (Post et al., 2009).

Whalen et al. (2007) describe the integration of formal analysis
into a model-based software development process for avionics.
Informal English language requirements are translated into
temporal logic properties of Matlab Simulink/Stateflow subsys-
tem models. The models are translated into input for various
implicit state model-checkers by, for example, using custom
tools developed at Rockwell-Collins together with the Reactis
tool to first translate the models into the synchronous program-
ming language Lustre and then using more tools to translate
the Lustre models to input for the different model-checkers.
The method was applied to the analysis of a major subsystem of
an existing Lockheed Martin operation flight plan system over
several revisions. In breaking down the effort in applying the
method it was found that “A significant fraction of verification
time went towards model preparation because the models
were not initially constructed for analysis. Although we were
successful, we believe that formal verification can have an even
greater impact if its use is anticipated from the outset of the
design process” (Whalen et al. (2007: 83).

The conclusions of the above works all support the main
thesis of this work – that to fully reap the benefits of the rigorous
software engineering methods advocated by the research
community, we must design integrated methods and tools in
the context of the complete software development process to
be employed on the product, and the development process
must in turn be designed while bearing in mind the methods
and tools to be used.

CONCLUSION
This paper has a very simple message, namely, that we

need to build methodologies comprised of methods that are
designed to work together. This is an approach that is common
in most engineering disciplines. For a number of years now
software engineers have targeted reuse as a means to achieve
reliability and a reduction in the cost of critical software appli-
cations. Integrated methods allow us to benefit from reuse of
specifications, documentation and tools in a much more
comprehensive way. The methods that we have presented in
this paper are introductory examples of what can be achieved.
They were developed in an industrial setting and this had a
strong influence on both the methods and the support tools.
The driving force behind developing integrated methods was,
in fact, that this is a normal (good) engineering approach.
Many years after the work on developing the methodology,
when we examined lessons learned from our experience in
both creating the methods and in applying them to a real
project, we realised the opportunities that had been opened to

us as a result of this very simple principle. Industrial pressure
also dictated that a good process and a good tool were good
enough and, during the project, there was little time to explore
the impact of what we had achieved in a broader sense. One
conclusion we did draw is that there is little hope of achieving
significant improvements in software quality at reasonable cost
without adequate tool support. Tool support can vary from
mundane labour savers to very sophisticated analysis and code
generation tools. People talk about integrated tools and tool
chains but we believe that current tool chains will seem meagre
in the future if we concentrate on producing integrated tool
chains from integrated methods. Our experience has been that
these comprehensive and integrated methods drive completely
different ideas for new kinds of tools.
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