
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 7, JULY 1995 1167

Equivalence Preserving Transformations for

Timed Transition Models

Mark Lawford and W. M. Wonham

Abstract|The increasing use of computer control systems

in safety-critical real-time systems has led to a need for

methods to ensure the correct operation of real-time con-

trol systems. Through an example, this paper introduces

the use of algebraic equivalence to verify the correct opera-

tion of such systems. A controller is considered veri�ed if its

implementation is proven to be equivalent to its speci�ca-

tion. Real-time systems are modeled using a modi�ed ver-

sion of Ostro�'s Timed Transition Models (TTMs), which

is introduced along with our adaptation of Milner's obser-

vation equivalence to TTMs. A set of \behavior preserv-

ing" transformations is then developed, shown to be consis-

tent for proving observation equivalence, and then applied

to solve an industrial real-time controller software veri�ca-

tion problem. Finally the incompleteness of a given set of

transformations is briey discussed.

I. Introduction

T

HE goal of this paper is to provide a visual framework

for the development and veri�cation of real-time sys-

tems that is simple to use yet is based on a sound logical

foundation. The software failures catalogued by Lee [1]

clearly point to the need for methods to ensure the cor-

rect operation of safety critical systems, while the e�ec-

tiveness of a visual approach to software veri�cation has

been argued by Harel [2]. In response to the need for for-

mal methods with visual appeal, Ostro� et al. have in-

troduced Timed Transition Models (TTMs) [3],[4]; but the

Real-Time Temporal Logic on which the proof system is

based can be di�cult for control and software practitioners

to master and tends to lack a visual component. Also, no

method was provided for moving between levels of abstrac-

tion of real-time models to allow behavioral comparison of

two TTMs: such exibility would enable one to project

out extraneous behavior to obtain high-level TTM models

or, conversely, to re�ne high level TTM speci�cations into

workable implementations.

Formal software veri�cation has been studied by com-

puter specialists for over a decade. For instance, process

algebras [5], [6], [7] provide equational methods of model-

ing concurrent systems along with algebraic laws for equa-

tional transformation. While incorporating abstraction,

the cited methods do not explicitly express time or provide

visual representations. Real-time extensions of [7] such as

[8],[9] lack the abstracting power of a congruence relation,

like weak observation congruence [7], which permits inter-

change of congruent subsystems and therefore the combi-

nation of abstraction with modularity. A version of weak

This work was supported by the Natural Sciences and Engineering

Research Council of Canada.

The authors are with the Department of Electrical& Computer En-

gineering, University of Toronto, Toronto, Ontario, CanadaM5S 1A4.

E-mail: lawford or wonham@control.utoronto.ca .

observation congruence is developed in [10] and proven cor-

rect for a real-time setting where each event is assigned an

exact (real-valued) time of occurrence. However, the adop-

tion of R

+

as the time set signi�cantly complicates the

algebraic laws used to establish system equivalence, owing

to the need for transition structures with uncountable num-

bers of transitions. By contrast, the TTM setting uses a

discrete time model (in which the clock `ticks'), and assigns

to events a range of possible occurrence times within the

clock resolution. The advantage is that weak observation

equivalence can be retained, and applied in a straightfor-

ward way.

A visual method was introduced in [11] for checking the

reachability of a class of extended timed Petri nets. The net

approach and the provision of net transformations led to a

graph-based method of veri�cation. As in [3] the problem

of constructing equivalent abstract real-time systems from

a given systemmodel was not considered. In the same spirit

as [11], we develop in this paper a set of easily applicable,

and demonstrably correct, transformations that preserve

system equivalence, and lend themselves to abstraction, in

the setting of TTMs. The proof that the transformations

preserve observation equivalence relies on the properties

of observation equivalence as described in [7] but many of

the TTM transformations have no direct analog in Milner's

process algebra setting. Also, a software engineer need not

be familiar with observation equivalence or process algebra

to be able to use the simple set of visual transformations to

prove that a system correctly implements its speci�cation

in a well de�ned way.

Section II introduces a version of TTMs, while Section III

de�nes TTM equivalence. A set of behavior-preserving

transformations is developed in Section IV and shown to be

consistent for proving TTM observation equivalence. An

application to a small real-world example is presented in

Section V; and the issue of incompleteness of given sets of

transformations briey addressed in Section VI.

II. Timed Transition Models (TTMs)

In this section we introduce a modi�ed version of the

Timed Transition Models (TTMs) employed in [4]. We

drop the Real Time Temporal Logic (RTTL) assertion lan-

guage, though we still use the in�nite string semantics it

required. Also, we do not consider systems explicitly com-

posed of subsystems that interact via communication chan-

nels or synchronized transitions. As a result, our de�nition

of TTMs will not include the communication channels or

the parallel composition operator of Ostro�'s original de�-

nition. To simplify the problem of equivalence veri�cation,

the initial condition is limited to specifying a unique initial

1168 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 7, JULY 1995

state instead of (possibly) multiple initial states.

A Timed Transition Model (TTM)M is a triple given by

M := (V;�; T)

where V is a set of variables, � is an initial condition (a

boolean-valued expression in the variables), and T is a �-

nite set of transitions.

V always includes two special variables: the global

time variable t and an activity variable which we

will usually denote by x. For v 2 V the range

space of v is Range(v) (eg. Range(t) = N where

N := f0; 1; 2; . . .g). We de�ne Q, the set of state as-

signments of M , to be the product of the ranges of the

variables in V. That is

Q := �

v

i

2V

Range(v

i

)

For a state assignment q 2 Q and a variable v 2 V,

we will denote the value of v in state assignment q by

q(v) where q(v) 2 Range(v).

T is the transition set. A transition � is a 4-tuple

� := (e

�

; h

�

; l

�

; u

�

)

where e

�

is the transition's enablement condition (a

boolean valued expression in the variables of V), h

�

is

the operation function, and l

�

2 Range(t) = N and

u

�

2 N [f1g are the lower and upper time bounds

respectively with l

�

� u

�

. We say that � is enabled

when q(e

�

) = true. The operation function h

�

: Q !

Q is a partial function, de�ned when q(e

�

) = true,

that maps the current state assignment to the new

state assignment when the transition occurs. T always

contains the special transition tick,

tick := (true; [t : t + 1];�;�)

which represents the passage of time on the global

clock. tick is the only transition that a�ects the time

variable t and also has no lower or upper time bound.

All other transition time bounds are given relative to

numbers of occurrences of tick.

� is the initial condition, a boolean valued expression

in the variables of V that is used to identify a unique

initial state of the system.

A. TTM Semantics

A trajectory of a TTM is any in�nite string of the

TTM state assignments connected by transitions, of the

form q

0

�

0

!q

1

�

1

!q

2

�

2

! The interpretation is that q

i

goes

to q

i+1

via the transition �

i

. A state trajectory � :=

q

0

�

0

!q

1

�

1

!q

2

�

2

! . . . is a legal trajectory of a TTMM if it meets

the following four requirements:

1. Initialization: The initial state assignment satis�es

the initial condition (q

0

(�) = true - ie. q

0

satis�es �

and hence is the unique initial state assignment).

2. Succession: For all i, q

i+1

is obtained from q

i

by

applying the operation function of �

i

(q

i+1

= h

�

i

(q

i

))

and �

i

is enabled in state assignment q

i

(ie. q

i

(e

�

i

) =

true).

3. Ticking: The clock must tick in�nitely often. That

is, there are an in�nite number of transitions �

i

= tick.

This eliminates the possibility of \clock stoppers" in

the trajectory where an in�nite number of non-tick

transitions occur consecutively without being inter-

leaved with any ticks. This would imply that the TTM

is performing an in�nite number of actions in a �nite

time.

4. Time Bounds: To determine if the trajectory � sat-

is�es the time bound requirements of the TTM M , we

associate with each non-tick transition �, a counter

variable c

�

with Range(c

�

) = N. Each � transition's

counter is initially set to zero and is reset to zero after

an � transition or a transition that enters a new state

assignment where � is disabled (ie. e

�

= false). The

counter is only incremented by the occurrence of a tick

transition when � is enabled (e

�

= true). Any non-

tick transition � can legally occur only when when its

counter is in the region speci�ed by the transition's

time bounds (ie. l

�

� c

�

� u

�

). The upper time

bounds on transitions represent hard time bounds by

which time the transitions are guaranteed to occur.

Thus if �'s counter reaches its upper time bound, then

it is forced to occur before the next tick of the clock

unless it is preempted by another non-tick transition

that disables � (and hence resets �'s counter). Hence

for a tick transition to legally occur, every enabled

transition � must have a counter value less than its

upper time bound (c

�

< u

�

). We now formalize the

above description.

For the TTM M := (V;�; T), we will denote the set

of transition counters by C := fc

�

: � 2 T � ftickgg.

From the trajectory � we derive the full trajectory �� :=

�q

0

�

0

!�q

1

�

1

!�q

2

�

2

! . . ., where each �q

i

2 Q�N

C

is obtained

from � as follows:

For all v 2 V, �q

i

(v) = q

i

(v).

For all c

�

2 C, �q

0

(c

�

) = 0 and for i = 0; 1; 2; . . .

�q

i+1

(c

�

) =

8

<

:

�q

i

(c

�

) + 1; if q

i

(e

�

) = true & �

i

= tick

0; if q

i+1

(e

�

) = false or �

i

= �

�q

i

(c

�

); otherwise

The trajectory � satis�es the time bounds ofM i� the

following two conditions hold in �� for all i = 0; 1; . . .:

(i) �

i

= tick i� for all � 2 T � ftickg, q

i

(e

�

) = true

implies �q

i

(c

�

) < u

�

.

(ii) �

i

= �, � 2 T � ftickg i� l

�

� �q

i

(c

�

) � u

�

.

A condition equivalent to (i) is that for all c

�

2 C,

�q

i

(c

�

) � u

�

. Note that any loop of transitions in a TTM

(a sequence of transitions starting and ending in the same

activity) must have at least one transition with a non-zero

upper time bound. Otherwise, once the �rst transition of

the loop is enabled, our transition rules could possibly force

an in�nite number of non-tick transitions to occur without

being interleaved by an in�nite number of ticks.

As a small example, consider the TTM M := (V;�; T)

shown in Figure 1. The full enablement conditions for the

LAWFORD AND WONHAM: EQUIVALENCE PRESERVING TRANSFORMATIONS 1169

h

h

h

h

h

@

@

@R

- -

@

@

@R

��

M

a

b

c e

d

V := fu; v; t; xg

� := u = 0 ^ v = 1 ^ x = a

T := f�; �; ; tickg

where

� := (u � 0; [u : u+ v]; 0; 2)

� := (true; [u : u+ 1; v : v � 1]; 2;1)

 := (v � 0; []; 2; 2)

Fig. 1. An example of a simple TTM

transitions should also include conditions that enable the

transitions only when the TTM is in activities that they

exit in the transition diagram. For instance in the case of

, the full enablement condition is e

:= u � 0 ^ (x =

a _ x = b). When describing TTM transitions we will

usually omit these activity variable conditions since they

are obvious from the transition diagram. From the above

discussion it is apparent that the de�nition of a transition

such as 2 T can result in several arrows with the same

label in a TTM transition graph. To allow us to distinguish

between a transition and the arrows that it de�nes in a

transition diagram, we will call the arrows in the transition

diagram instances of the transitions they are labeled by. In

the example TTM M , there is an instance of transition

exiting activity a and another instance exiting activity b.

Finally, the special transition tick is declared to be in T .

In writing out the operation functions of the transitions

of M we employ Ostro�'s assignment format. When a

transition occurs, the new value of the activity variable x is

obtained from the transition diagram. The other variables

that are a�ected by the transition are listed in the form [v

1

:

expr

1

; v

2

: expr

2

; . . . ; v

n

: expr

n

] with the interpretation

that variables v

1

to v

n

are assigned the new values given by

the simultaneous evaluations of expressions expr

1

to expr

n

respectively. The operation function acts as the identity

on variables not listed in the assignment statement. For

instance h

�

:= [u : u+ v] = [u : u+ v; v : v] for M above.

If we let the current state assignment be represented by

a 4-tuple of the form (u; v; x; t), then a legal trajectory of

M would be

q

0

tick

! q

1

�

!q

2

tick

! q

3

!q

4

tick

! . . .

(0; 1; a; 0)

tick

! (0; 1; a; 1)

�

!(1; 1; b; 1)

tick

! (1; 1; b; 2)

!(1; 1; e; 2)

where from q

4

onward the trajectory is continued by an in-

�nite string of ticks. Note that after the second occurrence

of tick, is forced to occur. A tick could not take place

from q

3

since has u

= 2 and, upon reaching q

3

, e

has

been true for two ticks already.

If the initial condition for M is � := (u = 0 ^ v =

�1^x = a), then a trajectory that by the above de�nition

is \legal" is

(0;�1; a; 0)

�

!(�1;�1; b; 0)

tick

! (�1;�1; b; 1)

tick

! (�1;�1; b; 2)

where again this trajectory is continued by an in�nite num-

ber of tick transitions. This trajectory illustrates our inter-

pretation of u

�

=1. We do not insist on \fairness", allow-

ing trajectories such as the one above where � is a possible

next transition for an in�nitely long time, although it does

not occur. Thus an upper time bound of 1 means that a

transition is possible but is not forced to occur in a legal

trajectory.

Occasionally we will use the transition graph represen-

tation of a TTM, where each instance of a transition in

the TTM is represented as shown in Figure 2. This can be

h h-

a

s

a

d

� : (e

�

)! h

�

Fig. 2. The transition graph format of a TTM

informally interpreted as follows: \if the TTM is currently

in activity a

s

and if e

�

evaluates to true, then the edge

labeled by � may be traversed while doing operation h

�

,

after which the TTM is in activity a

d

." We will usually

use this style of displaying TTMs when the time bounds

are understood or not of particular importance to the dis-

cussion.

III. Equivalence of TTMs

In this section Labeled Transition Systems (LTS) are in-

troduced to describe the behavior of TTMs. LTS allow us

to develop a notion of equivalence for TTMs.

A. Labeled Transition Systems and TTMs

LTS have been used by De Nicola [12] to compare di�er-

ent notions of equivalence proposed for concurrent systems.

A notion similar to LTS forms the basis of TTMs and many

other models of concurrency. We now borrow some of the

de�nitions and notation of [12].

De�nition 1: A Labeled Transition System is a 4-

tuple (A;�;

�

!; a

0

) where A is an at most countable set of

states, � is an at most countable set of elementary actions,

�

! with � 2 � [f�g, is a set of binary relations on A and

a

0

2 Q is the initial state.

In the above de�nition if � 2 � and a; a

0

2 A, then a

�

!a

0

means that the LTS can move from state a to a

0

by exe-

cuting elementary action �. Following the notation of [6]

and [7], the special symbol � , � 62 �, is used to denote in-

ternal (unobservable) actions. Hence a

�

!a

0

means that the

system can move from a to a

0

via an unobservable or silent

transition. In the graphical representation of an LTS, the

binary relations

�

! are represented by arrows connecting

related states. The arrows represent the possible \transi-

tions" the system could make when actions occur, and are

1170 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 7, JULY 1995

labeled by the corresponding actions. For example an LTS

with a

�

!a

0

would have two states a and a

0

connected by

an arrow from a to a

0

labeled \�". The set of elementary

actions � [f�g forms the set of transition labels in the

graphical representation.

The following notation is also helpful:

� denotes the set of visible actions.

�

�

denotes the set of �nite strings of visible actions.

�

�

:= �[f�g and similarly �

�

�

denotes the set of �nite

strings over �

�

.

a

s

!a

0

where s = �

1

�

2

. . .�

k

2 �

�

�

denotes

(9a

1

; . . . ; a

k�1

2 A) a

�

1

!a

1

�

2

! . . .a

k�1

�

k

!a

0

and a

s

! will

mean (9a

0

2 A)a

s

!a

0

.

a

s

)a

0

where s = �

1

�

2

. . .�

k

2 �

�

�

means:

(9a

1

; . . . ; a

k

2 A)

a

�

n

1

�

1

! a

1

�

n

2

�

2

! a

2

�

n

3

�

3

! . . .a

k�1

�

n

k

�

k

! a

k

�

n

k+1

! a

0

where n

i

� 0; 1 � i � k + 1. The idea behind the

relation

s

) is that the system can move from a to a

0

while executing the actions �

1

; �

2

; . . . ; �

k

interleaved

with internal � actions. As before we will write a

s

) as

a short form for (9a

0

2 A)a

s

)a

0

.

One of the operations of [7] that we will �nd useful is that

of relabeling an LTS. In this operation the structure of an

LTS is left unaltered while the transition labels are changed

in a consistent way. That is, if one instance of a label is

changed to a new label, then all instances of the label must

be changed to the same new label in the relabeled LTS.

De�nition 2: Let r be a function from transition labels

to transition labels and T := (A;�;

�

!; a

0

) be an LTS. Then

the r relabeling of T is given by:

r(T) := (A; fr(�) : � 2 �g;

r(�)

! ; a

0

)

We now consider T

M

, the Labeled Transition System

generated by a TTM M := (V;�; T). There are many

possible LTS that represent the legal trajectories of a given

TTM but for simplicity we adopt tree structures with all

possible next transitions exiting the current LTS state to

new LTS states. It is often the case that the transition

names are unimportant. What is important is the e�ect

the transitions have upon the variables of interest and how

the latter a�ect the ordering of transitions. Accordingly

the event labels of T

M

are the actual operation functions

of the TTM transitions. We will see in the example below

that h

�

(where h

�

= [w : w + 1; y : y + z]) is written in

T

M

when transition � occurs in the legal trajectory of M .

A convenient state set for T

M

is the set of all �nite strings

of transitions T

�

. We then let the initial state of T

M

be

�, the empty string. The transition relations follow natu-

rally by de�ning for any s 2 T

�

, s

h

�

!s� if, starting from its

unique initial state assignment, M can perform the tran-

sitions s� as the initial sequence of transitions of a legal

trajectory. More formally, for a TTM M := (V;�; T) we

have T

M

:= (T

�

; fh

�

: � 2 T g;

h

�

!; �).

As we have de�ned them, each TTM has a unique initial

state and the operation functions of the TTM's transitions

are deterministic. Thus the e�ect on a TTM's variables

can be completely determined by knowing the sequence of

transitions that has taken place. This is what will allow

us to compare the behavior of TTMs by comparing forms

of the LTS that they generate. From now on the LTS

representing the behavior of a TTM will be the LTS T

M

as

described above.

Consider M , the simple TTM of Figure 3. The LTS

b

a

c

�

�

� := x = a ^ v = w = y = z = 0

� := (w = 0; [w : w + 1; y : y + z]; 0; 1)

� := (true; [w : w � 1; z : z � 1]; 0; 0)

 := (w = 0 ^ y � 0; [w : �1; v : v + 1]; 1; 2)

Fig. 3. Simple TTM M := (V;�; T)

representing the behavior of M , which we denote by T

M

,

is shown in Figure 4. Note that the tick transitions of

the clock have been included in T

M

and that at each state

all legal continuations of the trajectory are possible. The

self-looped h

tick

transition at the end of some paths is for

display purposes only and helps indicate that the path can

only be continued by an in�nite string of ticks.

We now consider the restriction of an LTS (representing

the behavior of a TTM) to a subset of variables of interest.

We need some preliminary de�nitions.

De�nition 3: For a TTM M with variable set V and a

subset of variables U � V, we de�ne the state assign-

ments over U , denoted by Q

U

, to be the product of the

ranges of the variables in U . Hence

Q

U

:= �

v

i

2U

Range(v

i

)

The natural projection P

U

: Q ! Q

U

maps a state

assignment to its corresponding state assignment over U .

De�nition 4: Suppose M := (V;�; T) is a TTM, U � V

is a set of variables, and � 2 T is a transition. Let h

�

:

Q ! Q be the operation function of � and P

U

: Q ! Q

U

be the natural projection from the state assignments Q to

Q

U

, the state assignments over U . Then themap induced

in Q

U

by h

�

, when it exists, is the map h

�

: Q

U

! Q

U

such that P

U

� h

�

= h

�

� P

U

.

The relationship between h

�

and h

�

is illustrated in the

commutative diagram, Figure 6.

For a given U , h

�

will exist if the operations of h

�

upon

the elements of U are independent of the values of the vari-

ables in V � U . For instance with h

�

:= [w : w + 1; y :

y + z] = [w : w + 1; y : y + z; z : z] and U = fy; zg we have

h

�

= [y : y+z]. Note that h

�

is not de�ned for U = fw; yg

since the new value of y depends upon the current value of

z. The existence condition for h

�

can be formally stated

as the mapping kernel condition ker(P

U

) � ker(P

U

� h

�

).

LAWFORD AND WONHAM: EQUIVALENCE PRESERVING TRANSFORMATIONS 1171

h

�

h

�

h

�

h

�

h

�

h

�

h

�

h

�

h

�

h

�

h

�

h

h

h

�

h

h

tick

h

tick

h

tick

h

tick

h

tick

. . .

. . .

h

tick

. . .

. . .

Fig. 4. T

M

- the LTS reachability tree for M

[t : t+ 1]

[t : t+ 1]

[t : t+ 1]

�

[z : z � 1]

[z : z � 1]

[z : z � 1]

[z : z � 1]

�

[y : y + z]

[y : y + z] [y : y + z]

[y : y + z]

[y : y + z]

�

[y : y + z]

[t : t + 1]

[t : t+ 1]

. . .

. . .

[t : t+ 1]

[y : y + z]

[z : z � 1]

Fig. 5. T

M

jfy; zg = r(T

M

) the restricted LTS forM

?

-

-

?

Q

h

�

Q

P

U

Q

U

h

�

P

U

Q

U

Fig. 6. Commutative Diagram for Induced Operation Function

We now have the machinery to de�ne the timed behavior

of a TTM M restricted to a subset of its variables.

De�nition 5: For M := (V;�; T), U � V and T

M

:=

(T

�

; fh

�

: � 2 T g;

h

�

!; �) we de�ne the restriction of T

M

to U as follows. Let r be the LTS relabeling function such

that r(h

�

) = h

�

where h

�

is the map induced in Q

U

0

by

h

�

when U

0

:= U [ftg. Then

T

M

jU := r(T

M

) = (T

�

; fr(h

�

) : � 2 T g;

r(h

�

)

! ; �)

We then denote the timed behavior of M restricted to

U by M jU := T

M

jU .

Note that T

M

jU is de�ned i� (8� 2 T) h

�

exists. When

T

M

jU is de�ned we say that U is restrictable for M .

If the variables of interest for the TTM M of Figure 1

are U = fy; zg (and implicitly t to guarantee the timing)

then the LTS of the behavior of M over these variables

can be obtained by replacing the transitions' operation

functions with their induced maps. For example we re-

place h

�

in T

M

with h

�

:= [y : y + z]. In the case of

the transition , h

:= [] the identity or `silent' function

for fy; z; tg. T

M

jfy; zg, the restriction of T

M

as described

above, is shown in Figure 5. Here we replace h

with the

silent transition � to help it stand out in the graph. Start-

ing from the initial state of T

M

jfy; zg, if the �rst transition

is a clock tick, the next event may be y changing to y + z

or the system moving unobservably via � to a state where

no further changes can be made to fy; zg.

The example of Figure 5 illustrates how restriction can

create systems that can move unobservably to a deadlock-

ing state - a state with only strings of ticks as possible

legal continuations. In the example of Section V we shall

use a notion of equivalence that can distinguish between a

deadlocking and a non-deadlocking system.

The main purpose of looking at the LTS generated by

a TTM is to develop a notion of equivalence for TTMs.

We will consider two TTMs to be equivalent over a set of

variables U if their initial states agree on all variables in U

and their respective LTS are equivalent when restricted to

the variables of interest. More formally:

De�nition 6: Given two TTMs M

1

:= (V

1

;�

1

; T

1

) and

M

2

:= (V

2

;�

2

; T

2

) and EQ, an equivalence relation over

the set of all LTS. Let Q

1

and Q

2

be the sets of state

assignments for M

1

and M

2

and P

1

: Q

1

! Q

U

0

and P

2

:

Q

2

!Q

U

0

be their respective natural projections, for some

U , a set of variables. We say that M

1

is EQ equivalent

over U to M

2

, written M

1

EQ=U M

2

, if and only if

(i) If q

1

2 Q

1

and q

2

2 Q

2

then q

1

(�

1

) = true and

q

2

(�

2

) = true implies P

1

(q

1

) = P

2

(q

2

)

(ii) T

M

1

jU EQ T

M

2

jU

where T

M

1

and T

M

2

are the LTS generated by M

1

and M

2

respectively.

In practice usually U � V

1

\ V

2

though this need not be

the case in general. The �rst condition in the de�nition

guarantees that the systems start out in state assignments

that are identical when restricted to U while the second

condition guarantees that observed changes to variables in

U will be equivalent.

B. Observation Equivalence

Reducing the problem of TTM equivalence to one of LTS

equivalence allows us to choose from the multitude of LTS

equivalence relations in [12]. For deadlock avoidance and

other control properties described in [13], we will use Mil-

ner's observation equivalence (see [7]). To properly de�ne

observation equivalence we need an operator on �

�

�

that

projects out all occurrences of � . We denote this projec-

tion operator byb: �

�

�

! �

�

. For example if s = ��� then

bs = ��. Recalling that a

�

)a

0

denotes a

�

i

��

j

! a

0

for some

i; j 2 Z

+

, we now give the de�nition of Milner's observa-

tion equivalence.

De�nition 7: Let T

1

:= (A;�;

�

!; a

0

) and T

2

:=

(B;�;

�

!; b

0

) be LTS. A relation S � A � B is a weak

bisimulation if (a; b) 2 S implies

1172 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 7, JULY 1995

for all � 2 �

�

,

(i) Whenever a

�

!a

0

then (9b

0

2 B) b

b�

)b

0

and (a

0

; b

0

) 2

S.

(ii) Whenever b

�

!b

0

then (9a

0

2 A) a

b�

)a

0

and (a

0

; b

0

) 2

S.

In other words, two states a 2 A, b 2 B, are weakly

bisimilar if any move from a to a new state a

0

can be

matched by a �nite sequence of moves from b, that pro-

duces the same observation and leads to a state b

0

that

is weakly bisimilar to a

0

. Also, any move from b must be

matched in a similar fashion. From [7] we know that the set

of weak bisimulation relations over A � B is closed under

union and thus there is always a largest weak bisimulation

relation �, relating the states of T

1

and T

2

. That is

� := [fSjS is a weak bisimulation over A�Bg

We write a � b when (a; b) 2�.

We can now formally de�ne observation equivalence for

LTS. We will use � to denote both this binary relation

over LTS and the largest weak bisimulation relation over

the state sets of a pair of LTS.

De�nition 8: Observation Equivalence �: Let T

1

:=

(A;�;

�

!; a

0

) and T

2

:= (B;�;

�

!; b

0

) be LTS. Then T

1

�

T

2

i� there exists a weak bisimulation S over A � B such

that (a

0

; b

0

) 2 S

Thus T

1

� T

2

i� a

0

� b

0

.

The relation � is an equivalence relation over the set

of LTS; the reader is referred to [7] for the details in the

setting of Milner's process algebra.

IV. Equivalence Preserving Transformations

The purpose of this section is to explain transformations

and their use. After demonstrating an intuitive notion of

transformation with a simple example, we de�ne a set of

behavior preserving transformations and conclude by prov-

ing that these preserve the formal observation equivalence

of TTMs.

A. Introduction to Transformations

A transformation is behavior preserving if it changes a

TTM in such a way that the timed behavior of the trans-

formed TTM restricted to the variables of interest, is equiv-

alent (for a speci�ed LTS equivalence relation) to the re-

stricted timed behavior of the original TTM. Consider the

two TTMs M

1

and M

2

of Figure 7. Suppose we are only

d

ddd d

�

�

�

��

--

aa

c c

b

�

1

:= (z = 0) ^ (x

1

= a)

� : z = 0! [y : y + 1]

M

1

� : z = 2! [w : w � 2]

()

M

2

� : z = 0! [y : y + 1]

�

2

:= (z = 0) ^ (x

2

= a)

Fig. 7. An example of Transition Addition/Transition Deletion

interested in the timed behavior of the variables y and z.

The initial condition �

1

prevents � from ever being en-

abled. If � has the same time bounds in both systems then

it is apparent that M

1

and M

2

allow the same timed tra-

jectories over y and z. In fact, since � is never enabled we

could delete this transition from M

1

to transform M

1

into

M

2

. Similarly we could add a � transition to M

2

without

changing its set of legal trajectories as the initial condition

�

2

would prevent the new transition from ever occurring.

Thus M

2

can also be transformed into M

1

.

This is the idea behind the transformational technique

of equivalence veri�cation. Given a set of variables of in-

terest U , if it is possible to change one TTM into another

by a set of behavior preserving transformations, then the

two TTMs' timed behavior restricted to U will be equiva-

lent (ie. T

M

1

jU � T

M

2

jU) and hence the TTMs will behave

equivalently in a well de�ned sense. Clearly if our trans-

formational method is correct, the transformations must

abstract away unimportant details in such a way that the

key features of the structure of T

M

jU are preserved.

B. A Partial Set of Transformations

The addition of transition � to M

2

to form M

1

is an

example of the Transition Addition transformation (TA).

Going fromM

1

to M

2

is an application of the dual of TA,

the Transition Deletion transformation (TD). Below we

describe these and the other transformation pairs needed

to solve the veri�cation problem of Section V. Throughout

the section the transformations refer to the \set of variables

of interest" U . These are the variables we wish to \observe"

so the transformations are designed to produce TTMs that

generate equivalent timed behaviors when restricted to the

variables in U .

TA/TD Transition Addition/Transition Deletion: As

demonstrated above one may add an instance of a

transition to a TTM without changing its timed be-

havior if the transition's enablement condition is never

satis�ed in the new source activity. More formally,

consider a TTMM with the transition � := (e; h; l; u),

where �'s full enablement condition from the transi-

tion graph ofM is e

�

:= e^(x = a

1

_x = a

2

_. . ._x =

a

n

) implying that there are instances of � exiting ac-

tivities a

1

; . . . ; a

n

in the transition graph. One may

add an instance of � exiting activity a 62 fa

1

; . . . ; a

n

g,

with any other activity as its destination, provided

that in any reachable state assignment q ofM it is the

case that q(x) = a implies q(e) = false. The new full

enablement condition for � after the transformation is

e

�

:= e ^ (x = a

1

_ x = a

2

_ . . ._ x = a

n

_ x = a)

Similarly one can change the full enablement condition

of the transition � from e

�

:= e ^ (x = a

1

_ x =

a

2

_ . . ._ x = a

n

_ x = a) to e

�

:= e ^ (x = a

1

_ x =

a

2

_ . . . _ x = a

n

), thereby removing the instance of

� exiting activity a in the transition graph of M if in

all the reachable state assignments q of M it is the

case that q(x) = a implies q(e) = false. That is, one

may remove an instance of a transition from a TTM

if the transition's enablement condition is always false

in the source activity from which the instance of the

LAWFORD AND WONHAM: EQUIVALENCE PRESERVING TRANSFORMATIONS 1173

transition will be deleted.

CA/CD Control Addition/Control Deletion: This trans-

formation lets one add or remove a condition from a

transition's enablement condition under certain condi-

tions. Consider a transition � with e

�

:= e and let p

be some �rst order predicate over the variables in V.

If whenever a source activity for � is entered, p is true

(p is false), then e

new

�

:= e ^ p (e

new

�

:= e _ p).

Conversely if e

�

:= e ^ p (e

�

:= e _ p) and, in every

activity that � exits, p is guaranteed to be true (false),

then e

new

�

:= e.

AM/AS Activity Merge/Activity Split: This transfor-

mation is de�ned only when the activity variable x

is not in the set of variables of interest (ie. x 62 U).

The basic idea of this transformation is that two ac-

tivities can be merged if they have the same future.

Hence, two activities may be merged if they have the

same exiting transitions going to the same destina-

tion activities. In the example of Figure 8, the activ-

ity merge transformation changes �'s full enablement

condition from e

�

:= e ^ (x = a

1

_ x = a

2

_ . . .) to

e

�

:= e ^ (x = a _ . . .). For the merged activity one

must be careful to choose a name that di�ers from the

remaining TTM activities.

b

c

a

2

a

c

ba

1

�

�

�

�

�

�

1

�

3

�

2

()

�

1

�

�

3

�

2

Fig. 8. Activity Merge/Activity Split

For activity splitting, if activity a is the destination

activity of transitions �

1

; . . . ; �

k

; �

k+1

; . . . ; �

n

then

split a into a

1

and a

2

. �

1

; . . . ; �

k

will have destination

activity a

1

and �

k+1

; . . . ; �

n

will have destination ac-

tivity a

2

. a

1

and a

2

will be the source activities for

the same transitions to the same destination activities

as in the case of activity a.

RT Rename Transition: This transformation is its own

dual. It renames one or more instances of a transi-

tion with a new name provided the latter does not

conict with another name or change the structure

of T

M

jU . Consider Figure 9, where one instance of

d d

d

d d

d

d d

�

�	

@

@R

-

�

�	

@

@R

�

�

M

1

M

2

()

�:4:4 �:1:2 �:1:2�:4:4

:5:7

0

:5:7:5:7

a

c c

:5:7

a

b db d

Fig. 9. A Problem with the Rename Transition Transformation

the transition is renamed

0

, altering the behavior

of the system. If the numbers immediately following

the transition labels denote the lower and upper time

bounds respectively, it is apparent that transition

is enabled across activities a and b in M

1

so although

� happens before , has been enabled long enough

that it can occur before �. On the other hand inM

2

is always preempted by � and

0

is always preempted

by �.

In general, when it is possible for a transition to remain

enabled when moving from one activity to another,

then it is not possible to rename the two instances

independently (ie. in any application of RT the two

instances must be given the same name).

OM Operation Modi�cation: If a variable does not occur

in the enablement condition of any transition or the

operations a�ecting any other variables and is not in

U , the set of variables of interest, then any operations

a�ecting the variable can be added or deleted from any

transition.

Let v 2 V � U and P

V�fvg

: Q ! Q

V�fvg

be the

natural projection from the state assignments to state

assignments over Q

V�fvg

. Then the OM transforma-

tion is de�ned if for all � 2 T , the enablement condi-

tion e

�

of � is independent of v, and ker(P

V�fvg

) �

ker(P

V�fvg

� h

�

) (ie. there exists an induced oper-

ation function h

�

: Q

V�fvg

! Q

V�fvg

such that

h

�

�P

V�fvg

= P

V�fvg

� h

�

). If v satis�es these condi-

tions then for any � 2 T , h

�

can be replaced with the

h

�

induced by P

V�fvg

.

The rationale behind this transformation is that the

value of v has no e�ect upon how the TTM operates

on the variables in U , hence we can set v to any value

we wish, or ignore it altogether.

WM/WS (Wait Merge/Wait Split): A commonly occur-

ring transition is the \wait" transition that serves the

purpose of marking the passing of a �xed number of

clock ticks. This transformation is a statement of the

intuitive notion that waiting for n ticks and then wait-

ing for m ticks is equivalent to waiting for n+m ticks.

For technical reasons we require that n � 1.

d d d d d- --

where !

i

:= (True; []; i; i)

!

n

!

m

()

!

n+m

Fig. 10. Wait Merge/Wait Split

C. Proof of Transformation Consistency

In the following proof that the transformations preserve

observation equivalence, most of the work is accomplished

by the choice of an appropriate equivalence relation on

TTMs.

Theorem 1: Let M := (V;�; T) be a TTM, U � V and

T be one of the TTM transformations of subsection IV-B.

If T(M) is de�ned, then M jU � T(M)jU .

Proof: Consider the TA (transition addition) trans-

formation. An instance of a transition is added only if

the transition's enablement condition will never be satis-

�ed in the source activity the new instance exits, thereby

formingT(M). The newly added instance of the transition

never occurs in T(M) since it is never enabled. Therefore

T

M

= T

T(M)

and hence T

M

jU � T

T(M)

jU .

All the other transformations, with the exceptions of the

OM and WM/WS transformations, are similarly only de-

1174 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 7, JULY 1995

�ned when their application leaves T

M

unaltered.

Suppose v 2 V and M 's e�ect upon v is being modi�ed.

The OM transformation does not change the tree struc-

ture of T

M

since T(M) is de�ned only if v does not occur

in the enabling conditions of any TTM transitions and also

v does not a�ect any other variables. By changing a transi-

tion's operation on v we are in e�ect merely relabeling the

transition of T

M

. Suppose � is the transition in M being

modi�ed, that is h

�

becomes h

new

�

by changing the value

h

�

assigns to v. Then T

T(M)

is obtained from T

M

by re-

placing all occurrences of h

�

with h

new

�

. But v 62 U , the set

of variables of interest (otherwise OM is not de�ned). Thus

the maps induced in U [ftg by h

�

and h

new

�

are identical

(ie. h

�

= h

new

�

) and so T

M

jU � T

T(M)

jU (in fact they are

equal).

tick

M

2

M

1

where !

i

:= (True; []; i; i)

()

!

n+m

!

m

!

n

�tick

. . .

tick tick

. . .

tick tick

m ticksn ticks

T

M

2

�tick

. . .

�tick

. . .

ticktick

n ticks m ticks

T

M

1

Fig. 11. Illustrating the Observation Congruence of WM/WS TTMs

Finally we turn our attention to the WM/WS transfor-

mations. These transformations actually alter the struc-

ture of T

M

. Consider the transitions labeled by M

1

and

M

2

of Figure 11. The transition labelled byM

2

is obtained

from the transitions of M

1

by an application of WM (M

1

from M

2

via WS). It is easy to show that T

M

1

� T

M

2

.

But if the transitions of M

1

occur in a TTM M that we

transform to obtain T(M), by replacing the transitionsM

1

with the transition M

2

, we must ensure that M and T(M)

are observationally equivalent. In both cases T(M) is only

de�ned for n � 1 so in both T

M

1

and T

M

2

, the �rst event

must be a tick. Thus both M and T(M) may only enter a

region in which their structures di�er by taking the initial

tick transition, after which they both produce the same

future observations. Under these circumstances it is easily

veri�ed that M � T(M).

We conclude that for any transformation T and TTM

M we have M � T(M).

More transformations can be added to those listed in

subsection IV-B. One has to verify that each new trans-

formation preserves observation equivalence. Theorem 1

implies that any TTM derived from another TTM via a

�nite sequence of the transformations of subsection IV-B

is observationally equivalent to the original TTM.

V. The Delayed Trip System

This section introduces the Delayed Trip System (DTS),

a real-time example from industry. The problem is then

solved in the TTM framework.

Currently in industry many of the control systems that

were previously implemented using discrete and analog

components are being replaced by microprocessor-based

implementations in order to realize cost savings and greater

exibility. A question that now arises is whether the new

system behaves the same as the old. That is, are the two

implementations equivalent?

A. Setting and Assumptions

The DTS is typical of many real-time systems from in-

dustry. When a certain set of circumstances arises, we want

the system to provide the correct response in a timely fash-

ion. In this case when pressure and power measurements

exceed acceptable safety limits in a particular way, we want

the DTS controller to trip a relay causing the system to

shut down. The result of failure to shut down could be

Power

Pressure

-

-

-

System

Delayed Trip

Relay State

Fig. 12. Block Diagram for the Delayed Trip System

catastrophic. Conversely, each time the system is improp-

erly shut down, signi�cant �nancial loss could result (eg.

stopping a sensitive chemical process in mid-reaction could

ruin the product and possibly damage the plant). Clearly

it is important that the DTS behave in a very speci�c man-

ner.

The desired input/output relationship for the DTS block

diagram has the following informal description: if the

power exceeds power threshold PT and the pressure ex-

ceeds delayed set point DSP, then wait for 3 seconds. If

after 3 seconds the power is again greater than PT, then

open the relay for 2 seconds.

The new DTS is to be implemented on a microprocessor

system with a cycle time of 100ms. That is, the system

samples the inputs and passes through a block of control

code every 0.1 seconds. We assume that the input sig-

nals have been properly �ltered and that the sampling rate

is high enough to ensure proper control. Figure 13 dis-

plays the pseudocode for a proposed control program for

the microprocessor. The code uses integer counter vari-

ables c

1

and c

2

to time the 3 second and 2 second delays

respectively. Also, the program makes use of the variables

Pressure, Power and Relay for the sampled DTS inputs

and output respectively.

The question of whether a microprocessor implementing

the algorithm of Figure 13 satis�es the informal require-

ments above is somewhat problematic. To answer it we

�rst pose the DTS problem in the TTM framework.

LAWFORD AND WONHAM: EQUIVALENCE PRESERVING TRANSFORMATIONS 1175

If Power � PT then

If counter c

1

is reset then

If counter c

2

is reset then

If Pressure � DSP then

increment c

1

]�

1

Endif

ElseIf :(counter c

2

timed out) then

increment c

2

e�

2

open Relay c

Endif

Endif

ElseIf counter c

1

timed out then

open Relay e

reset c

1

j�

increment c

2

c

Else

increment c

1

]�

1

Endif

Endif

Else If counter c

1

is reset then

If counter c

2

is reset then

close Relay]�

ElseIf counter c

2

timed out then

close Relay e�

2

reset c

2

c

Else

increment c

2

e�

2

open Relay c

Endif

Endif

ElseIf counter c

1

timed out then

reset c

1

]�

1

Else

increment c

1

]�

1

Endif

Endif

Endif

Fig. 13. Pseudocode for Proposed DTS Control Program

B. Modeling the Delayed Trip System Speci�cation

By modeling the DTS speci�cation as a TTM we can re-

move any ambiguities from the informal speci�cation and

ensure that the input/output behavior of the microproces-

sor system is completely determined. When the DTS is

implemented in the actual system there are three identical

DTSs running in parallel, with the �nal decision on when

to shut down the system implemented by majority rule. As

a result it is important that an individual system be able to

recover when it is in disagreement with the other two sys-

tems. Also a system should never deadlock. For instance,

after the power and pressure have exceeded their critical

values and the system has waited 3 seconds to check the

power level again, if the power is below its threshold value

PT, then the system should reset and revert to monitoring

both inputs. This is implicit in the informal speci�cation.

In order to facilitate the veri�cation process, the

TTM representation of the desired I/O characteristics for

the DTS is put in a form that closely resembles the

microprocessor behavior. A tick of the global TTM clock

�

�

1

b c e

� !

29

� !

19

a

d

�

2

SPEC Transition Table

� := x = a ^Relay = CLOSED

^Power < PT ^ Pressure < DSP

� := (e

�

; []; 1; 1)

� := (Power � PT; [Relay : OPEN]; 1; 1)

� := (Power < PT; [Relay : CLOSED]; 1; 1)

!

29

:= (true; []; 29; 29)

!

19

:= (true; []; 19; 19)

�

1

:= (Power < PT; []; 1; 1)

�

2

:= (Power < PT; [Relay : CLOSED]; 1; 1)

where

e

�

:= Power � PT ^ Pressure � DSP

Fig. 14. SPEC: TTM Representation of DTS Speci�cation

is assumed to represent 100ms, the cycle time of the micro-

processor. In the TTM speci�cation SPEC of Figure 14,

the enablement conditions of a transition must be satis�ed

for at least one clock tick before the transition can occur.

The earlier assumption that the input signals are �ltered

to ensure proper control guarantees that any change will

persist at least one sampling period and hence will be de-

tected.

After transition � occurs, SPEC waits in activity b for 29

clock ticks (2.9 seconds) before proceeding to activity c. At

activity c the power level is checked again. If the power is

too high then the system opens the relay via transition �,

or else the system resets via �

1

to continue monitoring both

inputs in activity a. After � the system waits in activity

d for 19 clock ticks (1.9 seconds) and then moves to e. As

an added safety feature, the system remains at e as long as

Power � PT. Otherwise the system resets to a via �

2

while

closing the relay. Once back in activity a, � ensures that

the relay is closed once the power returns to an acceptable

level.

From the above discussion it is apparent that the TTM

SPEC gives a more thorough description of what is required

of the DTS, expanding upon the previous informal speci�-

cation. It now remains to model the microprocessor system

in the TTM framework before formalizing the veri�cation

problem.

1176 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 7, JULY 1995

C. Modeling the Microprocessor DTS Implementation

On the right hand side of Figure 13 is a list of transi-

tion names. Each time the microprocessor passes through

the code it performs one of the groups of operations iden-

ti�ed by a transition name. Identical groups of operations

on the program variables are identi�ed by the same transi-

tion name. A group of program operations then determines

the operation function of the transition. The enablement

conditions for these transitions are formed by taking the

conjunction of the conditions speci�ed by the `If' state-

ments for each occurrence of a given transition's program

operations. As an example consider e

�

2

, the enablement

condition for �

2

. The �rst occurrence of �

2

happens if

Power � PT, c

1

is reset, not (c

2

is reset) and not (c

2

has timed out). The second occurrence is executed if not

(Power � PT), c

1

is reset, not (c

2

is reset) and not (c

2

has

timed out). Counting o� 20 consecutive cycles through the

code translates to an elapsed time of 2 seconds, the mini-

mum time the relay is to remain open. If we consider the

counter variables to be reset when they are equal to zero

and counter c

2

as timed out when c

2

� 20, �

2

's enablement

condition becomes:

e

�

2

:= (Power � PT ^ c

1

= 0 ^ c

2

6= 0 ^ c

2

< 20)

_(Power < PT ^ c

1

= 0 ^ c

2

6= 0 ^ c

2

< 20)

or

e

�

2

:= c

1

= 0 ^ 0 < c

2

< 20

In the �nal step we use the fact that c

2

can never be nega-

tive since it starts at c

2

= 0 and all transitions reset c

2

to

zero or increment it.

Similarly we can obtain the enabling conditions for the

other transitions. As mentioned earlier, with each pass

through the code, the microprocessor picks out one of the

labeled blocks of code. The block chosen is the one whose

enabling conditions are satis�ed. The program then loops

back to the start and re-evaluates all the enabling condi-

tions in the next cycle. Hence each transition has a lower

and upper time bound of one.

All of the above information is used to construct the

simple TTM PROG (see Figure 15). The single activity is

representative of the fact that the program is basically a

large case statement implemented using If statements, the

appropriate case being selected out of all possible cases on

each pass through the code.

D. The Veri�cation Problem in Terms of TTMs

Having modeled the speci�cation and pseudocode in the

two preceding subsections we are now able to consider what

the veri�cation problem means in terms of the TTM mod-

els SPEC and PROG. The original question was: `Does

the program do what we want?' In the TTM setting this

becomes the question of whether the timed trajectories of

the inputs and outputs of PROG are \equivalent" to the

timed input/output trajectories of SPEC. That is, ignoring

the events that do not a�ect the state of Relay, do SPEC

and PROG permit the same interleavings of changes to

seloop(�

1

; �

2

; �; �; �

1

; �

2

)

PROG Transition Table

� := c

1

= c

2

= 0 ^Relay = CLOSED

^Power < PT ^ Pressure < DSP

�

1

:= (e

�

1

; [c

1

: c

1

+ 1]; 1; 1)

�

2

:= (c

1

= 0 ^ 1 � c

2

� 19;

[c

2

: c

2

+ 1; Relay : OPEN]; 1; 1)

� := (Power � PT ^ c

1

� 30;

[c

1

: 0; c

2

: c

2

+ 1; Relay : OPEN]; 1; 1)

� := (Power < PT ^ c

1

= c

2

= 0;

[Relay : CLOSED]; 1; 1)

�

1

:= (Power < PT ^ c

1

� 30; [c

1

: 0]; 1; 1)

�

2

:= (Power < PT ^ c

1

= 0 ^ c

2

� 20;

[c

2

: 0; Relay : CLOSED]; 1; 1)

where

e

�

1

:= (Power � PT ^ Pressure � DSP

^c

1

= c

2

= 0) _ (1 � c

1

� 29)

Fig. 15. PROG: TTM Representation of Pseudocode for DTS

the input variables Power and Pressure, output variable

Relay and clock variable t? In this case the set of variables

of interest is given by:

U := fPower; Pressure;Relayg

In the next subsection we answer the question using the

transformations of Section IV.

E. Solving the DTS Veri�cation Problem

We now solve the DTS veri�cation problem by ap-

plying the transformations described in the previous

section to check if PROG �/U SPEC, where U :=

fPower; Pressure;Relayg. While the presented example

has a �nite state representation, we would like to stress

that the technique employed is applicable to TTMs, which

in general, may not have a �nite state space.

Starting from PROG with SPEC as the �nal goal, we try

to make PROG look progressively more like SPEC until

we are left with a copy of SPEC at the end. At each step

we check that the desired transformation is applicable and

describe its e�ect. Starting with PROG

0

:=PROG, at each

step i we apply a transformation to PROG

i�1

to obtain

PROG

i

.

Claim 1: PROG is behaviorally equivalent to SPEC over

U .

Proof: (PROG �! SPEC Over U)

0. The original PROG TTM is shown in Figure 15.

1. AS To apply AS we only have to make sure that in-

stances of every transition exit both of the new ac-

tivities. Since all the transitions are self-looped to

LAWFORD AND WONHAM: EQUIVALENCE PRESERVING TRANSFORMATIONS 1177

ba

�

new

:= �

PROG

^ x = a

�

1

; �

2

; �

�

1

; �

2

; �

�

1

; �

2

; ��

1

; �

2

; �

Fig. 16. TTM for PROG

1

the one activity in the original system, we have some

choice over how we distribute their destination activi-

ties. The reason for the choice shown in Figure 16 will

become apparent in the next few steps.

2. TD TD is applied next to remove the instance of tran-

sition � exiting activity b and the instances of transi-

tions � and �

1

exiting activity a. We are justi�ed in

these actions since:

i. All transitions entering b increment either c

1

or c

2

.

ii. All transitions either increment or reset c

i

to 0 so

in any activity c

i

� 0.

iii. All transitions entering a either set c

1

= 0 or leave

c

1

una�ected while requiring c

1

= 0 in their enable-

ment conditions. Therefore in activity a c

1

= 0.

Hence by (i), (ii) and (iii) we know that:

(x = b)) (c

1

> 0 _ c

2

> 0)) (e

�

= false)

and

(x = a)) (e

�

= e

�

1

= false)

Thus we are justi�ed in deleting the � exiting activity

b and the � and �

1

exiting activity a.

a b

�

1

; �

2

�

new

:= �

PROG

^ x = a

�

1

; �

2

; �

�

2

; �

�

1

; �

2

Fig. 17. TTM for PROG

2

3. AS This time we split activity b with � exiting b to

the newly formed c activity (see Figure 18). Notice

that in splitting activity b into b and c we have not

altered the timed behavior. Both b and c have the

same possible futures as activity b in PROG

2

.

a b

�

1

; �

2

�

1

; �

2

�

c

�

new

:= �

PROG

^ x = a

�

1

; �

2

�

1

; �

2

�

2

; �
�

1

; �

2

; �

Fig. 18. TTM for PROG

3

4. TD Upon entering activity c we know that c

1

= 0 ^

c

2

> 0 since h

�

:= [c

1

: 0; c

2

: c

2

+ 1; Relay : OPEN]

and by 2(ii) we know that c

i

� 0 in activity b. But

e

�

1

requires that either c

1

= c

2

= 0 or 1 � c

1

� 29,

so e

�

1

is initially false in activity c. Also the other

transitions entering c (� and �

2

) leave c

1

unaltered

and only increment c

2

. Hence

x = c =) c

1

= 0 ^ c

2

> 0

=) e

�

1

= e

�

1

= e

�

= false

Conclusion: delete the instances of �

1

, �

1

, and � with

source activity c.

5. TD The initial condition �

new

starts PROG

4

in ac-

tivity a with c

2

= 0. The only transitions that a�ect c

2

are �

2

and �. Transition �

2

requires c

2

> 0 to occur.

Hence, starting from the initial state, � must precede

�

2

. Once � has occurred we have x = c with only �

2

exiting c. This transition sets c

2

= 0 so (i)c

2

> 0 i�

x = c. Thus

(i) =) (e

�

2

= true =) x = c)

also

e

�

2

= true =) x = c

Conclusion: delete all instances of �

2

and �

2

except

c

2

> 0

c

1

= 0

c

2

> 0

c

1

= 0

�

1

�

1

�

�

2

c

1

= 0

c

2

> 0

�

new

:= �

PROG

^ x = a

cb

�

a

�

1

�

2

Fig. 19. TTM for PROG

5

those with source activity c. This leaves us with

PROG

5

as shown in Figure 19. The range of values

that c

1

and c

2

take on in each activity can be easily

deduced from 5(i) and 2(iii) so we include this infor-

mation in Figure 19 as well.

6. RT Referring to Figure 19, we can rename the in-

stance of �

1

exiting activity a without a�ecting the

dynamics of the variables of interest because �

1

is now

the only transition entering activity b and after a tran-

sition occurs, if it remains enabled, its time bounds are

reset. This means that a problem like that illustrated

in RT Figure 9 cannot occur as a result of renaming

only one of the instances of �

1

. The new transition

exiting a will be called �.

7. CD Considering the enablement conditions in

PROG

6

we have:

e

�

:= e

�

1

= (Power � PT ^ Pres: � DSP ^ c

1

= c

2

= 0)

| {z }

p

_ (1 � c

1

� 29)

| {z }

q

When x = a by 2(iii) and 5(i) we know that c

1

= c

2

=

0 and when x = b by 2(ii) we know that c

1

> 0. This

1178 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 7, JULY 1995

gives:

(i)x = a =) q = false

(ii)x = b =) p = false

Using the Control Deletion transformation with (i) as

justi�cation, we can change e

�

to e

new

�

:= p. Simi-

larly using (ii) and Control Deletion again we obtain

e

new

�

1

:= q.

Now consider e

new

�

and e

�

:

e

new

�

:= Power � PT ^Pressure � DSP

^c

1

= c

2

= 0

e

�

:= Power < PT ^ c

1

= c

2

= 0

but

x = a =) c

1

= c

2

= 0

Applying CD yet again to simplify further we now

have:

e

new

�

:= Power � PT ^ Pressure � DSP

e

new

�

:= Power < PT

In a similar fashion, again applying CD:

x = c =) c

1

= 0

so

e

new

�

2

:= Power < PT ^ c

2

� 20

8. AS The activity b is now split into thirty di�erent

activities with �

1

taking the TTM from one new b

activity to the next as c

1

is incremented. After � oc-

curs we are in an activity where c

1

= 1. �

1

takes us

�

c

1

= 2

. . .

�

1

c

c

1

= 1

c

1

� 30

c

1

= 29

�

1

�

1

c

1

= 3

�

2

�

�

2

�

1

�

�

1

c

1

= 0

c

2

> 0

c

1

= 0

c

2

> 0

�

new

:= �

PROG

^ x = a

a

�

Fig. 20. TTM for PROG

8

to the next activity where c

1

= 2 and so on until we

reach an activity where c

1

� 30 and �

1

is self-looped.

For each value of c

1

between 1 and 29, b has been

split into a new activity, with an additional activity

for c

1

� 30. We project out the TTM's dependence

on c

1

by systematically adding new activities to the

TTM to a point where for each value of c

1

between

1 and 30 there is an individual activity. Again note

that we are in no way changing the dynamics of the

system over U as the same transitions exit each of the

new activities.

9. TD Knowing the value of c

1

in each of the newly

added activities allows us to delete all instances of �

and �

1

except for the activity where c

1

� 30 since

both transitions' enablement conditions require c

1

�

30. Also, the �

1

transition self-looped at the activity

c

1

� 30 may be removed because e

�

1

:= (1 � c

1

� 29)

in PROG

8

.

10. CD Now that transition �

1

has as source activities

only those activities for which 1 � c

1

� 29, e

�

1

is

always true in any of �

1

's source activities. Thus we

can remove the c

1

dependence from e

�

1

. The same can

be done for � and �

1

giving:

e

new

�

1

:= true

e

new

�

:= Power � PT

e

new

�

1

:= Power < PT

11. OM Variable c

1

no longer occurs in any transition's

enabling conditions or operation functions that a�ect

other variables. Hence we can drop the variable from

all transition operations. The modi�ed transitions are

�

new

:= (Power � PT ^Pressure � DSP; []; 1; 1)

�

new

1

:= (true; []; 1; 1) = !

1

12. WM All instances of �

1

are nowmerged into one !

29

by the Wait Merge transformation (See Figure 21).

!

29

b

30

b

1

�

�

2

�

1

�

1

�

new

:= Relay = CLOSED ^ c

2

= 0 ^ x = a

�

2

c

�

a

Fig. 21. TTM for PROG

12

13-17. Now repeat steps 8-12 for activity c and transi-

tion �

2

to project out the dynamics of variable c

2

and

we have the desired result, a TTM identical to SPEC.

By transforming PROG into SPEC above we have shown

that the pseudocode implements an algorithm that satis�es

the behavioral requirements expressed by SPEC.

VI. Incompleteness of Transformations

In [13] the set of transformations of Section IV is shown

to be incomplete for proving observation equivalence of

TTMs and it is further demonstrated that no �nite set of

transformations is complete for proving observation equiv-

alence of general TTMs. The proof closely follows a sim-

ilar proof in Milner's process algebra [7]. As in Milner's

setting, the incompleteness property does not prevent the

theory from being potentially useful in many practical ap-

plications. Indeed the exponential state explosion that

occurs with the addition of new variables makes exhaus-

tive veri�cation routines impractical for even �nite state

TTMs. Thus heuristic methods such as the transforma-

tional technique introduced in this paper provide a useful

LAWFORD AND WONHAM: EQUIVALENCE PRESERVING TRANSFORMATIONS 1179

method of real-time system veri�cation. Also, the trans-

formations may be used to synthesize an implementation

from a speci�cation that is correct by construction. That

is, the implementation resulting from the transformations

will be guaranteed to be observationally equivalent to the

speci�cation, thereby eliminating the need to perform an

exhaustive equivalence veri�cation.

In this paper we have demonstrated that the transforma-

tional proof technique employed above can be used to guar-

antee the formal observational equivalence (in the sense of

[7]) of TTMs' legal trajectories. The same technique can

be applied to other problems to formally prove the obser-

vation equivalence of two TTMs.

In conclusion, equivalence preserving transformations of

TTMs were introduced as a method of verifying the equiv-

alence of two TTMs. The Delayed Trip System (DTS)

example has been introduced as a practical application of

the equivalence of TTMs over a set of variables of interest.

Finally, a set of transformations was developed and shown

to be su�ciently expressive to solve the DTS veri�cation

problem.

References

[1] L. Lee, The Day the Phones Stopped, Donald I. Fine Inc., New

York, 1991.

[2] D. Harel, \Biting the silver bullet: Toward a brighter future for

software development", IEEE Computer Magazine, vol. 25, no.

1, pp. 8{20, 1992.

[3] J. S. Ostro�, Temporal Logic for Real-Time Systems, Advanced

Software Development. Research Studies Press, Somerset Eng-

land, 1989.

[4] J. S. Ostro� and W. M. Wonham, \A framework for real-time

discrete event control", IEEE Transactions on Automatic Con-

trol, vol. 35, no. 4, pp. 386{397, 1990.

[5] C.A.R. Hoare, Communicating Sequential Processes, Interna-

tional Series in Computer Science. Prentice-Hall International,

Englewood Cli�s, NJ, 1985.

[6] R. Milner, A Calculus of Communicating Systems, vol. 92 of

Lecture notes on computer science, Springer-Verlag, New York,

1980.

[7] R. Milner, Communication and Concurrency, Prentice Hall,

New York, 1989.

[8] F. Moller and C. Tofts, A Temporal Calculus of Communicating

Systems, vol. 458 of LNCS, pp. 401{415, Springer{Verlag, 1990.

[9] Y. Wang, CCS + Time = an Interleaving Model for Real Time

Systems, vol. 510 of LNCS, pp. 217{228, Springer{Verlag, 1991.

[10] A. Klusener, Abstraction in Real Time Process Algebra, vol. 600

of LNCS, pp. 325{352, Springer{Verlag, 1991.

[11] M. K. Franklin and A. Gabrielian, \A transformational method

for verifying safety properties in real-time systems", in Pro-

ceedings 10th IEEE Real-Time Syst. Symp, December 1989, pp.

112{123.

[12] R. DeNicola, \Extensional equivalences for transition systems",

Acta Informatica, vol. 24, pp. 211{237, 1987.

[13] M. Lawford, \Transformational equivalence of timed transition

models", M.A.Sc. thesis, Department of Electrical Engineering,

University of Toronto, Toronto, ON, 1992, Also appears as Sys-

tems Control Group Report #9202, Dept. of Elec. Eng, Univ. of

Toronto, 1992.

[14] M. Lawford and W.M. Wonham, \An application of real-time

transformational equivalence", in Proc. of 26th Conf. on Infor-

mation Sciences and Systems, Princeton, NJ, Mar. 1992, vol. 1,

pp. 233{238.

[15] M. Lawford and W.M. Wonham, \Equivalence preserving trans-

formations for timed transition models", in Proc. of 31st Conf.

Decision and Control, Tucson, AZ, USA, Dec. 1992, pp. 3350{

3356.

Mark Lawford (S'88) received the B.Sc. de-

gree in EngineeringMathematics from Queen's

University, Kingston, Ontario, Canada in 1989

and the M.A.Sc. degree from the University

of Toronto, Ontario, Canada, in 1992. He is

currently enrolled in the Ph.D. program of the

Systems Control Group, Department of Elec-

trical and Computer Engineering, University of

Toronto.

He recently completed a contract position

as a real-time simulator consultant with Al-

liedSignal Aerospace Canada Ltd. and presently acts as an internet

consultant for QL Systems Ltd. His research interests include discrete

event systems, formal methods for real-time systems and equivalence

veri�cation techniques.

W.M. Wonham (M'64-SM'76-F'77) received

the B.Eng. degree in engineering physics from

McGill University, Montreal, P.Q., Canada, in

1956, and the Ph.D. degree in control engineer-

ing from the University of Cambridge, Eng-

land, in 1961.

From 1961-1969, he was associated with the

Control and Information Systems Laboratory

at Purdue University, Lafayette, IN, the Re-

search Institute for Advanced Studies (RIAS)

of MartinMariettaCo., the Division of Applied

Mathematics at Brown University, Providence, RI, and (as a National

Academy of Sciences Research Fellow) with the O�ce of Control The-

ory and Application of NASA's ElectronicsResearch Center. In 1970,

he joined the Systems Control Goup of the Department of Electrical

Engineering at the University of Toronto, Ontario, Canada. He cur-

rently holds the J. Roy Cockburn Chair. In addition, he has held

visiting academic appointments with the Department of Electrical

Engineering at Massachusettes Institute of Technology, Cambridge,

MA, the Department of Systems Science and Mathematics at Wash-

ington University, St. Louis, MO, the Department of Mathematics of

the University of Bremen, the Mathematics Institute of the Academia

Sinica, Beijing, the Indian Institute of Technology,Kanpur, and other

institutions. His research interests have lain in the areas of stochas-

tic control and �ltering, the geometric method of linear multivariable

control, and more recently in the discrete event systems from the

point of formal logic and language. He has coauthored about sixty

research papers as well as the book Linear Multivariable Control: A

Geometric Approach.

Dr. Wonham is a Fellow of the Royal Society of Canada. In 1987,

he was the recipient of the IEEE Control Systems Science and Engi-

neeringAward, and in 1990, was Brouwer Medalist of the Netherlands

Mathematical Society

