
MODEL REDUCTION OF DISCRETE
REAL-TIME SYSTEMS

by

Mark Stephen Lawford

January 1997

A thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
University of Toronto

c© Copyright by Mark Lawford 1997

MODEL REDUCTION OF DISCRETE REAL-TIME SYSTEMS

by

Mark Stephen Lawford

A thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
University of Toronto

c© Copyright by Mark Stephen Lawford, 1997

For my parents

Model Reduction of Discrete Real-Time Systems

A thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
University of Toronto

c© Copyright by Mark Stephen Lawford, 1997

Abstract

In many Discrete-Event Systems (DES) both state and event information are of im-

portance to the systems designer. To obtain compositionally consistent hierarchical

models of systems, the behavior of Discrete-Event Systems with unobservable tran-

sitions and state output maps is considered. Observers for deterministic DES are

generalized to nondeterministic DES and characterized using the join semilattice of

compatible partitions of a transition system. This characterization points to efficient

algorithms for computing both strong and weak state-event observers as solutions to

the Relational Coarsest Partition problem (RCP). The strong and weak observation

equivalences of Milner are shown to be special cases of our observers under the trivial

(constant) state output map. The state-event equivalence based upon the observers is

shown to be a congruence for a parallel composition operator, allowing the replacement

of modules by their quotient systems.

Logics such as Ostroff’s RTTL allow for the specification and verification of a

system’s state-event behavior. To make realistic problems amenable to analysis, a

designer must typically decompose the system into subsystems (modules) and use al-

gebraic abstraction (quotient systems) to obtain hierarchical system models that pre-

serve the properties to be verified. In this thesis we use state-event observational

equivalence to perform compositionally consistent model reduction for a subclass of

formulas of state-event linear temporal logics, with particular attention to a discrete

time temporal logic that is a simplification of RTTL. The reduction technique allows

limited use of immediate operators. In the process, we develop a method of specify-

ing modules’ input/output behavior by defining observable satisfaction for RTTL-style

temporal logics. The results are applied to the shut-down system of a nuclear reactor.

i

Acknowledgments

My supervisor, Prof. Murray Wonham, helped to shape this thesis from beginning

to end with his extraordinary knowledge, insight and particular mathematical vision.

Prof. Jonathan Ostroff got me rolling by asking, “So how do you compute these ob-

servers for finite state systems?” He later provided constructive criticism of the model

reduction results and kindly made York University’s computing facilities available to

me, thus making possible the computational results for the example application.

Thanks to all my friends who are, or were, in the University of Toronto Sys-

tems Control Group for thoughtful discussions and moral support, especially when

my life went nonlinear. Kai Wong’s expert knowledge of aggregation provided the

counterexample in Figure 3.1.

Financial support during my graduate studies has been generously provided for by

the Natural Sciences and Engineering Research Council of Canada (NSERC) and the

University of Toronto through NSERC Scholarships and U of T Open Fellowships.

Finally, my family has encouraged me from the beginning in this endeavor and

helped me throughout in ways too numerous to mention here.

ii

Contents

1 Introduction 1

1.1 Setting and Issues . 2

1.2 Related Work . 4

1.2.1 Algebraic Equivalence Verification 4

1.2.2 Temporal Logic, Model-Checking and Model Reduction 6

1.3 Contributions . 8

2 Preliminaries 11

2.1 Notation and Mathematical Preliminaries 11

2.1.1 Products, Projections and Equalizers 12

2.1.2 Properties of Functional Operators 14

2.2 System Models . 18

2.2.1 Timed Transition Models . 19

2.2.2 TTM Semantics . 21

2.2.3 State-Event Labeled Transition Systems 27

2.3 State Observers for a Class of Deterministic LTS 38

3 Observers for State-Event Labeled Transition Systems 41

3.1 Strong State-Event Observers . 42

3.1.1 Compatible Partitions . 42

3.1.2 Computation of Strong State-Event Observers 44

3.1.3 Strong Quotient Systems and Homomorphisms 46

3.2 Weak State-Event Observers . 55

iii

3.3 Example: Weak State-Event Observer of a Simple Real-Time System 65

3.4 Compositional Consistency . 68

3.4.1 Strong Compositional Consistency 69

3.4.2 Weak Compositional Consistency 76

3.5 Summary . 80

4 Model Reduction of Modules for State-Event Temporal Logics 82

4.1 A Simple Real-Time State-EventTemporal Logic 87

4.1.1 Computations of SELTS . 88

4.1.2 Temporal Logic of State-Event Sequences 89

4.2 Strong State-Event Model Reduction 92

4.3 Weak State-Event Model Reduction 94

4.3.1 Weakly Observed Computations 94

4.3.2 Weak Satisfaction . 99

4.3.3 State-Event Stuttering-Invariance and Model Reduction 100

4.4 Model Reduction of TTM Modules 103

4.5 Summary . 117

5 Design and Verification of an Industrial Real-time Controller 119

5.1 The Delayed Reactor Trip System . 120

5.1.1 Setting and Assumptions . 121

5.1.2 Modeling the Delayed Reactor Trip Specification 123

5.1.3 Modeling the Microprocessor DRT Implementation 126

5.1.4 The Verification Problem in Terms of TTM Modules 128

5.2 Model Checking the DRT . 129

5.2.1 Modeling the Reactor . 130

5.2.2 Model-Checking Details . 132

5.2.3 Verification of System Response 133

5.2.4 Verification of System Recovery 138

5.3 Model-Checking Concurrent Controllers 141

5.4 Summary . 145

iv

6 Conclusions 148

6.1 Limitations and Future Research . 149

A Equivalence Preserving Transformations of TTMs 152

A.1 Equivalence of TTMs . 152

A.2 Observation Equivalence . 158

A.3 Equivalence Preserving Transformations 161

A.4 Limitations of Transformations . 165

B Equivalence Verification of the DRT 167

v

List of Figures

2.1 Commutative diagram defining h = eq(f1, f2), the equalizer of f1 and f2. 13

2.2 An example of a simple TTM . 23

2.3 The transition graph format of a TTM 25

2.4 RG2 representing the legal trajectories of TTM M in Figure 2.2 . . . 29

2.5 SELTS for timed behavior of u, v . 32

2.6 General synchronous product can create nondeterminism 34

2.7 State-event synchronous product of Q1 and Q2 for I := {{α}, π1, π2} . 36

2.8 Commutative diagram relating |[Σs]| and |[I]|. 38

3.1 Compatible partitions are closed under ∨ but not ∧ 43

3.2 Graphical interpretation of a SELTS homomorphism 48

3.3 Commutative diagram for an SELTS homomorphism 49

3.4 State-event equivalent SELTS quotient systems that are not isomorphic 53

3.5 Commutative diagram for the diamond property of SELTS 54

3.6 Commutative diagram for the transitivity of homomorphism def of ∼se 55

3.7 Example illustrating observational closure operator is many-to-one . 62

3.8 Example TTM M . 65

3.9 SELTS generated by TTM M . 66

3.10 ker(P) and resulting θw for SELTS generated by TTM M 67

3.11 Weak Quotient system generated by θw 68

3.12 Commutative diagram for Corollary 3.27 71

3.13 Commutative diagram for Corollary 3.27 73

3.14 Commutative diagram for Lemma 3.28 73

vi

3.15 Observational closure fails to distribute over synchronous product. . 77

4.1 Counterexample to converse of Lemma 4.5. 93

4.2 Q1 ≈se Q2 but P≈
1 (M(Q1)) 6= P≈

2 (M(Q2)) 97

4.3 SELTS for M1‖M2. 104

4.4 SELTS generated by M1 and M2 and their composition. 104

4.5 SELTS for augmented TTMs M̂1, M̂2. 106

5.1 Block Diagram for the DRT System 121

5.2 Analog Implementation of the DRT System 122

5.3 Pseudocode for Proposed DRT Control Program 124

5.4 SPEC: TTM Representation of DRT Specification 125

5.5 PROG: TTM Representation of Pseudocode for DRT 127

5.6 PLANT := RELAY ‖OUTPUT - TTM model of the plant. 130

5.7 RES – TTM Observer for FRes used in creating untimed formula F ′
Res. 135

5.8 Input sequence generating a counter example to FRes 136

5.9 REC – TTM Observer for FRec used in creating untimed property F ′
Rec.139

5.10 PLANTshn
:= RELAYn‖OUTPUTsh - sample and hold plant model. 147

A.1 Simple TTM M := 〈V , Θ, T 〉 . 154

A.2 QM - the LTS reachability tree for M 155

A.3 TM |{y, z} = r(QM) the restricted LTS for M 155

A.4 Commutative Diagram for Induced Operation Function 156

A.5 Strong Equivalence Example . 159

A.6 Illustrating the need for a weaker equivalence 160

A.7 An example of Transition Addition/Transition Deletion 161

A.8 Activity Merge/Activity Split . 163

A.9 A Problem with the Rename Transition Transformation 164

A.10 Wait Merge/Wait Split . 165

B.1 TTM for PROG1 . 168

B.2 TTM for PROG2 . 169

vii

B.3 TTM for PROG3 . 169

B.4 TTM for PROG5 . 170

B.5 TTM for PROG8 . 172

B.6 TTM for PROG12 . 173

viii

List of Tables

5.1 Model checking results of System Response F ′
Res for control‖plant . . 136

5.2 Model checking results of Initialized System Response F ′
IRes for control‖plant137

5.3 Model checking results for System Recovery F ′
Rec for control‖plant . . 140

5.4 Model checking control‖plant and control1‖control2‖plant2 143

5.5 Model-checking control1‖control2‖control3‖plantsh3
. 145

ix

List of Symbols

Symbol Page Description

N 11 Set of Natural Numbers

Z 11 Set of Integers

Q1 − Q2 11 Subset difference of Q1 and Q2

Q1 \ Q2 11 Complement of Q1 with respect to Q2

Eq(Q) 12 Set of Equivalence Relations of set Q

∆,∇ 12 inf(Eq(Q)) and sup(Eq(Q))

ker(P) 12 Equivalence Kernel of function P

P(Q) 13 Power set of the set Q

Q1 × Q2 12 Product of sets Q1 and Q2

π1, π2 13 Canonical projections associate with product

πB 13 Canonical projections A′ 7→ A′ ∩ B

eq(f1, f2) 13 Equalizer of f1 and f2

idQ 14 Identity map on the set Q

g ◦ f 14 Functional composition

f∗ 14 Lifting of function f to the power set level

f1

.
∪f2 15 Disjoint union of f1 and f2

f1 ∪ f2 16 Union of functions

f1 × f2 16 Functional product

f1 ⊗ f2 17 Setwise functional product

M,M1,M2 19 Timed Transition Models (TTMs)

V , Θ, T 19 TTM variable set, initial condition and transition set

Q 19 Set of state assignments of a TTM

QV 19 Set of state assignments over the variable set V

Q 22, 30 Set of extended state assignments of a TTM

x

Symbol Page Description

Σ(T) 25 Set of transition labels appearing in transition set T

M1‖M2 25 Parallel composition of TTMs

Q, Q1, Q2 27 State Event Labeled Transition Systems (SELTS)

Σ 27 Event set of a SELTS

RΣ 27 Set of transition relations associated with event set Σ

αQ 27 Transition function for event α in SELTS Q

RangeM(cα) 30 Reduced range space for cα in TTM M

QM 30 State Event Labeled Transition System generated by TTM M

PQV1
31 Canonical projection from QV to QV1

for V1 ⊆ V

r(Q) 31 r relabeling of SELTS Q

Q1|[Σs]|Q2 33 Event synchronous composition of SELTS

I 35 SELTS interface

Q1|[I]|Q2 35 State-Event synchronous composition of SELTS

Con(Q) 39 Set of congruence of the deterministic SELTS Q

Q/θ 40, 46 Quotient system of Q by congruence/compatible partition θ

CP (Q) 42 Compatible partitions of Q

θs(Q) 44 Strong state-event observer of Q

Q1 ∪ Q2 47 Union of SELTS

∼se 47 Strong state event equivalence

h : Q1 → Q2 48 SELTS homomorphism from Q1 to Q2

q ⇒se q′ 56 Unobservable move from q to q′

q
α
⇒seq

′ 57 α − observable move from q to q′

Q′
se 58 Observational closure of Q

θw(Q) 60 Weak state-event observer

≈se 60, 61 Weak observation equivalence

xi

Symbol Page Description

Q//θ 61 weak quotient system of Q by θ

Σ− 88 Symbol for Σ ∪ {−}, the event set union the “null” event

η 88 Next transition variable

σ 88 Computation - a state-event sequence

|σ| 88 Length of σ

σk 90 k-shifted suffix of σ

M(Q) 88 Set of computations of Q

|= 90, 91 Temporal logic satisfaction relation

©,U ,Uα
[l,u] 90 Temporal logic “next”, “until”, and “bounded until” operators

3,2 90 Temporal logic “eventually” and “henceforth” operators

P∼ 92 Strongly observed projection of computations

P≈ 96 Weakly observed projection of computations

|=≈ 99 Weak satisfaction relation

m,m1,m2 107 TTM modules

I, I1, I2 107 TTM module interfaces

M̂ 109 Augmented TTM of a module m := (M, I)

Qm 109 SELTS generated by the TTM module m

m1‖m2 112 TTM module composition

xii

Contents

1 Introduction 1

1.1 Setting and Issues . 2

1.2 Related Work . 4

1.2.1 Algebraic Equivalence Verification 4

1.2.2 Temporal Logic, Model-Checking and Model Reduction 6

1.3 Contributions . 8

2 Preliminaries 11

2.1 Notation and Mathematical Preliminaries 11

2.1.1 Products, Projections and Equalizers 12

2.1.2 Properties of Functional Operators 14

2.2 System Models . 18

2.2.1 Timed Transition Models . 19

2.2.2 TTM Semantics . 21

2.2.3 State-Event Labeled Transition Systems 27

2.3 State Observers for a Class of Deterministic LTS 38

3 Observers for State-Event Labeled Transition Systems 41

3.1 Strong State-Event Observers . 42

3.1.1 Compatible Partitions . 42

3.1.2 Computation of Strong State-Event Observers 44

3.1.3 Strong Quotient Systems and Homomorphisms 46

3.2 Weak State-Event Observers . 55

1

3.3 Example: Weak State-Event Observer of a Simple Real-Time System 65

3.4 Compositional Consistency . 68

3.4.1 Strong Compositional Consistency 69

3.4.2 Weak Compositional Consistency 76

3.5 Summary . 80

4 Model Reduction of Modules for State-Event Temporal Logics 82

4.1 A Simple Real-Time State-EventTemporal Logic 87

4.1.1 Computations of SELTS . 88

4.1.2 Temporal Logic of State-Event Sequences 89

4.2 Strong State-Event Model Reduction 92

4.3 Weak State-Event Model Reduction 94

4.3.1 Weakly Observed Computations 94

4.3.2 Weak Satisfaction . 99

4.3.3 State-Event Stuttering-Invariance and Model Reduction 100

4.4 Model Reduction of TTM Modules 103

4.5 Summary . 117

5 Design and Verification of an Industrial Real-time Controller 119

5.1 The Delayed Reactor Trip System . 120

5.1.1 Setting and Assumptions . 121

5.1.2 Modeling the Delayed Reactor Trip Specification 123

5.1.3 Modeling the Microprocessor DRT Implementation 126

5.1.4 The Verification Problem in Terms of TTM Modules 128

5.2 Model Checking the DRT . 129

5.2.1 Modeling the Reactor . 130

5.2.2 Model-Checking Details . 132

5.2.3 Verification of System Response 133

5.2.4 Verification of System Recovery 138

5.3 Model-Checking Concurrent Controllers 141

5.4 Summary . 145

2

6 Conclusions 148

6.1 Limitations and Future Research . 149

A Equivalence Preserving Transformations of TTMs 152

A.1 Equivalence of TTMs . 152

A.2 Observation Equivalence . 158

A.3 Equivalence Preserving Transformations 161

A.4 Limitations of Transformations . 165

B Equivalence Verification of the DRT 167

3

List of Figures

2.1 Commutative diagram defining h = eq(f1, f2), the equalizer of f1 and f2. 13

2.2 An example of a simple TTM . 23

2.3 The transition graph format of a TTM 25

2.4 RG2 representing the legal trajectories of TTM M in Figure 2.2 . . . 29

2.5 SELTS for timed behavior of u, v . 32

2.6 General synchronous product can create nondeterminism 34

2.7 State-event synchronous product of Q1 and Q2 for I := {{α}, π1, π2} . 36

2.8 Commutative diagram relating |[Σs]| and |[I]|. 38

3.1 Compatible partitions are closed under ∨ but not ∧ 43

3.2 Graphical interpretation of a SELTS homomorphism 48

3.3 Commutative diagram for an SELTS homomorphism 49

3.4 State-event equivalent SELTS quotient systems that are not isomorphic 53

3.5 Commutative diagram for the diamond property of SELTS 54

3.6 Commutative diagram for the transitivity of homomorphism def of ∼se 55

3.7 Example illustrating observational closure operator is many-to-one . 62

3.8 Example TTM M . 65

3.9 SELTS generated by TTM M . 66

3.10 ker(P) and resulting θw for SELTS generated by TTM M 67

3.11 Weak Quotient system generated by θw 68

3.12 Commutative diagram for Corollary 3.27 71

3.13 Commutative diagram for Corollary 3.27 73

3.14 Commutative diagram for Lemma 3.28 73

4

3.15 Observational closure fails to distribute over synchronous product. . 77

4.1 Counterexample to converse of Lemma 4.5. 93

4.2 Q1 ≈se Q2 but P≈
1 (M(Q1)) 6= P≈

2 (M(Q2)) 97

4.3 SELTS for M1‖M2. 104

4.4 SELTS generated by M1 and M2 and their composition. 104

4.5 SELTS for augmented TTMs M̂1, M̂2. 106

5.1 Block Diagram for the DRT System 121

5.2 Analog Implementation of the DRT System 122

5.3 Pseudocode for Proposed DRT Control Program 124

5.4 SPEC: TTM Representation of DRT Specification 125

5.5 PROG: TTM Representation of Pseudocode for DRT 127

5.6 PLANT := RELAY ‖OUTPUT - TTM model of the plant. 130

5.7 RES – TTM Observer for FRes used in creating untimed formula F ′
Res. 135

5.8 Input sequence generating a counter example to FRes 136

5.9 REC – TTM Observer for FRec used in creating untimed property F ′
Rec.139

5.10 PLANTshn
:= RELAYn‖OUTPUTsh - sample and hold plant model. 147

A.1 Simple TTM M := 〈V , Θ, T 〉 . 154

A.2 QM - the LTS reachability tree for M 155

A.3 TM |{y, z} = r(QM) the restricted LTS for M 155

A.4 Commutative Diagram for Induced Operation Function 156

A.5 Strong Equivalence Example . 159

A.6 Illustrating the need for a weaker equivalence 160

A.7 An example of Transition Addition/Transition Deletion 161

A.8 Activity Merge/Activity Split . 163

A.9 A Problem with the Rename Transition Transformation 164

A.10 Wait Merge/Wait Split . 165

B.1 TTM for PROG1 . 168

B.2 TTM for PROG2 . 169

5

B.3 TTM for PROG3 . 169

B.4 TTM for PROG5 . 170

B.5 TTM for PROG8 . 172

B.6 TTM for PROG12 . 173

6

List of Symbols

Symbol Page Description

N 11 Set of Natural Numbers

Z 11 Set of Integers

Q1 − Q2 11 Subset difference of Q1 and Q2

Q1 \ Q2 11 Complement of Q1 with respect to Q2

Eq(Q) 12 Set of Equivalence Relations of set Q

∆,∇ 12 inf(Eq(Q)) and sup(Eq(Q))

ker(P) 12 Equivalence Kernel of function P

P(Q) 13 Power set of the set Q

Q1 × Q2 12 Product of sets Q1 and Q2

π1, π2 13 Canonical projections associate with product

πB 13 Canonical projections A′ 7→ A′ ∩ B

eq(f1, f2) 13 Equalizer of f1 and f2

idQ 14 Identity map on the set Q

g ◦ f 14 Functional composition

f∗ 14 Lifting of function f to the power set level

f1

.
∪f2 15 Disjoint union of f1 and f2

f1 ∪ f2 16 Union of functions

f1 × f2 16 Functional product

f1 ⊗ f2 17 Setwise functional product

M,M1,M2 19 Timed Transition Models (TTMs)

V , Θ, T 19 TTM variable set, initial condition and transition set

Q 19 Set of state assignments of a TTM

QV 19 Set of state assignments over the variable set V

Q 22, 30 Set of extended state assignments of a TTM

7

Symbol Page Description

Σ(T) 25 Set of transition labels appearing in transition set T

M1‖M2 25 Parallel composition of TTMs

Q, Q1, Q2 27 State Event Labeled Transition Systems (SELTS)

Σ 27 Event set of a SELTS

RΣ 27 Set of transition relations associated with event set Σ

αQ 27 Transition function for event α in SELTS Q

RangeM(cα) 30 Reduced range space for cα in TTM M

QM 30 State Event Labeled Transition System generated by TTM M

PQV1
31 Canonical projection from QV to QV1

for V1 ⊆ V

r(Q) 31 r relabeling of SELTS Q

Q1|[Σs]|Q2 33 Event synchronous composition of SELTS

I 35 SELTS interface

Q1|[I]|Q2 35 State-Event synchronous composition of SELTS

Con(Q) 39 Set of congruence of the deterministic SELTS Q

Q/θ 40, 46 Quotient system of Q by congruence/compatible partition θ

CP (Q) 42 Compatible partitions of Q

θs(Q) 44 Strong state-event observer of Q

Q1 ∪ Q2 47 Union of SELTS

∼se 47 Strong state event equivalence

h : Q1 → Q2 48 SELTS homomorphism from Q1 to Q2

q ⇒se q′ 56 Unobservable move from q to q′

q
α
⇒seq

′ 57 α − observable move from q to q′

Q′
se 58 Observational closure of Q

θw(Q) 60 Weak state-event observer

≈se 60, 61 Weak observation equivalence

8

Symbol Page Description

Q//θ 61 weak quotient system of Q by θ

Σ− 88 Symbol for Σ ∪ {−}, the event set union the “null” event

η 88 Next transition variable

σ 88 Computation - a state-event sequence

|σ| 88 Length of σ

σk 90 k-shifted suffix of σ

M(Q) 88 Set of computations of Q

|= 90, 91 Temporal logic satisfaction relation

©,U ,Uα
[l,u] 90 Temporal logic “next”, “until”, and “bounded until” operators

3,2 90 Temporal logic “eventually” and “henceforth” operators

P∼ 92 Strongly observed projection of computations

P≈ 96 Weakly observed projection of computations

|=≈ 99 Weak satisfaction relation

m,m1,m2 107 TTM modules

I, I1, I2 107 TTM module interfaces

M̂ 109 Augmented TTM of a module m := (M, I)

Qm 109 SELTS generated by the TTM module m

m1‖m2 112 TTM module composition

9

Chapter 1

Introduction

Does this real-time control system do what we want?

With the widespread use of computers in control applications, this is becoming

an increasingly common question. Systems of previously unprecedented ability and

complexity are fast becoming commonplace. The space shuttle and “fly-by-wire” F-16

jet fighter spring to mind as examples of systems that would not be possible without

computer control. These new systems are also creating an unprecedented potential

for catastrophic failures due to software errors. For example

In 1987 a cancer treatment machine subjected a patient to a lethal dose of radiation.

The machine at fault was a new computer controlled version of the original

machine, which relied upon mechanical interlocks. A software bug caused the

new machine’s shielding mechanism to disengage if the machine operator made

rapid corrections to the machine’s settings using a particular method [Lee91].

In January 1990 a software failure in a single Manhattan computerized telephone

switch put almost half of AT&T’s US long distance network out of service for

almost 9 hours [Lee91].

On June 4, 1996, the maiden flight of the Ariane 5 launcher ended in failure when,

less than 40 seconds after take-off, the launcher veered off its flight path, broke

up and exploded. The cause was traced to the software for the Inertial Reference

System. Estimated loss: $500 million.[Lio96]

1

The goal of this thesis is to provide a mathematical basis for the development and

verification of real-time discrete event systems that will aid in answering the above

question. The development of the theoretical results contained herein was driven

by the practical considerations of solving a particular controller software verification

problem. Although the author was originally motivated by a specific problem, these

concepts are applicable to a wide range of real-time discrete event systems, as the

original problem captures many of the general issues involved.

1.1 Setting and Issues

A discrete event system (DES) is a physical system that is discrete (in time and state

space), asynchronous (event rather than clock-driven), and in some sense generative

(or nondeterministic). An event in a DES can be thought of as an indivisible ac-

tion that occurs when the system instantaneously changes from one discrete state to

another. For example, for most purposes a relay can be adequately modeled as a sys-

tem with the two discrete states, OPEN and CLOSED. When the relay is switched,

it makes an instantaneous transition from one of these states to the other.

Concurrency is one of the key features of DES. Most complex systems are com-

posed of several interacting components or “modules”. The two most common se-

mantics for interacting DES are interleaving and maximal parallelism. In interleaving

semantics, concurrent execution of two DES modules is represented by the inter-

leaving of their atomic actions, while maximal parallelism requires the simultaneous

execution of atomic actions in all system modules capable of performing an oper-

ation. The maximal parallelism semantics is generally applied to tightly coupled

systems such as integrated circuits with a common clock. Interleaving semantics are

generally thought to be more natural for modeling loosely coupled systems such as

real-time control systems that react to changes in the plant under control. Therefore

we will confine ourselves to interleaving semantics.

For either choice of concurrency semantics, the state space for a composite sys-

tem is usually represented by the cross product of the state sets of the individual

2

components. As a result, the complete system’s state space may grow exponentially

with the number of interacting components. This is commonly referred to as the

state explosion problem. In the absence of any hierarchical organization, seemingly

modest discrete event systems quickly scale beyond what the designer can intuitively

understand or verify, even with the aid of a computer.

A real-time discrete event system is a DES that must meet hard timing deadlines

in order to ensure its correct operation. An example of a such a system is a nuclear

reactor shutdown system that has the requirement, “Within 2 seconds of the reactor

pressure exceeding the maximum allowable limit, open the trip relay to shut down

the reactor.” To model such systems we will use a combined state-event and discrete

time setting.

While it is possible to represent systems using only state information or only event

information, there are many applications where the use of both state and event infor-

mation is quite natural and may aid a designer’s intuition. In the state-event setting

that we propose, the use of labeled transition relations permits the application of

synchronous composition operators, thereby allowing interacting modules to perform

synchronous execution of shared events such as ticks of a global discrete clock [Ost89].

The tick events provide concurrent systems with a uniform notion of time, without

the restrictiveness of clock driven models like [EMSS92] where one transition is one

time step, limiting the method to single processor systems. An example of the use

of tick events is Ostroff’s RG2 graphs [Ost89] that are employed for model-checking

Real-Time Temporal Logic (RTTL) properties. RG2 graphs use event information to

reduce infinite state timed systems to finite state systems while preserving the relative

timing of state changes and event outputs through the use of “tick” transitions. While

it has been suggested that discrete time models are inherently inaccurate [ACD90],

they are sufficiently accurate in many instances, particularly when dealing with digital

control systems that sample their inputs (eg. [LW95]). In [LW95] the authors argue

that discrete time models such as Ostroff’s Timed Transition Models (TTMs) [Ost89]

allow for a straightforward application of well known process algebraic equivalences

such as observation (bisimulation) equivalence from Milner’s CCS [Mil89]. On the

3

other hand continuous time extensions of CCS such as [Wan91] lack the abstracting

power of a congruence relation like weak observation congruence [Mil89] because of

technical difficulties associated with their continuous time semantics. Also, contin-

uous time models are too discriminating in many cases. Typically the behavior of

digital control systems depends only on the state of the plant at the sampling instants,

regardless of precisely when state changes occur between samples.

The addition of event information is also crucial for performing synchronous com-

position of systems and thereby performing supervisory control through the disable-

ment of controllable events [RW87]. The ability to perform supervisory control pro-

vides a means of modifying an existing module’s behavior to meet a new specification

and opens up the possibility of exploiting the synthesis techniques of the supervisory

control community (eg. [RW87, ZW90, LW90, BW94]).

1.2 Related Work

In this section we outline algebraic equivalence verification and temporal logic model

reduction, two of the main approaches that have been developed to address the state

explosion problem. Both of these methods are further developed in the thesis using

an approach based upon the belief that if you get the algebra “right,” then “good

things” will happen. In this vein we first rigorously develop an algebraic equivalence

that is appropriate for equivalence verification in our real-time setting and then see

how quotient systems with respect to our equivalence can be used for compositional

temporal logic model reduction. The example at the end of the thesis illustrates the

mutually beneficial relationship that can exist between equivalence verification and

temporal logic model reduction.

1.2.1 Algebraic Equivalence Verification

For well over a decade computer specialists have been looking at the problem of

formally verifying the “equivalence” of a system implementation and a system speci-

fication. Two of the most influential theories in this area have been Hoare’s Communi-

4

cating Sequential Processes (CSP) [Hoa85] and Milner’s Calculus of Communicating

Systems (CCS) [Mil80, Mil89]. These theories along with others are now often col-

lectively referred to as Process Algebra.

Process algebra models discrete event systems by using algebraic equations to

describe the behavior of processes that communicate via synchronized actions. Equa-

tions can be constructed that model finite state automata and even some infinite

state transition structures. Operations are then defined that allow the equations to

be combined to build larger, more complicated systems. The algebraic properties of

the process equations and operations are studied to determine when, in a well defined

sense, two processes can be considered equivalent. The notion of equivalence is cho-

sen in such a way that equivalent processes can then be substituted for each other

resulting in construction of behaviorally equivalent systems.

In [Mil89], the author establishes the equivalence of several example system im-

plementations and their specifications using a set of equational laws.

A visual method was introduced in [FG89] for checking the reachability of a class

of extended timed Petri nets. The net approach and the provision of net transfor-

mations led to a graph-based method of verification. As in [Ost89], the problem of

constructing equivalent abstract real-time systems from a given system model was

not considered. In the same spirit as [FG89], [LW95] develops a set of easily appli-

cable, and demonstrably correct, transformations that preserve system equivalence,

and lend themselves to abstraction, in the setting of TTMs. A developer need not

be familiar with observation equivalence or process algebra to be able to use the

simple set of visual transformations to prove that a system correctly implements its

specification in a well defined way.

In addition to the transformational methods of equivalence verification identified

above, computational methods exist for the verification of process algebraic equiva-

lences on finite state systems [KS83, BC89, BCM92]. Computational tools for equiv-

alence verification can confirm the equivalence of a system specification and its imple-

mentation, but they generally provide little information of use to the system design

when the verification fails. This is in contrast to the temporal logic model-checkers

5

discussed below. A model-checker typically demonstrates the failure of a system to

satisfy a temporal logic specification by generating a counterexample computation

which can then help the designer to correct the system.

1.2.2 Temporal Logic, Model-Checking and Model Reduc-

tion

In the case of equivalence verification, the implementation and system specifica-

tion are modeled using the same technique – automata, process algebraic equations,

TTMs, etc. In temporal logic model-checking, logic formulas are used to specify the

desired behavior of the implementation model or “program.” Just as predicate logic

permits reasoning about states, so temporal logic permits reasoning about sequences

of states.

The temporal logics in common use for formal verification can usually be classified

as either linear time or branching time. Linear Temporal Logics such as [MP92] and

its real-time derivative RTTL [Ost89] express properties of the set of infinite paths

that can be generated from an initial state. In addition to safety properties that

express the fact that no path ever reaches a set of “bad” states, linear temporal

logics can also express fairness properties regarding the eventuality of certain states

(e.g. “Henceforth if the reactor pressure exceeds its maximum allowable value in the

current state, then eventually in a future state the relay will be OPEN”). In addition

to safety properties, branching time temporal logics such as the Computational Tree

Logic (CTL) [CE81, ES84], allow one to express properties of a state such as the

existence of a path to another state satisfying a desirable property (e.g. “There exists

a path from the current state to a state where the relay is OPEN”).

For finite state systems one can “model-check” a temporal formula. The global

state transition graph of the system is represented as a Kripke structure, a state

transition graph with a state output map that maps each state to the set of atomic

predicates satisfied by the state. A model-checking algorithm can then be used to

determine if a program’s Kripke structure is a valid model of (i.e. satisfies) a specifi-

6

cation expressed as a temporal logic formula (e.g. [CE81, LP85, CES86]).

With recent advances in computing power and data structures, model-checking

techniques such as [McM92] have proven effective for some very large systems [BCM92].

The largest of these systems typically come from the digital hardware domain and

have a great deal of regularity in their state transition structure that can be exploited

by the symbolic techniques to obtain compact representations of large systems. If

one wishes to model-check large concurrent systems lacking in regularity, larger dig-

ital hardware systems, or simply to reduce the computation time required for the

model-check, one must perform some sort of model reduction to cope with the state

explosion problem.

In model reduction one starts out with a system for which one would like to verify

(model-check) formulas from a particular set of formulas or class of temporal formulas

that are of interest. To facilitate the verification process or, in some cases, render

the problem tractable, a reduced model is obtained such that, if the reduced model

satisfies the temporal formulas under investigation, then the original system satisfies

the temporal formulas. One of the first results on model reduction came from the use

of the Process Algebra “strong observation” equivalence of [Mil80] to generate prop-

erty preserving quotient systems [BFH+92]. In [Kai96], [KV91], and [KV92], Kaivola

et al. develop a compositional model reduction technique using an equivalence based

upon the process algebraic “failure equivalence” of [Hoa85]. This model reduction

technique allows for the reduction of modules before they are composed in an effort

to control the state explosion problem before it appears. In a similar vein we will

define an algebraic equivalence relation to perform compositional model reduction

but we will apply it to a real-time setting.

In response to the need for formal methods with visual appeal, Ostroff et al. have

introduced Timed Transition Models [Ost89, OW90]; but the Real-Time Temporal

Logic on which the proof and verification system is based is quickly overwhelmed

by the state explosion problem inherent in composite discrete systems. No method

was provided for moving between levels of abstraction of real-time models to al-

low model reduction or behavioral comparison of two TTMs. Such flexibility would

7

enable one to project out extraneous details to obtain high-level TTM models or,

conversely, to refine high level TTM specifications into workable implementations.

While [Law92, LW95] provided a means of abstraction for TTMs through equiva-

lence preserving transformations, no effort was made to deal with the compositional

aspects of TTMs. Also, the heuristic methods developed in these works require the

active participation and insight of the systems designer in the verification process

and are somewhat restrictive in the abstractions that they permit. By obtaining an

algebraic characterization of the equivalence of [Law92, LW95], we will be able to

provide computationally efficient algorithms for equivalence verification of finite state

systems and extend the results to the verification of composite systems using model

reduction and RTTL model-checking.

1.3 Contributions

Research on discrete-event systems (DES) has led to renewed appreciation of control

architecture - decentralized and hierarchical decomposition - for the effective modeling

of large systems. In theoretical treatment, such architectural features are brought in

through standard algebraic constructs, namely unions, products and quotient struc-

tures of the state sets involved. Inasmuch as architecture amounts to decomposition

of information transfer and decision making, the systemic notions of observation and

observer are fundamental. These find their algebraic setting in lattices of equivalence

relations (partitions), and the associated sublattices of congruences with respect to

the dynamic flow. Thus in approaching any new class of state transition structures,

a first item of business is to clarify the algebraic structure of observers (congruences)

along with their computational complexity. Because, in general, equivalence is unde-

cidable, these issues tend to be both nontrivial and of practical interest.

We begin the contributions of this thesis by generalizing previous observers - well

known (under various guises) in either the control or process algebra literature - to

a unified construct that we call a state-event observer. In this treatment both state

changes and output events (or event signals) are assigned equal status, thus allowing

8

a flexible modeling approach to DES in which both state- and event-based control

are equally natural.

We recall the duality of states and events. Event-based models include most

process-algebraic theory derived from [Mil80], [Mil89] and [Hoa85], as well as control-

theoretic approaches such as [ZW90], [WW92] and [Won94]. States are really only

viewed as a way of keeping track of what sequences of events have been executed

and what future events are possible. Quotient structure is induced by projection of

languages. In [FZ91], state outputs are used solely to provide additional information

for the control of events; quotient structure is not considered. On the other hand

in [Won76, Har87, GF91], state structure is preeminent, and behavior treated as

sequences of states or groups of states. For instance state charts [Har87, BH93]

offer a visual representation (nested boxes and arrows) of state set decomposition

via nested products and disjoint unions, in principle to arbitrary depth. Of course

the transition structure and control must admit compatible decomposition for the

method to be computationally attractive, and to admit quotient structures induced

by suitable state-transition homomorphisms.

In many applications both state occupancy and event sequencing are important,

and so we need quotients with respect to both. One instance is Timed Transition

Models (TTMs) [Ost89, OW90], which express behavior such as: “Do α only when

y = 2 for 3 or more ‘ticks’ of the clock.” In [Law92, LW92] the authors adapted to

TTMs the event-based observation equivalence of [Mil89] by projecting TTM states

(the state assignments of [Ost89]) to their factors defined by selected subsets of data

variables. Observable events are just those TTM state changes that affect the vari-

ables in question, and the event labels themselves are “projected out”. The class of

projections for which a quotient can be defined was severely restricted; but we shall

show how this situation can be improved on.

In Chapter 3 we introduce strong and weak state-event observers for State-Event

Labeled Transition Systems (SELTS) (the underlying model of many DES formalisms

[DeN87] including, as we will see, TTMs); state output maps and event projections

play symmetric roles. Our observers (congruences) induce consistent high-level ab-

9

stractions (quotients) so that, just as in [ZW90], control designed at the abstract level

can be consistently implemented at the detailed (‘real-world’) level. The development

of strong observers and their quotient systems parallels the results on indistinguisha-

bility of finite transition systems in [Arn94]. On the basis of [KS83, PT87, BC89] we

are able to appeal to efficient polynomial-time algorithms for computing our observers

on finite-state SELTS.

We then investigate the algebraic properties of state-event equivalence, obtaining

results on minimum state realizations of equivalent systems and compositional consis-

tency. These results then form the basis of the applications of state-event equivalence

to model reduction for temporal logic model-checking of Chapter 4. There we use

state-event observational equivalence to perform compositional model reduction for

a subclass of formulas of state-event linear temporal logics, with particular attention

being paid to a discrete time temporal logic that is a simplification of RTTL.

In Chapter 5 we apply the theory of the previous chapters in an effort to answer

the question, “Does this real-time control system do what we want?” for the real-time

control system that originally motivated the author’s investigation of formal methods.

The Delayed Reactor Trip (DRT) control system exhibits many of the distinguishing

characteristics of real-time discrete event systems. To operate correctly the imple-

mentation must meet hard real-time deadlines in response to inputs from the plant.

For a simple shutdown system, it displays surprisingly complex behavior, and the

final implementation incorporating 3 redundant controllers exhibits the characteristic

state explosion at the implementation level.

Preliminary results applying compositional model-checking to the DRT illustrate

compositional model reduction’s potential for handling the state explosion problem

and also demonstrate the technique’s limitations.

10

Chapter 2

Preliminaries

In this chapter we introduce notation and concepts that will be used throughout

the thesis. Subsequent theoretical chapters are relatively self-contained in that they

rely upon different additional mathematical concepts. Each chapter introduces any

additional mathematical concepts and notation as required to obtain the main results

of the chapter.

2.1 Notation and Mathematical Preliminaries

In this thesis we use Z and N to denote the set of integers and the set of natural

numbers ({0, 1, 2, . . .}) respectively. We will use “iff” as an abbreviation of “if and

only if.” We also require some basic set notation. Let Q1 and Q2 be sets. If Q2 ⊆ Q1

then we define Q1 − Q2 := {q ∈ Q1 : q 6∈ Q2}. For two arbitrary sets Q and Q′, we

define Q \ Q′ := Q − (Q ∩ Q′). The cardinality of the set Q will be denoted by |Q|.

When Q is a countably infinte set we will write |Q| = ω.

Let Q be a set and S ⊂ Q × Q be a binary relation. Then S is an equivalence

relation if S satisfies the following three conditions:

(i) Reflexivity: (∀q ∈ Q) (q, q) ∈ S,

(ii) Symmetry: (∀q, q′ ∈ Q) (q, q′) ∈ S implies (q′, q) ∈ S,

(iii) Transitivity: (∀q, q′, q′′ ∈ Q) (q, q′) ∈ S ∧ (q′, q′′) ∈ S implies (q, q′′) ∈ S.

11

Denote the set of all equivalence relations on Q by Eq(Q). Any function P : Q →

R induces an equivalence relation ker(P) ∈ Eq(Q), the equivalence kernel of P , given

by

(q1, q2) ∈ ker(P) if and only if P (q1) = P (q2).

Similarly, any θ ∈ Eq(Q) defines a canonical output map θ : Q → Q/θ, which projects

each q ∈ Q onto its θ-cell (equivalence class). Eq(Q) becomes a complete lattice under

the operations ∧,∨ when we define:

(i) (q, q′) ∈ θ1 ∧ θ2 iff (q, q′) ∈ θ1 and (q, q′) ∈ θ2

(ii) (q, q′) ∈ θ1 ∨ θ2 iff (∃q1, q2, . . . , qn ∈ Q)(qi, qi+1) ∈ θ1 or (qi, qi+1) ∈ θ2, i =

1, . . . , n − 1 and q = q1 and q′ = qn.

A basic result of universal algebra is that when each θ ∈ Eq(Q) is associated with

the partition of Q corresponding to the cells of θ, the lattice of equivalence relations

is isomorphic to the poset lattice of partitions of Q with the partial order θ1 ≤ θ2

iff each cell of θ1 is a subset of a cell of θ2. Thus we can talk interchangeably about

equivalence relations and partitions. When talking about partitions θ1 ∧ θ2 ∈ Eq(Q)

(θ1∨θ2) is the coarsest (finest) partition finer (coarser) than both θ1 and θ2 [BS81]. We

will denote the trivial partitions {{q} : q ∈ Q} = inf(Eq(Q)) and {Q} = sup(Eq(Q))

by ∆ and ∇ respectively.

2.1.1 Products, Projections and Equalizers

In this subsection we borrow some basic category-theoretic definitions and notation.

The interested reader is referred to [AM75] for a complete treatment of category

theory.

Given two sets A and B, we define the product of A and B to be the standard

Cartesian product:

A × B := {(a, b) : a ∈ A and b ∈ B}.

12

With any product we associate two special maps, the elementwise projections:

π1 : A × B → A, (a, b) 7→ a

π2 : A × B → B, (a, b) 7→ b

For a set A, we define the power set of A to be P(A) := {A′ : A′ ⊆ A}. In addition

to the two projections associated with a product, we will find it convenient to talk

about the canonical projection from the power set P(A) of A to itself that results

from intersection with a set B.

πB : P(A) → P(A)

For A′ ⊆ A,A′ 7→ A′ ∩ B

In talking about the synchronous composition of systems with shared variables,

we will find it convenient to identify the subset of a domain that “equalizes” two func-

tions. In category theory, this set has the abstract, arrow theoretic characterization

given below.

Definition 2.1 (cf. [AM75]) A map h : B → A is an equalizer iff there exists a

pair of maps fi : A → R, i = 1, 2 such that f1 ◦ h = f2 ◦ h and such that whenever

h′ : B′ → A satisfies f1 ◦h′ = f2 ◦h′, there exists a unique map φ such that h◦φ = h′.

In this situation we call h the equalizer of f1 and f2, and write h = eq(f1, f2).

B A R

B′

φ

h f1

f2

h′

Figure 2.1: Commutative diagram defining h = eq(f1, f2), the equalizer of f1 and f2.

Given any f1, f2 as above, because we are dealing with the category of sets,

eq(f1, f2) will always exist (see [AM75]). In fact we can take B := {a ∈ A : f1(a) =

f2(a)} and let h : B → A be the injection a 7→ a. Henceforth we will use eq(f1, f2) to

13

denote both the injection into A and the set {a ∈ A : f1(a) = f2(a)}. The intended

meaning of eq(f1, f2) should be clear from the context.

2.1.2 Properties of Functional Operators

Throughout the thesis we will use several operators to combine functions to create

new functions. Here we introduce the operators and establish some of their basic

properties that will be used in proofs of results in subsequent chapters.

It will often be useful to talk about the identity map on a set. Henceforth we will

denote the identity map on a set Q by idQ : Q → Q (i.e. q 7→ q).

Given two maps (functions) f : Q1 → Q2 and g : Q2 → Q3 such that the

codomain of the first is the domain of the second, we define the composite function

g◦f : Q1 → Q3 to be the function q1 7→ g(f(q1)). We call ◦ the functional composition

operator.

Any function f : Q1 → Q2 induces a function at the power set level, f∗ : P(Q1) →

P(Q2). For Q ⊆ Q1, f∗(Q) := {f(q) : q ∈ Q}. We call f∗ the lifting of f and refer to

∗ as the lifting operator. Since the lifting of a function applies the original function

to each element of a subset of the original function’s domain, any f∗ distributes over

set union.

Claim 2.2 Given f : Q1 → Q2 and subsets Q,Q′ ⊆ Q1. Then

f∗(Q ∪ Q′) = f∗(Q) ∪ f∗(Q
′)

Proof:

f∗(Q ∪ Q′) = {f(q) : q ∈ Q ∪ Q′}

= {f(q) : q ∈ Q or q ∈ Q′}

= {f(q) : q ∈ Q} ∪ {f(q) : q ∈ Q′}

= f∗(Q) ∪ f∗(Q
′)

2

14

Now that we have the composition and lifting operator it seems logical to consider

whether the lifting operator distributes over the functional composition operator. The

next claim proves that this is in fact the case.

Claim 2.3 Given functions f : Q1 → Q2 and g : Q2 → Q3

(g ◦ f)∗ = g∗ ◦ f∗

Proof: Let Q ⊆ Q1. Then

g∗ ◦ f∗(Q) = g∗({f(q) : q ∈ Q})

= {g(q′) : q′ ∈ {f(q) : q ∈ Q}}

= {g ◦ f(q) : q ∈ Q}

= (g ◦ f)∗(Q)

2

On occasion we will find it convenient to talk about various types of unions of

functions as a notational convenience. The simplest form of functional union is the

disjoint union. Given functions f1 : Q1 → R1 and f2 : Q2 → R2, if Q1 ∩ Q2 = ∅ then

we define the disjoint union of f1 and f2 to be the function f1

.
∪f2 : Q1

.
∪Q2 → R1∪R2

such that for q ∈ Q1

.
∪Q2:

f1

.
∪f2(q) :=

f1(q), q ∈ Q1

f2(q), q ∈ Q2

What we will call the “union of functions” is a more restricted operator. Suppose

we have two functions with the same domain and codomain, where the codomain is

closed under the operation of union (eg. a codomain of P(Q)). Then the value of

the union of the functions on an element of the domain is simply the union of the

evaluations of each function. More formally, given functions fi : Q → R for i = 1, 2,

if for any r1, r2 ∈ R we have r1 ∪ r2 ∈ R, then we define the union of f1 and f2,

15

f1 ∪ f2 : Q → R, to be the function such that q 7→ f1(q) ∪ f2(q).

Claim 2.4 Given functions fi : Q → P(R) for i = 1, 2, g : R → S and h : Q1 → Q.

(i) g∗ ◦ (f1 ∪ f2) = (g∗ ◦ f1) ∪ (g∗ ◦ f2)

(ii) (f1 ∪ f2) ◦ h = (f1 ◦ h) ∪ (f2 ◦ h)

Proof: (i) Follows immediately from Claim 2.2 and the definition of functional union.

For (ii), let q1 ∈ Q1. Then

[(f1 ∪ f2) ◦ h](q1) = f1(h(q1)) ∪ f2(h(q1))

= (f1 ◦ h)(q1) ∪ (f2 ◦ h)(q1)

= [(f1 ◦ h) ∪ (f2 ◦ h)](q1)

Thus (ii) is demonstrated. 2

A functional operator that we will use in the definition of synchronous product of

systems later in this chapter is the product operator. For functions f1 : Q1 → R1 and

f2 : Q2 → R2, we define the product of f1 and f2 to be the function f1×f2 : Q1×Q2 →

R1 × R2 such that (q1, q2) 7→ (f1(q1), f2(q2)). The following claim demonstrates that

the order in which product and composition operators are applied is irrelevant.

Claim 2.5 Given functions fi : Qi → Ri and gi : Ri → Si for i = 1, 2. Then

(g1 × g2) ◦ (f1 × f2) = (g1 ◦ f1) × (g2 ◦ f2)

Proof: Let q1 ∈ Q1 and q2 ∈ Q2. Then

(g1 × g2) ◦ (f1 × f2)(q1, q2) = g1 × g2(f1(q1), f2(q2))

= (g1(f1(q1)), g2(f2(q2)))

= (g1 ◦ f1(q1), g2 ◦ f2(q2))

= (g1 ◦ f1) × (g2 ◦ f2)(q1, q2)

16

as required. 2

We now define a variation of the functional product called the setwise functional

product operator. The new operator will allow us to obtain an alternative functional

characterization of synchronous product so that we may use arrow theoretic methods

for proving properties of homomorphisms. Given f1 : Q1 → P(R1) and f2 : Q2 →

P(R2), define the setwise functional product of f1 and f2 to be the function

f1 ⊗ f2 : Q1 × Q2 → P(R1) × P(R2)

such that (q1, q2) 7→ f1(q1)× f2(q2). Thus if R′
i ⊂ Ri and fi(qi) = R′

i for i = 1, 2 then

f1 ⊗ f2(q1, q2) = R′
1 × R′

2 = {(r1, r2) : r1 ∈ R′
1 and r2 ∈ R′

2} while f1 × f2(q1, q2) =

(R′
1, R

′
2). We can extend the setwise product operator to handle functions that range

over elements instead of sets. For example with f1 as above, if f2 : Q1 → R2 then

define f1 ⊗ f2(q1, q2) = f1(q1) × {f2(q2)}.

Next we present two specialized results regarding the composition of functional

products and setwise functional products. These equalities will be used in proofs

concerning the composition of equivalent systems in Section 3.4.

Claim 2.6 Given functions αi : Qi → P(Qi), hi : Q1 → Ri and βi : Ri → P(Ri) for

i = 1, 2. Then

(i) (h1 × h2)∗ ◦ (α1 ⊗ α2) = (h1∗ ◦ α1) ⊗ (h2∗ ◦ α2)

(ii) (β1 ⊗ β2) ◦ (h1 × h2) = (β1 ◦ h1) ⊗ (β2 ◦ h2)

Proof:

(i) Let q1 ∈ Q1 and q2 ∈ Q2. Then

(h1 × h2)∗ ◦ (α1 ⊗ α2)(q1, q2) = (h1 × h2)∗(α1(q1) × α2(q2))

by Def. of ⊗

= (h1 × h2)∗({(q
′
1, q

′
2) : q′1 ∈ α1(q1) and q′2 ∈ α2(q2)})

= {(h1 × h2)((q
′
1, q

′
2)) : q′1 ∈ α1(q1) and q′2 ∈ α2(q2)}

17

by Def. of ∗

= {(h1(q
′
1), h2(q

′
2)) : q′1 ∈ α1(q1) and q′2 ∈ α2(q2)}

by Def. of ×

= {(r1, r2) : r1 ∈ h1∗ ◦ α1(q1) and r2 ∈ h2∗ ◦ α2(q2)}

= h1∗ ◦ α1(q1) × h2∗ ◦ α2(q2)

= (h1∗ ◦ α1) ⊗ (h2∗ ◦ α2(q2))

by Def. of ⊗

Thus (i) is proved.

(ii) For any q1 ∈ Q1 and q2 ∈ Q2:

(β1 ⊗ β2) ◦ (h1 × h2)(q1, q2) = (β1 ⊗ β2)(h1(q1), h2(q2)) by Def. of ×

= β1(h1(q1)) × β2(h2(q2)) by Def. of ⊗

= (β1 ◦ h1)(q1) × (β2 ◦ h2)(q2) by Def. of ◦

= (β1 ◦ h1) ⊗ (β2 ◦ h2)(q1, q2) by Def. of ⊗

Thus (ii) is proved. 2

2.2 System Models

In this section we introduce the mathematical models that will be used to describe

Discrete Event Systems (DES) throughout the thesis. Timed Transition Models will

be used as high level representations of systems that motivate the state-event ap-

proach taken in this work. The State-Event Labeled Transition Systems (SELTS)

described later will be used as our underlying model of a Discrete Event System

(DES).

18

2.2.1 Timed Transition Models

Ostroff’s original work on Timed Transition Models [Ost89] centered around the use

of Real Time Temporal Logic to verify that controlled systems met certain real-time

specifications. No work was done on hierarchical or abstract representation of com-

plex low level systems. In this subsection we introduce a modified version of the

Timed Transition Models (TTMs) employed in [OW90]. We drop the Real Time

Temporal Logic (RTTL) assertion language, although we still use the infinite string

semantics it required. To simplify matters, the initial condition is limited to spec-

ifying a unique initial state instead of (possibly) multiple initial states. Originally

transitions’ operation functions were required to be deterministic but we allow non-

determinisitc operation functions to allow the modeling of external behavior by TTM

modules. The examples of this and subsequent chapters demonstrate that in this

format TTMs provide a concise way of describing state-event transition structures

representing real-time systems.

A Timed Transition Model (TTM) M is a triple given by

M := 〈V , Θ, T 〉

where V is a set of variables, Θ is an initial condition (a boolean-valued expression

in the variables), and T is a finite set of transitions.

V always includes two special variables: the global time variable t and an activity

variable which we will usually denote by x. For v ∈ V the range space of v is

Range(v) (eg. Range(t) = N where N := {0, 1, 2, . . .}). We define Q, the set of

state assignments of M , to be the product of the ranges of the variables in V .

That is

Q := ×vi∈VRange(vi)

For a state assignment q ∈ Q and a variable v ∈ V, we will denote the value

of v in state assignment q by q(v) where q(v) ∈ Range(v). When we wish to

distinguish between state assignments over different variable sets, we will use

19

the variable set as a subscript (i.e. the set of state assignments over V will be

denoted QV := ×vi∈VRange(vi)).

T is the transition set. A transition is a labeled 4-tuple

α := (eα, hα, lα, uα)

where α is the transition’s label. With a slight abuse of notation, we will

then refer to the transition by its label (eg. α ∈ T). Whether α is meant

to refer to the labeled 4-tuple or the transition’s label itself should be clear

from the context. In the above eα is the transition’s enablement condition (a

boolean valued expression in the variables of V), hα is the operation function,

and lα ∈ Range(t) = N and uα ∈ N ∪ {∞} are the lower and upper time

bounds respectively with lα ≤ uα. We say that α is enabled when q(eα) = true.

The (possibly nondeterministic) operation function hα : Q → P(Q), maps the

current state assignment to the set of new state assignment that are possible

next states when the transition occurs. If hα(q) = ∅ then an α transition is not

possible from q. T always contains the special transition tick,

tick := (true, [t : t + 1],−,−)

which represents the passage of time on the global clock. tick is the only transi-

tion that affects the time variable t and also has no lower or upper time bound.

All other transition time bounds are given relative to numbers of occurrences

of tick.

Θ is the initial condition, a boolean valued expression in the variables of V that is

used to identify a unique initial state of the system.

20

2.2.2 TTM Semantics

A trajectory of a TTM is any infinite string of the TTM state assignments connected

by transitions, of the form q0
α0→q1

α1→q2
α2→ The interpretation is that qi goes to qi+1

via the transition αi. A state trajectory σ := q0
α0→q1

α1→q2
α2→ . . . is a legal trajectory of

a TTM M if it meets the following four requirements:

1. Initialization: The initial state assignment satisfies the initial condition (q0(Θ)

= true - i.e. q0 satisfies Θ and hence is the unique initial state assignment).

2. Succession: For all i, qi+1 is obtained from qi by applying the operation

function of αi (qi+1 ∈ hαi
(qi)) and αi is enabled in state assignment qi (ie.

qi(eαi
) = true).

3. Ticking: The clock must tick infinitely often. That is, there are an infinite

number of transitions αi = tick. This eliminates the possibility of “clock stop-

pers” in the trajectory where an infinite number of non-tick transitions occur

consecutively without being interleaved with any ticks. This would imply that

the TTM is performing an infinite number of actions in a finite time.

4. Time Bounds: To determine if the trajectory σ satisfies the time bound re-

quirements of the TTM M , we associate with each non-tick transition α, a

counter variable cα with Range(cα) = N. Each α transition’s counter is ini-

tially set to zero and is reset to zero after an α transition or a transition

that enters a new state assignment where α is disabled (ie. eα = false). The

counter is only incremented by the occurrence of a tick transition when α is

enabled (eα = true). Any non-tick transition α can legally occur only when

when its counter is in the region specified by the transition’s time bounds (ie.

lα ≤ cα ≤ uα). The upper time bounds on transitions represent hard time

bounds by which time the transitions are guaranteed to occur. Thus if α’s

counter reaches its upper time bound, then it is forced to occur before the next

tick of the clock unless it is preempted by another non-tick transition that dis-

ables α (and hence resets α’s counter). Hence for a tick transition to legally

21

occur, every enabled transition α must have a counter value less than its upper

time bound (cα < uα). We now formalize the above description.

For the TTM M := 〈V , Θ, T 〉, we will denote the set of transition counters by

C := {cα : α ∈ T − {tick}}. We then obtain the TTM’s underlying state set

Q := Q× NC , the set of extended state assignments. From the trajectory σ we

derive the full trajectory σ̄ := q̄0
α0→q̄1

α1→q̄2
α2→ . . ., where each q̄i ∈ Q is obtained

from σ as follows:

For all v ∈ V, q̄i(v) = qi(v).

For all cα ∈ C, q̄0(cα) = 0 and for i = 0, 1, 2, . . .

q̄i+1(cα) =

q̄i(cα) + 1, if qi(eα) = true and αi = tick

0, if qi+1(eα) = false or αi = α

q̄i(cα), otherwise

The trajectory σ satisfies the time bounds of M iff the following two conditions

hold in σ̄ for all i = 0, 1, . . .:

(i) αi = tick iff for all α ∈ T − {tick}, qi(eα) = true implies q̄i(cα) < uα.

(ii) αi = α, α ∈ T − {tick} iff lα ≤ q̄i(cα) ≤ uα.

A condition equivalent to (i) is that for all cα ∈ C, q̄i(cα) ≤ uα. Note that any loop of

transitions in a TTM (a sequence of transitions starting and ending in the same activ-

ity) must have at least one transition with a non-zero upper time bound. Otherwise,

once the first transition of the loop is enabled, our transition rules could possibly

force an infinite number of non-tick transitions to occur without being interleaved by

an infinite number of ticks.

As a small example, consider the TTM M := 〈V , Θ, T 〉 shown in Figure 2.2.

The full enablement conditions for the transitions should also include conditions

that enable the transitions only when the TTM is in activities that they exit in

the transition diagram. For instance in the case of γ, the full enablement condition

is eγ := v ≥ 0 ∧ (x = a ∨ x = b). When describing TTM transitions we will usually

22

e

d

c

ba

M
α β

γγ

V := {u, v, t, x}

Θ := u = 0 ∧ v = 1 ∧ x = a

T := {α := (u ≥ 0, [u : u + v], 0, 2),

β := (true, [u : u + 1, v : v − 1], 2,∞),

γ := (v ≥ 0, [], 2, 2),

tick := (true, [t : t + 1],−,−)}

Figure 2.2: An example of a simple TTM

omit these activity variable conditions since they are obvious from the transition di-

agram. From the above discussion it is apparent that the definition of a transition

such as γ ∈ T can result in several arrows with the same label in a TTM transition

graph. To allow us to distinguish between a transition and the arrows that it defines

in a transition diagram, we will call the arrows in the transition diagram instances

of the transitions they are labeled by. In the example TTM M , there is an instance

of transition γ exiting activity a and another instance exiting activity b. Finally, the

special transition tick is declared to be in T and may be omitted from future listings

of transition sets.

In writing out the operation functions of the transitions of M we employ a version

of Ostroff’s assignment format. When a transition occurs, the new value of the

activity variable x is obtained from the transition diagram. The other variables that

are affected by the transition are listed in the form

[v1 : expr11, v2 : expr12, . . . , vn : expr1n;

v1 : expr21, v2 : expr22, . . . , vn : expr2n;

. . . ;

v1 : exprk1, v2 : exprk2, . . . , vn : exprkn]

23

with the interpretation that variables v1 to vn are assigned the new values given

by the simultaneous evaluations of expressions expri1 to exprin respectively for some

choice of i = 1, . . . , k. Semicolons are used to separate different possible assignments

of the variables in the next state when the operation function is nondeterministic. If

the operation function is deterministic then no semicolons occur in the assignment

format. The operation function acts as the identity on variables not listed in the

assignment statement. For instance hα := [u : u + v] = [u : u + v, v : v] for M above.

If we let the current state assignment be represented by a 4-tuple of the form

(u, v, x, t), then a legal trajectory of M would be

q0
tick
→q1

α
→q2

tick
→q3

γ
→q4

tick
→ . . .

(0, 1, a, 0)
tick
→(0, 1, a, 1)

α
→(1, 1, b, 1)

tick
→(1, 1, b, 2)

γ
→(1, 1, e, 2)

tick
→ . . .

where from q4 onward the trajectory is continued by an infinite string of ticks. Note

that after the second occurrence of tick, γ is forced to occur. A tick could not take

place from q3 since γ has uγ = 2 and, upon reaching q3, eγ has been true for two ticks

already.

If the initial condition for M is Θ := (u = 0 ∧ v = −1 ∧ x = a), then a trajectory

that by the above definition is “legal” is

(0,−1, a, 0)
α
→(−1,−1, b, 0)

tick
→(−1,−1, b, 1)

tick
→(−1,−1, b, 2)

tick
→ . . .

where again this trajectory is continued by an infinite number of tick transitions. This

trajectory illustrates our interpretation of uβ = ∞. We do not insist on “fairness,”

allowing trajectories such as the one above where β is a possible next transition for

an infinitely long time, although it does not occur. Thus an upper time bound of ∞

means that a transition is possible but is not forced to occur in a legal trajectory.

Occasionally we will use the transition graph representation of a TTM, where each

instance of a transition in the TTM is represented as shown in Figure 2.3. This can

be informally interpreted as follows: “if the TTM is currently in activity as and if eα

24

adas

α : (eα) → hα

Figure 2.3: The transition graph format of a TTM

evaluates to true, then the edge labeled by α may be traversed while doing operation

hα, after which the TTM is in activity ad.” We will usually use this style of displaying

TTM’s when the time bounds are understood or not of particular importance.

To be useful for designing real systems, a formalism must provide a means of

decomposing large systems into smaller, more manageable subsystems. Complex

systems are then typically constructed from interacting components running in par-

allel. In [Ost90] Ostroff defines a TTM parallel composition operator that allows

for shared variables and synchronous (shared) transitions. We extend this TTM

parallel composition operator to handle nondeterministic operation functions. In

the following definition we denote the state assignments over a set of variables V

by QV := ×v∈VRange(v). For U ⊆ V the natural state assignment projection

PU : QV → QU maps a state assignment over V to its corresponding state assignment

over U . In order to allow us to distinguish between a transition and its label, for T , a

given set of transitions (labeled 4-tuples), let Σ(T) denote the set of transition labels.

For the example TTM of Figure 2.2, Σ(T) = {α, β, γ, tick}. We are now ready to

define the parallel composition of two TTMs.

Definition 2.7 Given two TTMs Mi := 〈Vi, Θi, Ti〉, i = 1, 2, the parallel composition

of M1 and M2 is given by M1‖M2 := 〈V1 ∪ V2, Θ1 ∧ Θ2, T1‖T2〉, where the composite

transition set T1‖T2 is defined as follows.

(i) If α := (e, h, l, u) ∈ T1 with operation function h : QV1
→ P(QV1

) and α 6∈

Σ(T2) (the α transition label does not occur in M2), then α := (e, h′, l, u) ∈ T1‖T2

where h′ : QV1∪V2
→ P(QV1∪V2

) is the extension of h given by h′ := h⊗ idQV2\V1

.

(ii) Similarly if α := (e, h, l, u) ∈ T2 and α 6∈ Σ(T1), then α := (e, h′, l, u) ∈ T1‖T2

where h′ : QV1∪V2
→ P(QV1∪V2

) is the extension of h given by h′ := idQV1\V2

⊗h.

(iii) If α is a shared transition, i.e. α ∈ Σ(T1)∩Σ(T2), with α := (e1, h1, l1, u1) ∈

25

T1 and α := (e2, h2, l2, u2) ∈ T2 and operation functions hi : QVi
→ P(QVi

), i =

1, 2 then α := (e′, h′, l′, u′) ∈ T1‖T2 where

e′ := e1 ∧ e2 is the enablement condition.

h′ : QV1∪V2
→ P(QV1∪V2

) is the function such that

h′(q) := {q′ ∈ QV1∪V2
: PV1

(q′) ∈ h1 ◦ PV1
(q) and PV2

(q′) ∈ h2 ◦ PV2
(q)}

l′ := max(l1, l2) is the lower time bound.

u′ := min(u1, u2) is the upper time bound.

Condition (i) states that if the transition α := (e, h, l, u) of M1 is not a shared

transition then the new operation function in the composite system is given by h′(q) =

{q′ ∈ QV1∪V2
: PV1

(q′) ∈ h◦PV1
(q) and PV2\V1

(q′) = PV2\V1
(q)}. The value of variables

not in M1’s variable set (i.e. v ∈ V2 \V1) are left unchanged by a transition occurring

only in M1. Condition (iii) requires that any new assignment to the shared variables

(V1 ∩ V2) made by a shared α transition must be possible assignments by α in both

M1 and M2.

As an example, suppose M1 and M2 share the variable v and the transition label

α. If α := (x1 = a ∧ u = 0, [u : 1, v : 2; v : 1], 4,∞) in M1 and α := (x2 = b, [v : 2, w :

1; v : 1, w : 0; v : 3, w : 0], 0, 5), then in M1‖M2 we have

α := (x1 = a ∧ u = 0 ∧ x2 = b, [u : 1, v : 2, w : 1; v : 1, w : 0], 4, 5)

The case when v is set to 3 by α in M2 does not occur in the composite transition

since no matching assignment of v to 3 can be made by α in M1.

Now let us consider a transition that is not shared. Suppose β := (x1 = b, [u :

3, v : 4], 0, 1) is a transition of M1 and the transition label β does not occur in M2.

Then β := (x1 = b, [u : 3, v : 4], 0, 1) is a transition of M1‖M2. In this case the full

operation function would be [u : 3, v : 4, w : w, x2 : x2] and the new value of M1’s

activity variable x1 would be obtained from the graph of M1. Thus an occurrence of

β in the composite system does not affect M2’s private variables w and x2.

26

The above TTM parallel composition operator places only minimal restrictions

on the way variables and transitions interact in the composite system. Any TTM can

arbitrarily access and modify another TTM’s variables when the TTMs are composed.

In Section 4.4 we restrict the way in which system components can interact through

the definition of TTM Modules. The restrictions imposed upon TTM Modules will

allow us to apply, at the TTM level, the compositional model reduction results of

Chapter 4 for the less complex setting of State-Event Labeled Transition Systems.

2.2.3 State-Event Labeled Transition Systems

State-Event Labeled Transition Systems (SELTS) extend Labeled Transition Systems

(LTS) [DeN87] by adding a state output map. In the temporal logic setting of Chap-

ter 4 the state output will be the set of atomic propositions satisfied by a state. Until

then we will consider the state output to be some kind of state observation. While

(state based) Kripke structures are generally used as the underlying model for tem-

poral logic model checkers [CES86] and are ultimately the model we would employ

in any model checking algorithm for the temporal logics of Chapter 4, considering

structures that are extended by transition labels has two main benefits. First, the

use of tick transitions provides an easy method of incorporating system components’

timing information in a concurrent setting. An example of such a use of SELTS is

Ostroff’s RG2 graphs [Ost89] that are used for model checking Real-Time Temporal

Logic (RTTL) properties [Ost90]. RG2 graphs use event information to reduce infi-

nite state timed systems, to finite state systems that preserve the relative timing of

state changes and event outputs in a concurrent setting. Secondly, the addition of

event information is also crucial for performing synchronous composition of systems

and thereby permitting supervisory control through the disablement of controllable

events [RW87].

Definition 2.8 A State-Event Labeled Transition System (SELTS) is a 5-tuple

Q := 〈Q, Σ, RΣ, q0, P 〉 where Q is an at most countable set of states, Σ is a finite set

of elementary actions or events, RΣ = {
α
→ : α ∈ Σ} is a set of binary relations on

27

Q, q0 ∈ Q is the initial state and P : Q → R is the state output map, a function

mapping each state into the set of state outputs.

In the above definition if α ∈ Σ and q, q′ ∈ Q, then q
α
→q′ means that the SELTS

can move from state q to q′ by executing elementary action α. Any transition relation
α
→ ∈ RΣ can be viewed as a function αQ : Q → P(Q), where P(Q) is the power set

of Q. The function αQ maps q to the set of states reachable from q via a single α

transition in the SELTS Q. When the SELTS to which we are referring is obvious

from the context, we will simply write α(q). For simplicity we assume Q 6= ∅ and |Q|

is finite. When discussing SELTS in Chapter 4, AP,AP1, AP2, . . . will represent sets

of atomic propositions and the SELTS state output map will map each state to the

set of atomic propositions satisfied by the state (ie. P : Q → P(AP)). For Chapter 3

it will suffice to consider state output maps of the more general form P : Q → R

where R is an arbitrary set of state outputs.

A notion similar to LTS forms the basis of TTMs and many other models of

concurrency. With the additional state output map, a SELTS provides a convenient

way of modeling the state and event dynamics of a TTM. Figure 2.4 is the RG2 graph

representing all legal trajectories of the simple TTM shown in Figure 2.2. The top

line of each state in the graph contains the state assignments of the system variables

in the format (u, v, x). The second line of each state contains the current values of

each transition’s counter variable in the format [cα, cβ, cγ]. Thus the states of the

RG2 graph are elements of M ’s set of extended state assignments Q. Note that in

accordance with the fact that both of their lower time bounds equal 2, the β and γ

transitions only exit states in which their respective counter variables equal or exceed

2. On the other hand both α and γ have upper time bounds of 2 so no tick transition

exits a state where cα = 2 or cγ = 2. In such states an α or γ transition is forced

before the next clock tick unless it is preempted by another transition. For example,

γ can be preempted by the β transition that enters the state in the graph’s lower right

corner. The initial state q0 of the graph is indicated by an entering arrow. A TTM’s

legal trajectories are all infinite sequences and as can be seen from Figure 2.4, every

path starting from q0 can be extended to an infinite path. The transitions’ counter

28

α

α

γ

tick

tick

ticktick

tick

(0,1,a)

(0,1,a)

[0,0,0]

(0,1,a)
[0,0,0]

γ

q0

β

tick

[0,0,0]

tick

[0,0,0]

tick

[0,0,0]

α

(u, v, x)
[cα, cβ , cγ]

γ γ

[1,0,1]

[2,0,2]

(0,1,c)
[0,0,2]
(1,1,b)

(1,1,e)

(1,1,b)

(1,1,b)

(1,1,b)
[0,1,1]

[0,2,2]
(1,1,b)(1,1,b)

[0,0,1]

[0,1,2]

(2,0,d)

State Legend

Figure 2.4: RG2 representing the legal trajectories of TTM M in Figure 2.2

29

variables are only used to obtain the structure of the graph. They are not part of the

system’s observed timed behavior. The counter variables are hidden variables, the

values of which are crucial to determining the Markovian dynamics of the structure.

Thus if we were to treat the RG2 graph of Figure 2.4 as a SELTS, the state output

map would be the canonical projection from extended state assignments to state

assignments P : Q → Q.

Although the β transition of M has an upper time bound of ∞, the RG2 graph

(and hence the SELTS of M) is finite state since γ preempts β, preventing an infinite

number of ticks from causing cβ from becoming unbounded. What if γ also had an

upper time bound of ∞? How do we generate a finite state representation of the

timed behavior of M?

The set of extended state assignments is reduced to produce a finite state set by

redefining the Range of the counter variables as follows. For M := 〈V , Θ, T 〉 and

α := (e, h, l, u) ∈ T

RangeM(cα) :=

{n ∈ N : n < l} ∪ {ω}, if u = ∞

{n ∈ N : n ≤ u}, u < ∞

If α has a finite upper time bound uα, then TTM semantics prevent cα from being

incremented to a value exceeding uα. For transitions with lower time bound lα and

upper time bound uα = ∞ when cα is incremented to a value equal to lα, we instead

set cα = ω and henceforth define ω+1 = ω. For comparison purposes we define for all

a ∈ N, a < ω < ∞. We now redefine the set of extended state assignments to use this

reduction as follows Q := Q×
∏

cα∈C RangeM(cα) where C := {cα : α ∈ T −{tick}}.

Henceforth when refering to the set of extended state assignments we will assume that

we are dealing with the reduced set. We now formally define the SELTS obtained

using the redefined extended state assignments to be the SELTS generated by M .

Definition 2.9 Given a TTM M := 〈V , Θ, T 〉 with a finite RG2 graph, the TTM

generated by M is defined as:

QM := 〈Q, Σ, RΣ, q0, P 〉

30

where Q = Q is the set of extended state assignments, and Σ = Σ(T) is the set of

transition labels for M . The transition relations of RΣ are obtained from the definition

of TTM semantics and P : Q → Q is the canonical projection from extended state

assignments to state assignments. The initial state q0 = q̄0 is the unique extended

state assignment such that P (q̄0) satisfies Θ and q̄0(cα) = 0 for each TTM transition

counter variable cα.

Often a TTM’s activity variable x plays a role similar to the counter variables

in that it is only used to keep track of when transitions might possibly be enabled.

Similarly, not all transition labels may be of significance. For instance M may be

designed to share α and tick transitions while β and γ represent transitions that

are internal to M . If one’s real interest in the TTM M was the timed behavior

of the variables u and v and the occurrence of α transitions, then this could be

represented by the SELTS shown in Figure 2.5. We maintain the structure of QM ,

the SELTS generated by M , and drop the extraneous information associated with

the activity variable x and transition counter variables to obtain the SELTS’s state

output map P ′ = PQ{u,v}
◦ P where PQ{u,v}

: Q → Q{u,v} is the canonical projection

from M ’s state assignments to the state assignments over {u, v}. The new state

output values are shown as labels of the various cells of ker(P ′) (eg. in state q0,

(u, v) = P (q0) = (0, 1)). The SELTS transitions formerly labeled by γ and β have

been relabeled as “unobservable” τ transitions since we do not need to distinguish

them.

In defining TTM modules later we will find use for this process of “relabeling” a

SELTS and so formalize the definition here.

Definition 2.10 Given a SELTS Q := 〈Q, Σ, RΣ, q0, P 〉 where P : Q → R, a SELTS

relabeling is defined to be a pair of maps r := (rΣ, rP), rΣ : Σ → Σ′ and rP : R → R′.

The r relabeling of Q is given by:

r(Q) := 〈Q, (rΣ)∗(Σ), R(rΣ)∗(Σ), q0, rP ◦ P 〉

where R(rΣ)∗(Σ) is obtained from RΣ by replacing each transition q
α
→q′ by q

r(α)
→ q′.

31

h

@@¡¡

JJ]

tick
h

@@¡¡

JJ]

tick

h

h

h

h

h

h h

hh

h

.

@
@

@
@

@@R

@
@

@
@

@@R

@
@

@
@

@@R

¡
¡

¡
¡

¡¡ª

¡
¡

¡
¡

¡¡ª

@
@

@
@

@@R

@
@

@
@

@@R

@
@

@
@

@@R

@
@

@
@

@@R

¡
¡

¡
¡

¡¡ª

³³³³³³³³³³³³³³³³³³)

@@¡¡

JJ]

?

?

?

α

α

α

τ

tick

tick

tick

ticktick

tick

τ

τ

τ τ

q0u = 0

v = 1 v = 1

u = 1

u = 2

v = 0

ker(P ′)

Figure 2.5: SELTS for timed behavior of u, v

32

We now define synchronous composition operators to provide a mechanism for

constructing large systems consisting of interacting subsystems. Initially we deal

with a strictly event based synchronization operator which is then extended to a

variation of the more general state-event synchronization operator found in [GL93].

The event synchronous product operator below is a straightforward extension to the

SELTS setting of the parallel composition operator of [Mil89].

Definition 2.11 Given two SELTS, Qi = 〈Qi, Σi, R
i
Σ, qi0, Pi〉 with Pi : Qi → Ri for

i = 1, 2 and a set of synchronization events Σs ⊆ Σ1∩Σ2, the Σs-synchronous product

of Q1 and Q2 is given by: Q1|[Σs]|Q2 := 〈Q1×Q2, Σ1∪Σ2, RΣ1∪Σ2
, (q10, q20), P1×P2〉,

where the elements of RΣ1∪Σ2
= {

α
→ : α ∈ Σ1 ∪Σ2} are binary relations over Q1 ×Q2

defined as follows: (q1, q2)
α
→(q′1, q

′
2) iff

(i) α ∈ Σs, and qi
α
→q′i in Qi for i = 1, 2, or

(ii) α 6∈ Σs, q1
α
→q′1 in Q1 and q2 = q′2, or

(iii) α 6∈ Σs, q2
α
→q′2 in Q2 and q1 = q′1.

When Σs = Σ1 ∩ Σ2 then the above definition of synchronous product specializes to

the standard synchronous product operator used in [RW87]. In its more general form

when Σs 6= Σ1∩Σ2, it is possible for an α ∈ Σ1∩Σ2\Σs to be executed independently

by each subsystem and thereby introduce additional nondeterminism. In fact, in this

case the synchronous product of two simple deterministic systems can result in a

nondeterministic system (see Figure 2.6). Since our theory is specifically designed to

deal with the nondeterminism that typically results from creating hierarchical models,

this and the following generalization of the synchronous product operator do not pose

a problem.

By viewing the transition relations as functions from states to the power set of

states and using the fact that Q× ∅ = ∅ ×Q = ∅ for any set Q, we can formulate an

alternative functional definition of the event synchronous product transition relations

as follows. For (q1, q2) ∈ Q1 × Q2

33

Q

1

2

α
α

αα

α

Q|[∅]|Q

(1,1)

(1,2)

(2,2)

(2,1)

Figure 2.6: General synchronous product can create nondeterminism

αQ1|[Σs]|Q2(q1, q2) =

αQ1(q1) × αQ2(q2), α ∈ Σs

(αQ1(q1) × {q2}) ∪ ({q1} × αQ2(q2)), otherwise

Thus we can use the setwise functional product operator to express αQ1|[Σs]|Q2 at

a functional level that can then be used in composition with homomorphisms.

αQ1|[Σs]|Q2 =

αQ1 ⊗ αQ2 , α ∈ Σs

(αQ1 ⊗ idQ2
) ∪ (idQ1

⊗ αQ2), otherwise

Note that when αQ1|[Σs]|Q2 is applied to a state in the composite system αQ1 ⊗

αQ2(q1, q2) results in the set of ordered state pairs given by αQ1(q1)×αQ2(q2) as stated

above and not the ordered pair of sets (αQ1(q1), α
Q2(q2)) (ie. αQ1|[Σs]|Q2 6= αQ1 ×αQ2).

While the above event synchronous composition operator allows systems to syn-

chronize on global ticks and other shared events, it does not have any way of modeling

the “state output synchronization” associated with the shared variables of TTMs. As

a first step towards representing TTM parallel composition at the SELTS level we ex-

tend event composition to state-event synchronous composition. We begin by defining

the notion of a compatible interface for SELTS.

As a very general method of providing synchronization of state output changes,

we assume that when two SELTS are composed, state output synchronization maps

are associated with each system. These functions map the respective systems’ state

34

outputs to a common set. In the case of SELTS representing TTMs this common set

will be the cross product of the ranges of variables shared by the TTMs (ie. QV1∩V2
).

An SELTS interface will then be a set of synchronization events together with a pair

of maps that have a common codomain. An interface will be compatible with a pair of

SELTS if the state output synchronization maps are defined on appropriate domains

and agree on their evaluation of the state outputs from their respective systems’ initial

states. More formally,

Definition 2.12 Given two SELTS Qi = 〈Qi, Σi, R
i
Σ, qi0, Pi〉 with Pi : Qi → Ri for

i = 1, 2, a compatible interface for Q1 and Q2 is a 3-tuple I := (Σs, f1, f2) where

Σs ⊆ Σ1 ∩ Σ2 is a set of synchronization events, and fi : Ri → R, i = 1, 2 are state

output synchronization maps such that f1 ◦ P1(q10) = f2 ◦ P2(q20).

In addition to the conditions imposed by event synchronization, for state-event

composition we also require that systems “synchronize” on the value of the state

output synchronization maps (ie. for any reachable state in the composite system

(q1, q2), we have f1 ◦ P1(q1) = f2 ◦ P2(q2)).

Definition 2.13 Given two SELTS, Qi = 〈Qi, Σi, R
i
Σ, qi0, Pi〉 with Pi : Qi → Ri for

i = 1, 2 and a compatible interface I := (Σs, f1, f2), the I-synchronous product of Q1

and Q2 is defined to be: Q1|[I]|Q2 := 〈Q1 × Q2, Σ1 ∪ Σ2, RΣ1∪Σ2
, (q10, q20), P1 × P2〉,

where the elements of RΣ1∪Σ2
= {

α
→ : α ∈ Σ1 ∪Σ2} are binary relations over Q1 ×Q2

defined as follows: (q1, q2)
α
→(q′1, q

′
2) iff

f1 ◦ P1(q
′
1) = f2 ◦ P2(q

′
2) (†)

and

(i) α ∈ Σs, and qi
α
→q′i in Qi for i = 1, 2, or

(ii) α 6∈ Σs, q1
α
→q′1 in Q1 and q2 = q′2, or

(iii) α 6∈ Σs, q2
α
→q′2 in Q2 and q1 = q′1.

From the definition we see that (q1, q2)
α
→(q′1, q

′
2) in Q1|[I]|Q2 iff (q1, q2)

α
→(q′1, q

′
2) in

Q1|[Σs]|Q2 and f1 ◦ P1(q
′
1) = f2 ◦ P2(q

′
2).

35

u = 0

v = 0

w = 0

q22q11
q12

τ α

Q1

Q1|[I]|Q2

(q12, q21)

(q12, q23)

τ

α

v = 1

u = 1

v = 1

w = 1

q10

(q10, q20)

q20

q21

τ

α

Q2

α

q23

v = 0

w = 0

v = 1

w = 0

v = 1

w = 1

u = 0

v = 0

v = 1
u = 0

v = 1

u = 1

u = 0

w = 1

Figure 2.7: State-event synchronous product of Q1 and Q2 for I := {{α}, π1, π2}

36

Figure 2.7 shows SELTS Q1 and Q2 and their state-event synchronous composition

when synchronized on event α and value of their shared variable v. Formally both

state output maps for Q1 and Q2 can be represented as functions from their state set

to {0, 1}2 so P1(q11) = (1, 0) while P2(q21) = (0, 1) (ie. P1 : Q1 → {0, 1}2 such that

q1 7→ (v, w) for q1 ∈ Q1 and P2 : Q2 → {0, 1}2 such that q2 7→ (u, v) for q2 ∈ Q2). So

we can take the first state output synchronization map to be the canonical projection

π1 : {0, 1}2 → {0, 1} where (v, w) 7→ v and the second state output synchronization

map to be the canonical projection π2 : {0, 1}2 → {0, 1} where (u, v) 7→ v. In this

case π1 ◦ P1(q10) = π2 ◦ P2(q20) so I := ({α}, π1, π2) is a compatible interface for Q1

and Q2 and hence Q1|[I]|Q2 exists.

Closer examination of Q1|[I]|Q2 in Figure 2.7 reveals that only events from the

synchronization set can modify shared variables (more generally, cause a change

in the evaluations of the state output synchronization functions). The τ transi-

tion (q10, q20)
τ
→(q11, q20) would be allowed in Q1|[{α}]|Q2 but does not take place

in Q1|[I]|Q2 since Q2 cannot synchronize on τ to make a move to a new state that

also changes the value of v to 1. Note that the τ transition (q12, q21)
τ
→(q12, q23) is

allowed to take place in Q1|[I]|Q2, changing the value of the independent variable u,

since it does not change the value of the shared variable v

For the synchronization event α, the transition (q10, q20)
α
→(q12, q22) cannot occur

in Q1|[I]|Q2 because it would result in an inconsistent value of v since v changes from

0 to 1 when q10
α
→q12 in Q1 but v retains the value of 0 when q20

α
→q22 in Q2.

To obtain our arrow theoretic characterization of the state-event synchronous

composition operator we can simply build upon the arrow theoretic definition of

event synchronous composition. Recalling from Section 2.1.1 that the equalizer of

a pair of functions with common domains and codomains, fi : A → B, i = 1, 2, is

denoted by

eq(f1, f2) := {a ∈ A : f1(a) = f2(a)}

Considering the cross product Q1 × Q2 with associate canonical projections π1 :

Q1×Q2 → Q1 and π2 : Q1×Q2 → Q2, we can rephrase condition (†) of Definition 2.13

37

as (q′1, q
′
2) ∈ eq(f1◦P1◦π1, f2◦P2◦π2). Thus for a compatible interface I := (Σs, f1, f2)

and SELTS as in Definition 2.13, regarding the transition relations as functions from

the state set to the power set of states we have for α ∈ Σ1 ∪ Σ2

αQ1|[I]|Q2 = αQ1|[Σs]|Q2 ∩ eq(f1 ◦ P1 ◦ π1, f2 ◦ P2 ◦ π2)

= πeq ◦ αQ1|[Σs]|Q2

where πeq : P(Q1 × Q2) → P(Q1 × Q2) is the projection resulting from intersection

with the equalizer set A 7→ A∩ eq(f1 ◦ P1 ◦ π1, f2 ◦ P2 ◦ π2). Figure 2.8 illustrates the

relationship between |[Σs]| and |[I]| as a commutative diagram.

Q1 × Q2 P(Q1 × Q2)

αQ1|[I]|Q2

P(Q1 × Q2)
πeqαQ1|[Σs]|Q1

Figure 2.8: Commutative diagram relating |[Σs]| and |[I]|.

When the state output synchronization maps are constant over their domain (eg.

the trivial maps fi : Ri → {∅}, qi 7→ ∅, i = 1, 2), then eq(f1 ◦ P1 ◦ π1, f2 ◦ P2 ◦

π2) = Q1 × Q2 so πeq = idP(Q1×Q2
), the identity map. In this case |[I]| reduces to

|[Σs]| as one might expect since the trivial state output synchronization maps provide

synchronization of outputs for all states.

2.3 State Observers for a Class of Deterministic

LTS

In this section the lattice of congruences of a deterministic transition system and its

role in characterizing the (strong) state observers of [Won76] are reviewed.

In [Won76] the author considers SELTS of the form

Q = 〈Q, {α}, {
α
→}, q0, P 〉

38

where
α
→ is a deterministic transition relation (ie. the lone transition relation can be

represented as a function α : Q → Q). In this case the author views the SELTS as

a discrete time dynamical system, given by x(0) = q0 and x(t + 1) = α(x(t)), where

it is the sequence of states generated by the LTS that is of interest. The output map

P : Q → R is assumed to have no special structure. Thus two states q, q′ ∈ Q produce

the same output observation precisely when P (q) = P (q′).

Definition 2.14 Given a deterministic SELTS Q as defined above, θ ∈ Eq(Q) is a

congruence of the transition function α for Q iff (q, q′) ∈ θ implies (α(q), α(q′)) ∈ θ.

We let Con(Q) denote the set of all congruences of the transition function for Q.

Con(Q) forms a complete sublattice of Eq(Q). Thus Con(Q) is closed under ∧

and ∨, and given any F ⊆ Con(Q), sup(F) exists as an element of Con(Q).

Definition 2.15 Given a deterministic SELTS Q as defined above and a state output

map P : Q → R, the strong state observer, θo(Q), is defined to be

θo(Q) = sup{θ ∈ Con(Q) : θ ≤ ker(P)}

When Q is clear from the context we will simply write θo for θo(Q). The existence

and uniqueness of θo are an immediate result of Con(Q) being a complete sublattice

of Eq(Q). Here θo is the coarsest congruence with respect to the transition function

α, that is finer than the equivalence kernel of P . For (q, q′) ∈ θo, θo ≤ ker(P) implies

P (q) = P (q′) while θo ∈ Con(Q) so (α(q), α(q′)) ∈ θo and hence P (α(q)) = P (α(q′)).

Thus if (q, q′) ∈ θo, then q and q′ produce the same current state output and sequence

of future state outputs.

From an informational standpoint, θo represents the minimum information you

need about the current state of the system to be able to predict the future state

outputs.

Quotient Systems

39

Given a deterministic SELTS Q = 〈Q, {α}, {
α
→}, q0, P 〉, for any θ ∈ {θ ∈ Con(Q) :

θ ≤ ker(P)} we can define the quotient SELTS of Q by θ as

Q/θ = 〈Q/θ, {α}, {
α
→θ}, q0/θ, Pθ〉

Here q0/θ denotes the θ-cell (equivalence class) containing q0 and Q/θ represents

the set of all θ-cells. The transition relation {
α
→θ} can again be viewed as a function

αQ/θ : Q/θ → Q/θ where for q/θ ∈ Q/θ, αQ/θ(q/θ) := αQ(q)/θ. The state output

map Pθ : Q/θ → R is the unique map such that Pθ ◦ θ = P . The existence of Pθ

follows from the fact that the partition θ is finer than ker(P) while the uniqueness of

Pθ follows from the fact that the map θ : Q → Q/θ is onto.

40

Chapter 3

Observers for State-Event Labeled

Transition Systems

In this chapter we introduce strong and weak state-event observers for State-Event

Labeled Transition Systems. State output maps and event projections play sym-

metric roles. Our observers (congruences) induce consistent high-level abstractions

(quotients) so that, just as in [ZW90], control designed at the abstract level can be

consistently implemented at the detailed (‘real-world’) level.

The development of strong observers and their quotient systems in Section 3.1

parallels the results on indistinguishability of LTS in [Arn94]. On the basis of [KS83],

[PT87], [BC89] we are able to appeal to efficient polynomial-time algorithms for com-

puting our observers on finite-state SELTS. We end the section with some minimum

realization results. In Section 3.2 the results are extended to the case when there is

partial event information as well as partial state information. Section 3.3 provides

a simple real-time system as an illustrative example of the theory discussed in the

previous sections. We conclude the chapter with some key results on the composi-

tional consistency of strong and weak state-event equivalence that will be used in the

chapters on model reduction.

41

3.1 Strong State-Event Observers

We now wish to generalize the observers for deterministic SELTS with a single transi-

tion function to observers for general SELTS with multiple nondeterministic transition

relations. In this case it is not only the state output sequences that are important,

but also the connecting events (relations). This is illustrated by the following three

sequences and their images under the state output map P : Q → R.

q11
τ
→q12

α
→q13

q21
α
→q22

τ
→q23

q31
τ
→q32

α
→q33

P
7→

r1
τ
→r1

α
→r2

r1
α
→r2

τ
→r2

r1
τ
→r2

α
→r2

(3.1)

Later τ will be used to denote unobservable events but for now we assume that all

τ transitions are observable. In this case the first output sequence differs from the

other two in the second state output while the second and third differ in the ordering

of their connecting relations or “events”. Thus no two of these sequences of states

and connecting events produce identical output sequences.

3.1.1 Compatible Partitions

Congruences are defined only for transition functions but we are now dealing with

nondeterministic transition relations so we must find a class of partitions that plays

the role of congruences for nondeterministic relations.

Definition 3.1 Given a SELTS Q = 〈Q, Σ, RΣ, q0, P 〉, a partition θ ∈ Eq(Q) is a

compatible partition for Q if for all α ∈ Σ, whenever q, q′ are in the same partition

block (cell) Ci, then for any block Cj of θ,

α(q) ∩ Cj 6= ∅ iff α(q′) ∩ Cj 6= ∅

The set of all compatible partitions for the SELTS Q will be denoted by CP (Q).

From the above definition we see that for θ ∈ CP (Q) if (q, q′) ∈ θ and q
α
→q1 then there

exists q′1 such that q′
α
→q′1 and (q1, q

′
1) ∈ θ. The reader familiar with Milner’s observa-

42

θ1 θ2

θ1 ∨ θ2 θ1 ∧ θ2

α α α α α α α

αααααα α α

α

Figure 3.1: Compatible partitions are closed under ∨ but not ∧

tion equivalence will note that compatible partitions are special cases of bisimulation

relations and have been used for the efficient computation of (event) observation

equivalence of LTS [KS83], [BC89]. We will have more to say about this later. First

we will see if CP (Q) has any special algebraic structure.

In the case of congruences, Con(Q) forms a complete sublattice of Eq(Q) so

perhaps we can expect something similar for CP (Q). Consider Figure 3.1. It is easy

to verify that θ1, θ2 and θ1 ∨ θ2 are compatible partitions of the given SELTS but

θ1 ∧ θ2 is not. Thus CP (Q) is not closed under the ∧ operation of Eq(Q). The

following Lemma claims that CP (Q) is closed under the ∨ operator of Eq(Q) so

although CP (Q) is not a complete sublattice of Eq(Q), it does retain the complete

join semilattice property of Con(Q) that was used in defining state observers in the

Section 2.3. We were led to expect a join semilattice structure for defining observers

on systems with nondeterministic transition relations from Wong’s investigation of

the algebraic properties of hierarchy in [Won94].

Lemma 3.2 For a given SELTS Q = 〈Q, Σ, RΣ, q0, P 〉, the set of compatible parti-

tions for Q, CP (Q), forms a complete sub-semilattice (with respect to join) of Eq(Q),

43

the lattice of equivalence relations on Q.

Proof: We know that Eq(Q) is a complete lattice so it only remains to show that

CP (Q) is closed under arbitrary join operations.

Let θi ∈ CP (Q) where I is an index set and write θ :=
∨

i∈I θi. Suppose (a, b) ∈ θ.

Then by definition there exist i0, i1, . . . , ik ∈ I such that

(a, b) ∈ θi0 ◦ θi1 ◦ . . . ◦ θik .

That is there exist a0, . . . , ak+1 such that (aj, aj+1) ∈ θij with a0 = a and ak+1 = b.

Assume that α(a) 6= ∅ and let c ∈ α(a). We must show that there exists d ∈ α(b)

such that (c, d) ∈ θ. Now (a, a1) ∈ θi0 and θi0 ∈ CP (Q) so there exists c1 ∈ α(a1)

such that (c, c1) ∈ θi0 .

Inductively assume there exists cj ∈ α(aj) such that (cj−1, cj) ∈ θij−1
. Then for

(aj, aj+1) ∈ θij , θij ∈ CP (Q) so there exists cj+1 ∈ α(aj+1) such that (cj, cj+1) ∈ θj.

Thus, by induction, with a = a0, b = ak+1 and d = ck+1, we have

(c, d) ∈ θi0 ◦ θi1 ◦ . . . ◦ θik ,

and hence we conclude that if c ∈ α(a) then there exists d ∈ α(b) such that (c, d) ∈ θ.

The argument is easily reversed by switching a and b giving us the desired result,

θ ∈ CP (Q). 2

3.1.2 Computation of Strong State-Event Observers

An immediate result of Lemma 3.2 is that for any non-empty subset F ⊆ CP (Q),

there is a unique supremal element θ∗ := sup(F) and θ∗ ∈ CP (Q). We are now in a

position to characterize a strong state-event observer for any given SELTS.

Definition 3.3 Given a SELTS Q = 〈Q, Σ, RΣ, q0, P 〉 the strong state-event ob-

server, θs(Q) is defined to be

θs(Q) = sup{θ ∈ CP (Q) : θ ≤ ker(P)}.

44

Note that it is always the case that the trivial “bottom” partition ∆ ∈ CP (Q) and

for any state output map P : Q → R, ∆ = ker(idQ) ≤ ker(P) so θs(Q) always exists.

When Q is clear from the context we will simply write θs for θs(Q). As was the case

for the state observers of Section 2.3, θs is the coarsest compatible partition of Q that

is finer than the equivalence kernel of the system’s state output map P . Thus for

(q, q′) ∈ θs we have P (q) = P (q′) so q and q′ produce the same current state output.

Now suppose that q
α
→q1, thereby producing event output α and state output P (q1).

Since θs ∈ CP (Q) there exists q′1 ∈ α(q′) such that (q1, q
′
1) ∈ θs. Hence q′

α
→q′1 and

P (q1) = P (q′1) so q′ can generate identical state and event outputs to q. As was the

case with state observers, θs represents the minimum information one needs about

the current state to be able to predict all possible future state and event outputs.

We say “possible” future outputs since the general SELTS dealt with by state-event

observers are nondeterministic. Hence knowing the cell of θs that a state belongs to

lets one know what may happen, not what will happen, in contrast with the case with

the state observers for deterministic SELTS.

The Relational Coarsest Partition problem (RCP) (as stated in [KS83]) can be

phrased “Given a LTS Q = 〈Q, Σ, RΣ, q0〉 and θ0, an initial partition of Q, find the

coarsest compatible partition of Q that is finer than θ0 (ie. find sup{θ ∈ CP (Q) :

θ ≤ θ0}).” Thus θs is the solution to the RCP with θ0 := ker(P). In the special

case when θ0 = ker(P) = ∇ (no state information is provided by the state output

map), the solution of the RCP is Milner’s strong observation equivalence ∼ [KS83].

Therefore when there are only event outputs and no state outputs, our strong state-

event observers reduce to Milner’s strong observation equivalence.

An O(m log n) algorithm, where m is the size of RΣ (the number of related pairs)

and n = |Q|, for computing ∼ for finite state LTS, based upon Paige and Tarjan’s

solution to the (mono)-RCP (RCP with only one relation present) [PT87], can be

found in [BC89]. In this case θ0 is, of course, ∇. This algorithm is easily adapted

to computing θs without any change in complexity (assuming ker(P) is provided) by

allowing the initial partition for the RCP to be ker(P) which, in general, is not ∇.

This close connection with ∼ leads us to write q ∼se q′ when(q, q′) ∈ θs and say that

45

q is strong state-event observation equivalent to q′.

What differentiates our work from that of [KS83] and [BC89], is the use, as sug-

gested in [Arn94], of a nontrivial initial partition in the RCP, to consider both event

and state outputs. The consideration of both state and event outputs takes on greater

significance when we consider weak state-event observers in the next section. With lit-

tle additional effort we can adapt [KS83] and [BC89] to provide an efficient algorithm

for computing weak state-event observers.

3.1.3 Strong Quotient Systems and Homomorphisms

As a generalization of congruences, we might expect that compatible partitions can be

used to construct quotient systems of nondeterministic SELTS (and their underlying

LTS).

Definition 3.4 Given a SELTS Q := 〈Q, Σ, RΣ, q0, P 〉, for θ ∈ CP (Q) such that

θ ≤ ker(P), we define the quotient system of Q by θ, Q/θ, as follows:

Q/θ := 〈Q/θ, Σ, RΣ/θ, q0/θ, Pθ〉

Here q0/θ denotes the cell of the partition θ containing q0 and Q/θ denotes the set of

all cells of θ. For α ∈ Σ, the transition relations of RΣ/θ are defined as αQ/θ(q/θ) =

αQ(q)/θ = {q1/θ ∈ Q/θ : q1 ∈ αQ(q)}. Pθ : Q/θ → R is the unique map such that

Pθ ◦ θ = P .

The existence of Pθ follows from the fact that θ ≤ ker(P) while uniqueness is guar-

anteed by the fact that θ : Q → Q/θ is onto.

The remainder of this section is dedicated to proving that the quotient system

generated by the compatible partition θs is the “unique” (up to isomorphism) minimal

state SELTS that is strongly state-event (observationally) equivalent to the original

system. To do this we first have to have a definition of when two SELTS are state-

event equivalent.

46

As was the case with observation equivalence in [DeN87], strong state-event ob-

servation equivalence can be extended to a relation ∼se between two disjoint SELTS,

SELTS having disjoint state sets and state output maps. This is done by forming the

union of the transition systems and the disjoint union of the original systems’ state

output maps. The two SELTS are then strongly state-event equivalent iff their initial

states are strongly state-event observationally equivalent in the union system. More

formally,

Definition 3.5 Given two disjoint SELTS Qi = 〈Qi, Σ, Ri
Σ, qi0, Pi〉 with state output

maps Pi : Qi → R for i = 1, 2, we define the union of Q1 and Q2 to be

Q1 ∪ Q2 := 〈Q1 ∪ Q2, Σ, R1
Σ ∪ R2

Σ, q10, P1

.
∪P2〉

Here the disjoint union of the state output functions, P1

.
∪P2 : Q1 ∪ Q2 → R, is given

by

P1

.
∪P2(q) =

P1(q), for q ∈ Q1

P2(q), for q ∈ Q2

We then say that Q1 is strongly state-event equivalent to Q2, written Q1 ∼se Q2, iff

(q10, q20) ∈ θs(Q1 ∪ Q2).

In the definition of Q1 ∪ Q2 we have made the arbitrary choice of q10 as the initial

state. We could just as easily use q20 as the initial state. Either one will do for our

purposes of proving properties of quotient systems.

The notion of a homomorphism of a SELTS will, of course, play a central role in

obtaining our results about quotient systems. The nondeterministic transition rela-

tions lead us to extend the notion of homomorphism in much the same way that we

extended congruences of deterministic SELTS to compatible partitions of nondeter-

ministic SELTS. Figure 3.2 illustrates the idea of a SELTS homomorphism. Any α

move in the low level system can be matched by an α move in the high level system

and vice versa. In addition, for a mapping to be a SELTS homomorphism, we also

require that the initial state of the low level SELTS be mapped to the initial state of

the high level SELTS. In the definition of a SELTS homomorphism we use the fact

47

a
b b

a

a

b

b

a

Q2

h h
h

h

Q1

Q1

α

α

α

α

α
Q2

Figure 3.2: Graphical interpretation of a SELTS homomorphism

that any function h : Q1 → Q2 induces a function at the power set level using the

lifting operator, h∗ : P(Q1) → P(Q2) (see Subsection 2.1.2).

Definition 3.6 Given two SELTS Qi = 〈Qi, Σ, Ri
Σ, qi0, Pi〉 for i = 1, 2, a mapping

h : Q1 → Q2 is a SELTS homomorphism from Q1 to Q2 if

(i) h(q10) = q20

(ii) For all α ∈ Σ, h∗ ◦ αQ1 = αQ2 ◦ h

(iii) P1 = P2 ◦ h

In this case we will write h : Q1 → Q2. Henceforth homomorphism will be understood

to mean SELTS homomorphism. Any map satisfying (i) and (ii) will be said to be a

LTS homomorphism of the SELTS’s underlying LTS.

The relationships between the various maps for a SELTS homomorphism are displayed

as the commutative diagram of Figure 3.3.

48

Q2 P(Q2)

Q1 P(Q1)

P(R)h h∗

(P1)∗

(P2)∗

R

P1

P2

αQ1

αQ2

Figure 3.3: Commutative diagram for an SELTS homomorphism

Typically, the composition of homomorphisms is also a homomorphism. SELTS

homomorphisms are no exception in this regard.

Lemma 3.7 Given SELTS homomorphism h1 : Q1 → Q2 and h2 : Q2 → Q3,

h2 ◦ h1 : Q1 → Q3

That is, h2 ◦ h1 : Q1 → Q3 is an SELTS homomorphism.

Proof: The composition h1 followed by h2 takes the initial state of Q1 to the initial

state of Q3 as h2 ◦ h1(q10) = h2(h1(q10)) = h2(q20) = q30 since h1 and h2 are both

homomorphisms from Q1 to Q2 and Q2 to Q3 respectively. Similarly for the state

output maps P1 = P2 ◦ h1 = (P3 ◦ h2) ◦ h1 = P3 ◦ (h2 ◦ h1). Thus we need only show

that (h2 ◦ h1)∗ ◦ αQ1 = αQ3 ◦ (h2 ◦ h1).

(h2 ◦ h1)∗ ◦ αQ1 = (h2)∗ ◦ (h1)∗ ◦ αQ1 , by Claim 2.3

= (h2)∗ ◦ ((h1)∗ ◦ αQ1)

= (h2)∗ ◦ (αQ2 ◦ h1), by def. of SELTS homomorphism.

= ((h2)∗ ◦ αQ2) ◦ h1

= (αQ3 ◦ h2) ◦ h1, by def. of SELTS homomorphism.

= αQ3 ◦ (h2 ◦ h1)

2

49

If Q2 is a homomorphic image of Q1, any event and associated state output change

in Q1 can be matched in Q2. This situation leads us to expect that homomorphisms

and compatible partitions are closely related. This relationship is the subject of the

following three lemmas.

Lemma 3.8 Given a SELTS Q := 〈Q, Σ, RΣ, q0, P 〉, any θ ∈ CP (Q) defines a (nat-

ural) LTS homomorphism θ : Q → Q/θ of the underlying LTS of Q and its quotient

system Q/θ.

Proof: Let θ : Q → Q/θ be the map that takes each element of Q to its θ-cell. Then

by definition of Q/θ we have θ(q0) = q0/θ. It remains to show that for any α ∈ Σ

and any q ∈ Q we have

θ∗(α
Q(q)) = αQ/θ(θ(q))

Let x′ ∈ θ∗(α
Q(q)). Then there exists q′ ∈ αQ(q) with θ(q′) = x′. But q

α
→q′ and hence

θ(q)
α
→θ(q′) in Q/θ by definition. Thus x′ = θ(q′) ∈ αQ/θ(θ(q)) giving

θ∗(α
Q(q)) ⊆ αQ/θ(θ(q))

Reversing the above argument gives the desired result. 2

Corollary 3.9 For state output map P : Q → R, if θ ∈ {θ ∈ CP (Q) : θ ≤ ker(P)}

then θ : Q → Q/θ is a SELTS homomorphism.

The above lemma shows us that any compatible partition defines a LTS homo-

morphism and any compatible partition finer than the equivalence kernel of the state

output map results in a SELTS homomorphism. The next lemma demonstrates that

there is a compatible partition associated with every LTS homomorphism.

Lemma 3.10 If h : Q1 → Q2 is a LTS homomorphism for the underlying transition

systems of Qi := 〈Qi, Σ, Ri
Σ, q0i, Pi〉 for i = 1, 2, then ker(h) ∈ CP (Q1).

Proof: Suppose (q, q′) ∈ ker(h). We want to show that if q
α
→q1, then there exists

q′1 ∈ Q1 such that q′
α
→q′1 and (q1, q

′
1) ∈ ker(h).

50

Clearly h(q1) ∈ h∗(α
Q1(q)). But h is a LTS homomorphism and h(q) = h(q′) so

h∗(α
Q1(q)) = αQ2(h(q)) = αQ2(h(q′)) = h∗(α

Q1(q′))

And h(q1) ∈ h∗(α
Q1(q′)) iff there exists q′1 ∈ αQ1(q′) such that h(q′1) = h(q1). Thus

(q1, q
′
1) ∈ ker(h) and q′

α
→q′1. Hence ker(h) ∈ CP (Q1). 2

Corollary 3.11 If h : Q1 → Q2 is a SELTS homomorphism, then ker(h) ∈ {θ ∈

CP (Q) : θ ≤ ker(P1)}

We can now talk about output compatible partitions – those partitions of a SELTS

that correspond to the kernel of a homomorphism of the SELTS Q. The next lemma

states that the only output compatible partition of the quotient system generated by

θs is the trivial partition ∆. Thus any homomorphism of Q/θs is an isomorphism.

Lemma 3.12 If Q := 〈Q, Σ, RΣ, q0, P 〉 is an SELTS then

{θ ∈ CP (Q/θs) : θ ≤ ker(Pθs
)} = {∆}

Proof: Suppose θ ∈ CP (Q/θs), θ ≤ ker(Pθs
). By Lemma 3.7 θ ◦θs : Q → (Q/θs)/θ is

a SELTS homomorphism of Q. Therefore ker(θ◦θs) ∈ CP (Q) and ker(θ◦θs) ≤ ker(P)

by Corollary 3.11. But θs = sup({θ ∈ CP (Q) : θ ≤ ker(P)}) so ker(θ ◦ θs) ≤ ker(θs).

Thus ker(θ ◦ θs) = ker(θs) which implies θ = ∆. 2

We are now ready to prove the main result of this section, which states that

two SELTS are strongly state-event equivalent iff they share an output compatible

homomorphic image. As a corollary to this theorem, with the help of Lemma 3.12, we

obtain the result that when Q is reachable, Q/θs is the unique minimal state SELTS

that is strongly state-event equivalent to Q.

Theorem 3.13 For two disjoint SELTS Q1 and Q2 as in Definition 3.6, we have

Q1 ∼se Q2 iff there exists a SELTS Q3 for which there are homomorphisms h1 : Q1 →

Q3 and h2 : Q2 → Q3.

51

Proof: (if) Let h := h1

.
∪h2 (ie. h : Q1 ∪ Q2 → Q3 be the map such that h|Qi =

hi, i = 1, 2). Since Q1 and Q2 have disjoint state sets and h1 and h2 are SELTS

homomorphisms, it follows that

h : Q1 ∪ Q2 → Q3

is a homomorphism with h(q10) = h(q20) = q30. Therefore ker(h) ∈ {θ ∈ CP (Q1 ∪

Q2) : θ ≤ ker(P1

.
∪P2)} and (q10, q20) ∈ ker(h) which implies that (q10, q20) ∈ θs(Q1 ∪

Q2). Hence, by definition, Q1 ∼se Q2.

(only if) Take θ = θs(Q1 ∪ Q2). By Corollary 3.9

θ : Q1 ∪ Q2 → (Q1 ∪ Q2)/θ

is a SELTS homomorphism. Take Q3 := (Q1 ∪ Q2)/θ, h1 := θ|Q1 and h2 := θ|Q2.

From the fact that Q1 and Q2 have disjoint transition relations, it follows that h1 and

h2 are SELTS homomorphisms. 2

Corollary 3.14 For any reachable SELTS Q, the quotient system Q/θs is the unique

(up to isomorphism), minimal state SELTS such that Q ∼se Q/θs.

Proof: We know that θs : Q → Q/θs is a homomorphism. Also the identity map

on Q/θs is an SELTS homomorphism IQ/θs
: Q/θs → Q/θs. Thus Q ∼se Q/θs by

Theorem 3.13.

Uniqueness follows from Lemma 3.12. If Q ∼se Q2 we may assume that Q2 is

reachable since Q is reachable. Otherwise we can just take the reachable part of Q2

and it will still be equivalent to Q. It follows that Q/θs ∼se Q2 so by Theorem 3.13

there exists Q3 with SELTS homomorphisms h1 : Q/θs → Q3 and h2 : Q2 → Q3.

But by Lemma 3.12 h1 is an isomorphism. Thus h−1
1 is a homomorphism and hence

so is h−1
1 ◦ h2 : Q2 → Q/θs . Therefore |Q/θs| ≤ |Q2|, giving us uniqueness up to

isomorphism. 2

52

Q1 Q2

α α

β

q10 q20

q21

Figure 3.4: State-event equivalent SELTS quotient systems that are not isomorphic

Figure 3.4 demonstrates why we require Q to be reachable in Corollary 3.14. Q2

is not reachable and as can be easily verified, Q2/θs = Q2. But Q1 ∼se Q2 and

|Q1| < |Q2|.

From the above result we now derive the more precise result stated in Corol-

lary 3.15. Two reachable SELTS are strongly state-event equivalent iff their strong

state-event observer quotient systems are isomorphic.

Corollary 3.15 Let Q1 and Q2 be reachable SELTS and θsi = θs(Qi), i = 1, 2. Then

Q1 ∼se Q2 iff Q1/θs1 and Q2/θs2 are isomorphic.

Proof: (only if) By Corollary 3.14 Q1/θs1 ∼se Q2/θs2. Hence by Theorem 3.13 there

exists Q3 with homomorphisms h1 : Q1/θs1 → Q3 and h2 : Q2/θs2 → Q3. But by

Lemma 3.12 both h1 and h2 are isomorphisms. Therefore h−1
1 ◦h2 is an isomorphism.

(if) Assume Q1/θs1 and Q2/θs2 are isomorphic. Then there exists a homomorphism

h : Q1/θs1 → Q2/θs2. Also, by Corollary 3.9, θsi : Qi → Qi/θsi for i = 1, 2 are

homomorphisms. Thus by Lemma 3.7 h◦ θs1 : Q1 → Q2/θs2. Since θs2 : Q2 → Q2/θs2

we can apply Theorem 3.13 to get Q1 ∼se Q2 as required. 2

The simple SELTS in Figure 3.4 illustrates why both Q1 and Q2 are required

to be reachable in Corollary 3.15. Clearly for any state output maps such that

P1(q10) = P2(q20) we have Q1 ∼se Q2 since then q10 ∼se q20 in (Q1 ∪ Q2). But in this

case both systems are their own quotient systems and are clearly not isomorphic.

We now use the result of Corollary 3.15 to prove a version of the “diamond prop-

erty” of [Arn94] for SELTS homomorphism. As we will see, the diamond property

53

Q3Q2

Q1

h13

h34h24

Q4

h12

Figure 3.5: Commutative diagram for the diamond property of SELTS homomor-
phisms

is the key to providing the transitivity for the homomorphism version of state-event

equivalence. The following corollary states that the diagram of Figure 3.5 commutes.

Corollary 3.16 Given any pair of homomorphisms h12 : Q1 → Q2 and h13 : Q1 →

Q3, there exists a pair of homomorphisms h24 : Q2 → Q4 and h34 : Q3 → Q4 such

that h24 ◦ h12 = h34 ◦ h13.

Proof: If Q2 and Q3 are reachable then the result is immediate by Corollary 3.15

since we can take Q4 := Q1/θs(Q1). In this case for i = 2, 3 Qi ∼se Q1/θs(Q1) since

Qi ∼se Q1 and Q1 ∼se Q1/θs(Q1). The existence of h24 and h34 is then guaranteed

by Theorem 3.13.

The general case is handled in a similar fashion by taking Q4 to be the strong

state-event quotient system of the disjoint union of Q2 and Q3. 2

The relationship to transitivity of Figure 3.5 is seen in Figure 3.6 where the di-

agram of Figure 3.5 occurs as a sub-diagram of the larger diagram. This larger

diagram is then guaranteed to commute as an immediate result of the previous corol-

lary. Thus SELTS homomorphisms can be used to provide an alternative definition

of ∼se by saying that Q1 ∼se Q2 iff there exists a SELTS Q3 for which there are

homomorphisms h1 : Q1 → Q3 and h2 : Q2 → Q3. For this alternative definition of

strong state-event equivalence, idempotence is guaranteed by the fact that the iden-

tity map idQ1
: Q1 → Q1 is a homomorphism, symmetry follows from the symmetry

of the definition and transitivity follows from Figure 3.6. Theorem 3.13 guarantees

54

Q1

h13

h34h24

Q4

h12

Q5 Q6

h63h52

Q2 Q3

Figure 3.6: Commutative diagram for the transitivity of SELTS homomorphism def-
inition of ∼se

that this alternative definition of ∼se coincides with the original compatible partition

definition.

3.2 Weak State-Event Observers

Often in Discrete Event Systems it is the case that systems are event- rather than

time-driven. In this case what is important is the sequence of changes in the outputs,

ignoring intermediate states and events that do not generate any new outputs. Before

applying this point of view in our state event setting, we will see how it is applied

in the event setting of Milner’s weak observation equivalence. Again we will see

that (event) observation equivalence becomes the special case of our setting in which

ker(P) = ∇.

Consider a LTS Q := 〈Q, Σ, RΣ, q0〉. In the style of [BC89], we assume there is

a “silent event” τ ∈ Σ that represents unobservable actions. We then define the set

of observable actions to be Σo := Σ − {τ}. This leads to some new relations on Q.

We say that q moves unobservably (from an event perspective) to q′, written q
τ
⇒q′,

iff there exist q0, q1, . . . , qn ∈ Q, n ≥ 0, such that

q = q0
τ
→q1

τ
→ . . .

τ
→qn−1

τ
→qn = q′

By convention, for any q ∈ Q, q
τ
⇒q. For α ∈ Σo we can then say that q moves to q′

55

while producing event α, written q
α
⇒q′, iff there exist q1, q2 ∈ Q such that

q
τ
⇒q1

α
→q2

τ
⇒q′

In the weakly observable setting the actions q
α
→q′ and q

α
⇒q′ are indistinguishable

since both produce the single event output α. For a given Q, these double arrow

relations can be used to define a new transition system,

Q′ := 〈Q, Σ, R′
Σ, q0〉

where R′
Σ is defined as follows. For all α ∈ Σo, αQ′

(q) = {q1 ∈ Q : q
α
⇒q1 in Q} and

τQ′
(q) = {q1 ∈ Q : q

τ
⇒q1 in Q}.

In [KS83], two states are shown to be weakly observation equivalent in Q in the

sense of [Mil80], written q ≈ q′, iff the states are strongly observation equivalent

(q ∼ q′) in Q′. Thus we have ≈:= sup(CP (Q′)). In this case ≈ represents the

minimum information one needs about Q to know what choices of future observable

events are possible.

We now generalize weak observation equivalence to our state-event setting. Given

a SELTS Q := 〈Q, Σ, RΣ, q0, P 〉 where, as usual, P : Q → R is the state output

map, we assume that the special event τ represents unobservable events. When a τ

transition occurs, it does not produce an output event, though it may cause a change

in the state output. For instance, if q
τ
→q′ and P (q) = P (q′) then there is no noticeable

change in the system output. If, on the other hand, q
τ
→q′ and P (q) 6= P (q′) then

although no event is seen to take place, a change in state output takes place when τ

occurs. This leads us to define, for a given SELTS Q, an unobservable move from q

to q′, written q ⇒se q′ iff there exist q0, q1, . . . , qn ∈ Q, n ≥ 0, such that

q = q0
τ
→q1

τ
→ . . .

τ
→qn−1

τ
→qn = q′

and for all j = 0, 1, . . . , n we have P (qj) = P (q) = P (q′)

Thus the relation ⇒se is the transitive closure of the τ relation within each cell

56

of ker(P). By convention q ⇒se q always holds. While the ⇒se relation captures a

relation which is indistinguishable from the case when q
τ
→q′ and P (q) = P (q′), we

now wish to define a relation which captures both this case and the case when q
τ
→q′

and P (q) 6= P (q′). We say that q moves to q′ without an event output, written q
τ
⇒seq

′,

iff q = q′ or, there exist q1, q2 ∈ Q such that

q ⇒se q1
τ
→q2 ⇒se q′

By definition q
τ
⇒seq. The relation

τ
⇒se is the transitive closure of

τ
→ subject to the

restriction that at most one boundary of the partition ker(P) is crossed. If q
τ
⇒seq

′,

then no output events are generated and there is at most one change in the state

output.

We now define a relation similar to
τ
⇒se except that it produces exactly one event

output. For α ∈ Σo, we say that q moves to q′ producing event output α, written

q
α
⇒seq

′ iff there exist q1, q2 ∈ Q such that

q ⇒se q1
α
→q2 ⇒se q′

Thus if q
α
⇒seq

′, then q moves within a cell of ker(P) via unobservable τ transitions,

then performs an α transition which could possibly (but not necessarily) take us to

a new cell of ker(P) and then the system again moves unobservably via τ transitions

within the current cell. We emphasize that if a boundary of ker(P) is crossed when

q
α
⇒seq

′, then it is only crossed by the α transition.

There are four different types of one step moves that a SELTS Q can make and

each of these moves can be matched by a double arrow relation defined above. In the

following let q and q′ be elements of Q such that P (q) = P (q′). Then the system can:

1. Make an unobservable transition within a cell of ker(P) (q
τ
→q1 and P (q) =

P (q1)). State q′ can make the move q′
τ
⇒seq

′
1 with P (q′1) = P (q1) to produce the

same (lack of) output.

2. Make a τ transition that moves from one cell of ker(P) to another (q
τ
→q1 and

57

P (q) 6= P (q1)). State q′ can make the move q′
τ
⇒seq

′
1 with P (q′1) = P (q1) to

produce the same change in state output.

3. Make an observable transition α within a cell of ker(P) (q
α
→q1 and P (q) =

P (q1)). State q′ can make the move q′
α
⇒seq

′
1 with P (q′1) = P (q1) to produce the

same event output.

4. Make an observable transition α that moves from one cell of ker(P) to another

(q
α
→q1 and P (q) 6= P (q1)). State q′ can make the move q′

α
⇒seq

′
1 with P (q′1) =

P (q1) to produce the same event output and change of state output.

Consider the state event sequences (3.1) of Section 3.1 from the point of view that

only output (observable) events and changes in the state output are important. The

first two sequences are indistinguishable when viewed from state and event outputs.

In both sequences the event α and the state output change from r1 to r2 occur

simultaneously. Hence q11
α
⇒seq13 and q21

α
⇒seq23 and in both cases at the output it

appears as r1
α
→r2. In the case of the third string, the state output changes with the

unobservable transition τ and then the event α occurs. In terms of our newly defined

relations q31
τ
⇒seq32

α
⇒seq33 but not q31

α
⇒seq33 and so at the outputs the third sequence

appears as r1
τ
→r2

α
→r2.

From a control point of view it is important that an observer be able to distinguish

the first two sequences from the third. Assume that r2 is a bad state output that we

wish to avoid and that α is a controllable event that can be disabled as in [RW87].

Disabling α prevents state output r2 from occurring in the first two sequences of (3.1)

but not in the third sequence!

With the above examples in mind, we are ready to define weak state-event ob-

servers by first considering the transition system generated by the double arrow re-

lations. We call the transition system generated by the double arrow relations the

observational closure of the given SELTS. The observational closure of an SELTS is

obtained using the observational closure operator defined below.

Definition 3.17 Given a SELTS Q = 〈Q, Σ, RΣ, q0, P 〉, the observational closure of

Q, denoted Q′
se is given by the observational closure operator ′

se : SELTS → SELTS

58

as follows:

Q′
se := 〈Q, Σ, R′

Σ, q0, P 〉

where R′
Σ is defined as: For all α ∈ Σ, αQ′

se(q) = {q1 ∈ Q : q
α
⇒seq1 in Q}. Thus q

α
→q′

in Q′
se iff q

α
⇒seq

′ in Q.

We will now take the time to establish the idempotence of the observational closure

operator for use in later proofs. The result is expected since the observational closure

operator performs a variation of transitive closure.

Lemma 3.18 For any SELTS Q = 〈Q, Σ, RΣ, q0, P 〉 the observational closure oper-

ator is idempotent (ie. (Q′
se)

′
se = Q′

se).

Proof: From Definition 3.17 we can see that Q′
se and (Q′

se)
′
se only differ in the defi-

nitions of their transition relations which we will denote by R′
Σ and R′′

Σ respectively.

Thus proving the idempotence of the observational closure operator reduces to show-

ing that R′
Σ = R′′

Σ.

We trivially have R′
Σ ⊆ R′′

Σ because when q
α
→q′ in Q′

se, by definition q
α
⇒seq

′ also.

Thus by Definition 3.17, q
α
→q′ in (Q′

se)
′
se.

It remains to show R′
Σ ⊇ R′′

Σ. For any α ∈ Σ, if q
α
→q′ in (Q′

se)
′
se then q

α
⇒seq

′ in

Q′
se. Thus there exist q1, . . . , qm, q′1, . . . , q

′
n ∈ Q such that

q
τ
→q1

τ
→ . . . qm−1

τ
→qm

α
→q′1

τ
→q′2

τ
→ . . . q′n−1

τ
→q′n

τ
→q′

in Q′
se. Also, for all i = 1, . . . ,m we have P (qi) = P (q) and for all j = 1, . . . , n it is

the case that P (q′j) = P (q′). But qa
τ
→qb in Q′

se with P (qa) = P (qb) iff qa ⇒se qb in Q,

and qc
α
→qd in Q′

se iff qc
α
⇒seqd in Q. Hence

q ⇒se q1 ⇒se . . . qm−1 ⇒se qm
α
⇒seq

′
1 ⇒se q′2 ⇒se . . . q′n−1 ⇒se q′n ⇒se q′

in Q. But the ⇒se relation is a transitive closure so

q ⇒se qm
α
⇒seq

′
1 ⇒se q′

59

in Q and we conclude q
α
⇒seq

′ in Q. Thus, by Definition 3.17, q
α
→q′ in Q′

se and so we

conclude that R′
Σ ⊇ R′

Σ
′. 2

The observational closure operator can now be combined with the previous defi-

nition of strong state-event observers to define weak state-event observers.

Definition 3.19 Given a SELTS Q = 〈Q, Σ, RΣ, q0, P 〉, the weak state-event ob-

server, θw(Q) is defined to be

θw(Q) = sup{θ ∈ CP (Q′
se) : θ ≤ ker(P)}

By Lemma 3.2 and the fact that ∆ ∈ {θ ∈ CP (Q′
se) : θ ≤ ker(P)}, θw always

exists and is unique. Note that in Q′
se the transition relations are dependent upon

P so θw is not just Milner’s observation equivalence with a different initial partition

(as was the case for strong state-event observers). It is easy to see that in the case

when ker(P) = ∇ then θw is in fact ≈, Milner’s weak observation equivalence, since

in that case
α
⇒se becomes

α
⇒ and

τ
⇒se becomes

τ
⇒ and hence Q′

se = Q′. As was

the case for strong state-event equivalence, when (q, q′) ∈ θw for a given Q, we will

write q ≈se q′, read “q is weak state-event observation equivalent to q′”. The O(n3)

algorithm (n = |Q|) for computing Milner’s weak observation equivalence of finite

state LTS given in [BC89] can be easily adapted to provide an O(n3) algorithm for

θw. The increase in complexity over the algorithm for strong state-event observers is

the result of having to compute the transitive closure of τ within each equivalence

class (cell) to obtain the relation ⇒se used in constructing Q′
se. Once we have Q′

se,

the O(m log n) RCP algorithm (m is the size of RΣ – the number of related pairs –

and n = |Q|) of [PT87] can be employed to compute θw giving an overall complexity

of O(n3 + m log n). If we assume that we are dealing with a fixed event set Σ, then

each event can label at most n2 transitions (each state is connected to all states by

every event). Then m ≤ |Σ|n2 hence the complexity of computing θw is O(n3).

Similar to the case of the state observers of Section 2.3 and the strong state-

event observers of Section 3.1, θw is the coarsest compatible partition of Q′
se that is

60

finer than the equivalence kernel of P . Although the double arrow relations used to

construct Q′
se may or may not cross a boundary of the partition of ker(P), the use

of ker(P) as the initial partition detects when a change in state output occurs. Thus

for (q, q′) ∈ θw we have P (q) = P (q′) so q and q′ produce the same current state

output. Now suppose that q
α
→q1 in Q, thereby producing event output α and state

output P (q1). Then q
α
⇒seq1 in Q so q

α
→q1 in Q′

se, and since θw ∈ CP (Q′
se) there

exists q′1 ∈ αQ′
se(q′) such that (q1, q

′
1) ∈ θw. Hence q′

α
→q′1 in Q′

se and P (q1) = P (q′1).

But then in Q, q′
α
⇒seq

′
1. Thus q′ can generate state and event outputs that are

indistinguishable from those produced from q. As was the case with strong state-

event observers, θw represents the minimum information one needs about the current

state to be able to predict all possible future changes in state and future event outputs.

Since the weak state-event observer for a SELTS Q is just the strong state-event

observer for Q′
se, we can use the results of the previous section to derive similar results

about what we will term weak quotient systems. In defining weak quotient systems

we use the intuition that in the weakly observable setting the actions q
α
→q′ and q

α
⇒seq

′

are indistinguishable.

Definition 3.20 Given a SELTS Q := 〈Q, Σ, RΣ, q0, P 〉, for θ ∈ CP (Q′
se) such that

θ ≤ ker(P) we define the weak quotient system of Q by θ to be Q//θ := Q′
se/θ.

Again we can extend weak state-event observation equivalence to a relation ≈se

between LTS by forming the union of disjoint SELTS (see Definition 3.5).

Definition 3.21 Given two disjoint SELTS Q1 = 〈Q1, Σ, R1
Σ, q10, P1〉 and Q2 =

〈Q2, Σ, R2
Σ, q20, P2〉 where P1 : Q1 → R and P2 : Q2 → R. We say that Q1 is

weakly state-event equivalent to Q2, written Q1 ≈se Q2, iff (q10, q20) ∈ θw(Q1 ∪ Q2).

With Milner’s (event) observation equivalence, strong equivalence of LTS implies

weak equivalence LTS [Mil89]. A similar situation holds for the state-event equiva-

lence of SELTS.

Lemma 3.22 Q1 ∼se Q2 implies Q1 ≈se Q2.

61

The above lemma is an immediate result of the fact that when two transition systems

with associated state output maps are strongly state-event observation equivalent,

any sequence of moves made in one system can be matched by an identical event

sequence in the other system producing the same state outputs. We can now prove

the main result of this section.

Theorem 3.23 For any reachable SELTS Q, the weak quotient system Q//θw is a

minimal state SELTS such that Q ≈se Q//θw.

Proof: Let θ = θw(Q). By Theorem 3.13

Q′
se ∼se Q′

se/θ = Q//θw

Then by Lemma 3.22 Q′
se ≈se Q//θw. It then follows from the definition of ≈se that

(Q′
se)

′
se ∼se (Q//θw)′se. But by Lemma 3.18 (Q′

se)
′
se = Q′

se. Thus Q′
se ∼se (Q//θw)′se

and therefore Q ≈se Q//θw, as required.

The minimality of the state set of Q/θw follows from Theorem 3.13. 2

In general Q//θw is one of many possible minimal state SELTS that can be equiv-

alent to Q but that differ in the definition of their transition relations. Uniqueness of

a minimal state equivalent SELTS is lost in the weak state-event observation equiva-

lence setting because of the use of the many-to-one ′
se observational closure operator

in Definition 3.19. Consider Figure 3.7. In this case Q 6= Q′
se but by Lemma 3.18

r2

Q′
se

τ τ τ
Q

α

r1 r1 r2 r1r1

ατατ

Figure 3.7: Example illustrating observational closure operator is many-to-one

(Q′
se)

′
se = Q′

se. Thus application of the observational closure operator to Q and Q′
se

produces the same result.

In fact, as a result of the following lemma, we can conclude that Q//θw as defined

has the maximum number of transitions.

62

Lemma 3.24 Given an SELTS Q and θ ∈ {CP (Q′
se) : θ ≤ ker(P)} then (Q′

se/θ)
′
se =

Q′
se/θ.

Proof: In the proof we will use the fact that θ defines a homomorphism, which we

will also denote by θ, θ : Q′
se → Q′

se that maps each state to its θ-cell (equivalence

class).

As was the case for Lemma 3.18, demonstrating the equality of the transition

systems reduces to showing that the transition relations of Q//θw contain those of

(Q′
se/θ)

′
se. That is, for any x, x′ ∈ Q/θ and α ∈ Σ, if x

α
→x′ in (Q′

se/θ)
′
se then we must

show that x
α
→x′ in Q//θw.

But if x
α
→x′ in (Q′

se/θ)
′
se then by Definition 3.17 x

α
⇒sex

′ in Q//θw. Thus there

exists x1, . . . , xm, x′
1, . . . , x

′
n ∈ Q/θ such that

x
τ
→x1

τ
→ . . . xm−1

τ
→xm

α
→x′

1
τ
→x′

2
τ
→ . . . x′

n−1
τ
→x′

n
τ
→x′

in Q′
se/θ and for all i = 1, . . . ,m we have P (xi) = P (x) and for all j = 1, . . . , n it is

the case that P (x′
j) = P (x′). But θ is an epimorphism of SELTS, so xa

τ
→xb in Q′

se/θ

with P (xa) = P (xb) iff there exist qa, qb ∈ Q such that θ(qa) = xa, θ(qb) = xb and

qa
τ
→qb in Q′

se. A similar situation holds for any α transition made in Q′
se/θ. Hence

there exist q, q1, . . . , qm, q′, q′1, . . . , q
′
n ∈ Q such that θ(q) = x, θ(q′) = x′, θ(qi) = xi

where i = 1, . . . ,m, θ(q′j) = x′
j for j = 1, . . . , n and

q
τ
→q1

τ
→ . . . qm−1

τ
→qm

α
→q′1

τ
→q′2

τ
→ . . . q′n−1

τ
→q′n

τ
→q′

in Q′
se. Thus q

α
⇒seq

′ in Q′
se, so by the definition of observational closure rq

α
→q′ in

(Q′
se)

′
se. But (Q′

se)
′
se = Q′

se by Lemma 3.18 so q
α
→q′ in Q′

se. Since θ(q) = x, θ(q′) = x′

and θ is a homomorphism we can then conclude that x
α
→x′ in Q′

se/θ. 2

Corollary 3.25 For any SELTS Q

(Q//θw)′se = (Q′
se/θw)′se = Q′

se/θw = Q//θw

63

Thus the weak quotient system already has an instance of any transition that obser-

vational closure would add. The choice of transition relations used in Definition 3.20

was made for its algebraic and computational simplicity. In particular, all the self-

looped τ transitions that result from the observational closure operator allow for the

straightforward application of strong state-event equivalence in the definition of weak

state-event equivalence. An obvious reduction that one can make in the number of

transition of Q//θw and still maintain weak equivalence is to eliminate all self-looped

transitions since these are always added to every state by the observational closure

operator. One might then ask if it is possible find a system with a minimal number

of transitions that is still weakly state-event equivalent to Q//θw.

To obtain a system that is weak state-event equivalent to the weak quotient system

and has a minimum number of transitions would involve the solution of multiple

instances of the minimal equivalent digraph problem [AHU83]. A directed graph (or

digraph) can be represented as G := (V,E) where V is a set of vertices (states)

and E is a set of edges (a transition relation). A graph G′ := (V,E ′) is said to be

a minimal equivalent digraph for G := (V,E) if E ′ is a minimal subset of E such

that the transitive closure of both G and G′ are the same. In [Sah74] the author

shows that the problem of finding a minimal equivalent digraph in the general case is

NP-complete. Thus there is little hope of finding an efficient algorithm to solve the

problem.

In obtaining a system with a minimal number of transitions that is weak state-

event equivalent to Q//θw, one would have to solve the minimal equivalent digraph

problem within each cell of the state output map for the graph with edges repre-

senting the silent τ transition relation (ie. we have to find the minimum number of

τ transitions that would still generate the same ⇒se relation). While generating a

minimal transition equivalent system could certainly speed up some model checking

and supervisory control computations, it appears that the effort required to obtain

any such minimal transition system would outweigh any gain in performance as the

result of such transition minimization.

64

3.3 Example: Weak State-Event Observer of a Sim-

ple Real-Time System

In this section we present a small example. The weak state-event observer theory will

be applied to the Timed Transition Model (TTM) M of Figure 3.8.

α, β
M

α := (true, [z : z ⊕2 1], 0, 1)

β := (z = 0, [y : y ⊕3 1], 1,∞)

Θ := (y = z = 0)
Figure 3.8: Example TTM M

A TTM is a guarded transition system with lower and upper time bounds on the

transitions that relate to the number of occurrences of the special transition tick.

For M there are three transitions, α, β and tick, and two program variables, y and

z. The initial condition Θ specifies that M starts with both y and z set to 0. Now

consider the transition α := (true, [z : z ⊕2 1], 0, 1). The guard or “enablement

condition” of α is true, hence the transition is always enabled. When the transition

α occurs, it has the effect specified by its operation function: in this case z becomes

z ⊕2 1 (here ⊕n denotes addition mod n). The lower and upper time bounds for α

are 0 and 1 respectively. For α to occur, its guard condition must evaluate to true

continuously for at least 0 tick transitions and if its guard remains true after one

tick, it will be forced to occur before the next tick event. Since α’s guard transition

always evaluates to true, the above time bounds force at least one, to a finite but

unbounded number of α’s to occur between successive ticks of the “clock”. In the case

of β := (z = 0, [y : y ⊕3 1], 1,∞), the value of z must be 0 for at least one tick before

β can occur. The upper time bound of ∞ indicates that even if β is continuously

enabled for arbitrarily many occurrences of tick, it is never forced to occur. If β does

occur then y changes to y ⊕3 1.

The SELTS representing the “trajectories” of M is shown in Figure 3.9. The

process of obtaining the SELTS representing the legal trajectories of a TTM is covered

65

briefly in Section 2.2.3 The interested reader is referred to [Ost89] for complete details

of the semantics of TTMs used to obtain the SELTS. Beside each state of the SELTS

(0,1)

(0,1)(0,0)

(0,0)

(2,0)

(2,1)

(2,0)

(2,1)

(1,0)

(1,1)

(1,0)

(1,1)

(1,0)

(0,0)

α

tick

α
β

β

β

α
α

α

α

α

α

α

α

αα

tick

tick

tick

tick

α

α

α

(2,0)

tick

Figure 3.9: SELTS generated by TTM M

in Figure 3.9, we write the ordered pair (y, z) to give the current value of the program

variables y and z. The initial state of the SELTS (q0) is the state with the entering

arrow.

Suppose we are interested in the timed behavior of M under the state output map,

P (q) :=

a, y = 2

b, otherwise

The SELTS resulting from these state and event observations is shown in Figure 3.10.

The dashed line indicates the state partition induced by P . States to the left of

the dashed line (states 1-9 and 15) result in a state output of b while those to the

right (states 10-14) produce a state output of a. In this case the event tick remains

observable while α and β are replaced in the SELTS with unobservable τ transitions

since it is only their effect on the state output that is of interest. Once the relations
τ
⇒se

66

(0,1)

(0,1)(0,0)

(0,0)

(2,0)

(2,1)

(2,0)

(2,1)

(1,0)

(1,1)

(1,0)

(1,1)

(1,0)

(0,0)

τ

tick

τ
τ

τ

τ
τ

τ

τ

τ

τ

τ

τ

ττ

tick

tick

tick

tick

τ

τ

τ

(2,0)

tick

τ

ker(PQ)

ωw

b a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 3.10: ker(P) and resulting θw for SELTS generated by TTM M

and
tick
⇒se are determined, we can compute the weak state observer θw, the refinement

of ker(P) shown as dotted lines in Figure 3.10.

To understand how θw is obtained from ker(P), consider the individual states of

the SELTS. States 9 and 14 are the only two states that are the sources of sequences of

unobservable τ transitions that change the state output (eg. 9
τ
⇒se10 and P (10) = a 6=

P (9)). All other states must first execute at least one observable tick transition before

causing a change in the state output. Hence 9 and 14 are sectioned off from their

respective cells of ker(P). When the relation
tick
⇒se is considered, further refinements of

ker(P) result. State 4 can reach state 9 via silent τ transitions within a cell of ker(P)

and a tick (eg. 4
tick
⇒se9) while also being able to access states 1, 2, 3 and 15, states that

cannot reach state 9 via the
tick
⇒se relation. As a result 4 is split off from the other

states of ker(P). The rest of the refinement of ker(P) proceeds in a similar fashion.

It is left to the reader to verify that the partition θw shown in Figure 3.10 is indeed a

compatible partition for the relations
τ
⇒se and

tick
⇒se as defined in the previous section.

67

tick

tick

tick

tick

tick

tick
τ

τtick, τ

tick,

τ

tick, τ

b a

ker(PQ/ωw
)

tick,
τ

Figure 3.11: Weak Quotient system generated by θw

Figure 3.11 presents the weak quotient system with respect to the weak state-event

observer θw of the SELTS of Figure 3.10. Note that in the weak quotient system there

is a single state for each cell of θw. The cell containing state 1, the initial state of the

original SELTS, becomes the initial state of the quotient system. Also, the map PQ/θw

is given by the displayed kernel partition. To simplify the graph for display purposes

we have omitted the self-looped τ transitions that occur for definitional reasons at

each state of the weak quotient system.

3.4 Compositional Consistency

The main goal of this section is to demonstrate that replacing a component system

of a synchronous product with a state-event equivalent system results in a composite

system that is state-event equivalent to the original synchronous product. The result

is that when the properties of interest are preserved by state-event equivalence, one

can use the synchronous product of quotient systems in place of the synchronous

product of the original systems. This replacement has the potential to result in

dramatic state reductions of the models used (eg. Section 5.3 and [Ost95]). The size

of synchronous products typically grows as the product of the sizes of the state sets

68

of the component systems: thus any state reductions performed before synchronous

composition have a multiplicative effect.

The equivalence of a system with its quotient system together with the following

results regarding the synchronous composition of equivalent systems provides us with

the means for performing weak, compositionally consistent, model reduction for the

temporal logic model checking of Chapter 4.

Our proofs of the results of this section are greatly simplified by the use of Theo-

rem 3.13. Instead of arguing at the element level to show that a particular partition is

an output compatible partition, we are able to argue at the arrow level, demonstrating

that certain maps are SELTS homomorphisms.

3.4.1 Strong Compositional Consistency

As was the case with state-event observers, we begin by considering the strong state-

event case and then extend the results to the weak state-event setting. The first

lemma demonstrates how a homomorphism of a system can be used to construct a

homomorphism of the new system created by the synchronous composition of the

system with another SELTS. This lemma is followed by a simple corollary which

together with Theorem 3.13 provides the means for proving the main result regarding

synchronous composition of strongly state-event equivalent systems.

Lemma 3.26 Given three SELTS Q and Qi, i = 1, 2, if h : Q1 → Q2 is a SELTS

homomorphism, then for all Σs ⊆ Σ

h × idQ : Q1|[Σs]|Q → Q2|[Σs]|Q

(ie. h × idQ : Q1 × Q → Q2 × Q is a SELTS homomorphism)

Proof: Since h and idQ are homomorphisms h × idQ((q10, q0)) = (q20, q0) and, with

the help of Claim 2.5, (P2 × P) ◦ (h× idQ) = (P2 ◦ h)× (P ◦ idQ) = P1 × P . All that

remains is to show that for all α ∈ Σ,

(h × idQ)∗ ◦ αQ1|[Σs]|Q = αQ2|[Σs]|Q ◦ (h × idQ)

69

For αQ1|[Σs]|Q there are two cases we have to consider.

Case 1: α ∈ Σs. Then αQ1|[Σs]|Q = αQ1 ⊗ αQ so

(h × idQ)∗ ◦ αQ1|[Σs]|Q = (h × idQ)∗ ◦ (αQ1 ⊗ αQ)

= (h∗ ◦ αQ1) ⊗ ((idQ)∗ ◦ αQ)

by Claim 2.6 (i)

= (αQ2 ◦ h) ⊗ (αQ ◦ idQ)

since h and idQ are homomorphisms

= (αQ2 ⊗ αQ) ◦ (h × idQ)

by Claim 2.6 (ii)

= αQ2|[Σs]|Q ◦ (h × idQ)

as required.

Case 2: α 6∈ Σs. Then αQ1|[Σs]|Q = (αQ1 ⊗ idQ) ∪ (idQ1
⊗ αQ) so

(h × idQ)∗ ◦ αQ1|[Σs]|Q = (h × idQ)∗ ◦ (αQ1 ⊗ idQ ∪ idQ1
⊗ αQ)

= (h × idQ)∗ ◦ (αQ1 ⊗ idQ) ∪ (h × idQ)∗ ◦ (idQ1
⊗ αQ)

by Claim 2.4 (i).

But,

(h × idQ)∗ ◦ (αQ1 ⊗ idQ) = (h∗ ◦ αQ1) ⊗ ((idQ)∗ ◦ idQ)

by Claim 2.6 (i)

= (αQ2 ◦ h) ⊗ (idQ ◦ idQ)

since h and idQ are homomorphisms

= (αQ2 ⊗ idQ) ◦ (h ⊗ idQ)

by Claim 2.6 (ii).

Similarly,

(h × idQ)∗ ◦ (idQ1
⊗ αQ) = (idQ2

⊗ αQ) ◦ (h × idQ)

So,

70

(h × idQ)∗ ◦ αQ1|[Σs]|Q = (αQ2 ⊗ idQ) ◦ (h × idQ) ∪ (idQ2
⊗ αQ) ◦ (h × idQ)

= [(αQ2 ⊗ idQ) ∪ (idQ2
⊗ αQ)] ◦ (h × idQ)

by Claim 2.4 (ii)

= αQ2|[Σs]|Q ◦ (h × idQ)

as required. 2

Given that a homomorphism h can be used to construct the new homomorphism

h× idQ of the composed systems, it seems logical to ask if for homomorphisms hL, hR,

their product hL × hR is a homomorphism of the synchronous product of their asso-

ciated systems. This question is formalized and answered in the affirmative by the

following corollary.

Corollary 3.27 Given SELTS homomorphisms hL : QL1 → QL2 and hR : QR1 →

QR2, then for any Σs ⊆ Σ:

hL × hR : QL1|[Σs]|QR1 → QL2|[Σs]|QR2

Proof: Since

hL × hR = (hL × idQR2
) ◦ (idQL1

× hR)

the result immediately follows from Lemma 3.26 together with the fact that the

composition of SELTS homomorphisms is a homomorphism by Lemma 3.7. 2

QL2 × QR2

QL1 × QR1

P(QL2 × QR2)

P(QL1 × QR1)

(hL × hR)∗

αQL2|[Σs]|QR2

αQL1|[Σs]|QR1

hL × hR

Figure 3.12: Commutative diagram for Corollary 3.27

Corollary 3.27 states that the diagram in Figure 3.12 commutes.

71

For the remainder of this section we assume that we are given SELTS

QLi = 〈QLi, Σi, R
Li
Σ , qLi0, PLi〉 with PLi : QLi → RL, for i = 1, 2

QRi = 〈QRi, Σi, R
Ri
Σ , qRi0, PRi〉 with PLi : QRi → RR, for i = 1, 2

Now assume that I := (Σs, fL, fR) with state output synchronization maps fL :

RL → R and fR : RR → R is a compatible interface for the QL1 and QR1. In order

to extend this result of Corollary 3.27 on the compositional consistency of event

composition to compositional consistency for state-event composition, we combined

the above commutative diagram with the commutative diagram in Figure 2.8 relating

|[Σs]| to |[I]| (see Section 2.2.3). We then obtain the commutative diagram shown

in Figure 3.13. Here πeq1, πeq2 are the “projections” resulting from intersection with

their respective equalizer sets from the arrow theoretic definition of |[I]|. That is, for

i = 1, 2

πeqi : P(QLi × QRi) → P(QLi × QRi)

A ∈ P(QLi × QRi), A 7→ A ∩ eq(fL ◦ PLi ◦ π1, fR ◦ PRi ◦ π2)

where, eq(fL ◦ PLi ◦ π1, fL ◦ PRi ◦ π2)

= {(qLi, qRi) ∈ QLi × QRi : fL ◦ PLi ◦ π1(qLi, qRi) = fR ◦ PRi ◦ π2(qLi, qRi)}

= {(qLi, qRi) ∈ QLi × QRi : fL ◦ PLi(qLi) = fR ◦ PRi(qRi)}

Given that the diagrams in Figures 2.8 and 3.12 commute, in order to prove that

the diagram in Figure 3.13 commutes, we need only prove that the subdiagram in

Figure 3.14 commutes. This is the subject of the following lemma.

Lemma 3.28 The diagram in Figure 3.14 commutes, ie.

(hL × hR)∗ ◦ πeq1 = πeq2 ◦ (hL × hR)∗

72

QL2 × QR2

QL1 × QR1

αQL2|[Σs]|QR2

αQL1|[Σs]|QR1

P(QL1 × QR1)

(hL × hR)∗

P(QL2 × QR2)

πeq2

πeq1

P(QL1 × QR1)

P(QL2 × QR2)

hL × hR (hL × hR)∗

αQL1|[I]|QR1

αQL2|[I]|QR2

Figure 3.13: Commutative diagram for Corollary 3.27

P(QL1 × QR1)

(hL × hR)∗

P(QL2 × QR2)

πeq2

πeq1

P(QL1 × QR1)

P(QL2 × QR2)

(hL × hR)∗

Figure 3.14: Commutative diagram for Lemma 3.28

73

Proof: Let A ⊆ QL1 × QR1 and (qL2, qR2) ∈ (hL × hR)∗ ◦ πeq1. Then there exists

(qL1, qR1) ∈ πeq1(A) such that

hL × hR(qL1, qR1) = (hL(qL1, hR(qR1)) = (qL2, qR2) (3.2)

Since (qL1, qR1) ∈ πeq1(A), by the definition of πeq1 we know

fL ◦ PL1(qL1) = fR ◦ PR1(qR1) (3.3)

Thus using the fact that hL, hR are homomorphisms so that PL2 ◦ hL = PL1 and

PR2 ◦ hR = PR1 we have

fL ◦ PL2(qL2) = fL ◦ PL2 ◦ hL(qL1)

= fL ◦ PL1(qL1)

= fR ◦ PR1(qR1), by (3.3)

= fR ◦ PR2 ◦ hR(qR1)

= fR ◦ PR2(qR2)

By the definition of πeq2, if (qL2, qR2) ∈ B for a given set B ⊆ QL2 × QR2, then

(qL2, qR2) ∈ πeq2(B). But by (3.2), (qL2, qR2) ∈ (hL × hR)∗(A). Thus (qL2, qR2) ∈

πeq2 ◦ (hL × hR)∗(A) Thus

(hL × hR)∗ ◦ πeq1(A) ⊆ πeq2 ◦ (hL × hR)∗(A)

Now assume (qL2, qR2) ∈ πeq2 ◦ (hL × hR)∗(A). Then by definition of πeq2,

fL ◦ PL2(qL2) = fR ◦ PR2(qR2) (3.4)

and (qL2, qR2) ∈ (hL × hR)∗(A) since πeq2(B) ⊆ B. Thus there exists (qL1, qR1) ∈ A

such that (3.2) holds.

74

Again using the fact that hL, hR are homomorphisms, we have

fL ◦ PL1(qL1) = fL ◦ PL2 ◦ hL(qL1)

= fL ◦ PL2(qL2)

= fR ◦ PR2(qR2), by (3.4)

= fR ◦ PR2 ◦ hR(qR1)

= fR ◦ PR1(qR1)

Thus (qL1, qR1) ∈ πeq1(A) by the definition of pieq1 and hence (qL2, qR2) ∈ (hL×hR)∗ ◦

πeq1(A). We conclude that

(hL × hR)∗ ◦ πeq1(A) ⊇ πeq2 ◦ (hL × hR)∗(A)

thereby proving the desired result. 2

We are now ready to prove the first of the two main results contained in this

section. Theorem 3.29 is the strong version of the result which states that equivalent

subsystems may be substituted for the original subsystems in a synchronous product

and the resulting new composite system will be equivalent to the composition of the

original systems.

Theorem 3.29 Given SELTS QLi, QRi, i = 1, 2. If QL1 ∼se QL2 and QR1 ∼se QR2,

then for any compatible interface I := (Σs, fL, fR) as defined above such

(QL1|[I]|QR1) ∼se (QL2|[I]|QR2)

Proof: By Theorem 3.13, there exist SELTS QL and QR together with homomor-

phisms hLi : QLi → QL and hRi : QRi → QR, i = 1, 2. Hence

QL1|[I]|QR1
hL1×hR1−→ QL|[I]|QR

hL2×hR2←− QL2|[I]|QR2

75

by Corollary 3.28. This then allows us to apply the opposite direction of Theorem 3.13

to obtain the desired result. 2

Theorem 3.29 also includes the pure event synchronous composition operator |[Σs]|

since this is a special case of |[I]| when fL and fR are trivial constant state output

synchronization maps.

3.4.2 Weak Compositional Consistency

By definition, weak state-event equivalence is just strong state-event equivalence of

the observational closures of the original systems. Thus we begin this section by

investigating the relationship between the observational closure operator ′
se and the

state-event synchronous composition operator |[I]|. The event synchronous composi-

tion operator can be treated as a special case of state-event composition. What we

discover will allow us to reduce the weak compositional consistency problem to a case

in which the results for strong compositional consistency can be applied.

If the observational closure operator distributed over the synchronous composition

operator, then we could use the fact that observational closure is idempotent, together

with Theorem 3.13 to obtain a weak version of the previous theorem. Unfortunately

observation closure does not distribute over synchronous composition.

Consider Figure 3.15. Here we use the event synchronous composition operator

with an empty synchronization set Σs = ∅. To avoid cluttering the illustration, in

the lower two SELTS we do not show the self-looped τ transitions that are present

at every state by the definition of ′
se operator. One can easily see that

(Q1|[∅]|Q2)
′
se 6= (Q1)

′
se|[∅]|(Q2)

′
se

In fact, (Q1|[∅]|Q2)
′
se 6∼se (Q1)

′
se|[∅]|(Q2)

′
se either! This outcome results from the

inability of the distributed observational closure to interleave silent τ transitions from

one subsystem with transitions from the other subsystem. In Figure 3.15 this is

reflected by the lack of an α transition from (1, 1) to (2, 2) in (Q1)
′
se|[∅]|(Q2)

′
se. A

quick inspection of the two composite systems shows that they are weakly state-event

76

(Q1|[∅]|Q2)
′
se

α

α

τ

τ

(1, 1)

(2, 2)

(2, 1)

α

α

τ

τ

(1, 2)

(1, 1)

(2, 2)

(1, 2) (2, 1)α

(Q1)
′
se|[∅]|(Q2)

′
se

Q2

1

2

α

Q1

1

2

τ

Figure 3.15: Observational closure fails to distribute over synchronous product.

equivalent since (Q1|[∅]|Q2)
′
se = ((Q1)

′
se|[∅]|(Q2)

′
se)

′
se. In the lemma below we show

that this property holds in general for state-event composition.

Lemma 3.30 Let QL, QR be SELTS with compatible interface I := (Σs, fL, fR) as

defined in Lemma 3.28. If Σs ⊆ Σo (ie. τ 6∈ Σs) then

(QL|[I]|QR)′se = ((QL)′se|[I]|(QR)′se)
′
se

Proof: Let QA := QL|[Σs]|QR and QB := (QL)′se|[Σs]|(QR)′se. QA and QB differ

only in their sets of transition relations which we denote by RA and RB. Clearly

RA ⊆ RB since the ′
se operator has the effect of adding transitions to a SELTS,

hence the transition relations of the subsystems of QA are contained in the transition

relations of the corresponding subsystems of QB. If we denote the set of transition

relations of QA
′
se and QB

′
se by R′

A and R′
B, then RA ⊆ RB implies R′

A ⊆ R′
B. Thus

to prove QA
′
se = QB

′
se, we need only show that R′

A ⊇ R′
B. For this containment, we

will separate the cases when an event α ∈ Σs and α 6∈ Σs.

Case 1: α ∈ Σs. Assume that (qL1, qR1)
α
→(q′L1, q

′
R1) in QB

′
se . Therefore in QB,

77

(qL1, qR1)
α
⇒se(q

′
L1, q

′
R1). That is, there exist (qL2, qR2) and (q′L2, q

′
R2) such that in QB

(qL1, qR1) ⇒se (qL2, qR2)
α
→(q′L2, q

′
R2) ⇒se (q′L1, q

′
R1)

But the ⇒se relation is made up entirely of unobservable τ transitions that do not

change the system’s state output and hence are unaffected by the state output syn-

chronization maps. Also, by assumption, τ 6∈ Σs, so we can conclude that qx1 ⇒se qx2

and q′x2 ⇒se q′x1 in Qx
′
se for x = L,R. By the idempotence of observational closure

we have that for any Q, q ⇒se q′ in Q iff q ⇒se q′ in Q′
se. Therefore from the above

we can conclude that qx1 ⇒se qx2 and q′x2 ⇒se q′x1 in Qx for x = L,R.

Again, since ⇒se consists only of τ transitions that are unaffected by the state

output synchronization maps and τ 6∈ Σs, we now know that (qL1, qR1) ⇒se (qL2, qR2)

and (q′L2, q
′
R2) ⇒se (q′L1, q

′
R1) in QA. Thus in order to show that (qL1, qR1)

α
→(q′L1, q

′
R1)

in QA
′
se, all that remains is to show that

(qL2, qR2)
α
→(q′L2, q

′
R2) in QB implies

(qL2, qR2)
α
⇒se(q

′
L2, q

′
R2) in QA

This follows since (qL1, qR1) ⇒se (qL2, qR2)
α
⇒se(q

′
L2, q

′
R2) ⇒se (q′L1, q

′
R1) implies

(qL1, qR1)
α
⇒se(q

′
L1, q

′
R1).

Now, by the definition of |[I]|, since (qL2, qR2)
α
→(q′L2, q

′
R2) in QB and α ∈ Σs, it

must be the case that,

qx2
α
→q′x2 in Qx

′
se, for x = L,R and (3.5)

fL ◦ PL(q′L2) = fR ◦ PR(q′R2) (3.6)

But then by (3.5), qx2
α
⇒seq

′
x2 in Qx for x = L,R (ie. for x = L,R there exists qx3 and

q′x3 such that qx2 ⇒se qx3
α
→q′x3 ⇒se q′x2 in Qx). By (3.6) and the fact that ⇒se does

not change state outputs we can conclude that fL ◦PL(q′L3) = fR ◦PR(q′R3). But then

78

by the definition of |[I]| we have

(qL2, qR2) ⇒se (qL3, qR3)
α
→(q′L3, q

′
R3) ⇒se (q′L2, q

′
R2)

in QA so (qL2, qR2)
α
⇒se(q

′
L2, q

′
R2) in QA and hence (qL2, qR2)

α
→(q′L2, q

′
R2) in QA

′
se.

This completes our proof for Case 1.

Case 2: α 6∈ Σs. Again assume that (qL1, qR1)
α
→(q′L1, q

′
R1) in QB

′
se. Therefore

fL ◦ PL(q′L1) = fR ◦ PR(q′R1) and in QB (qL1, qR1)
α
⇒se(q

′
L1, q

′
R1). That is, there ex-

ists (qL2, qR2) and (q′L2, q
′
R2) such that in QB

(qL1, qR1) ⇒se (qL2, qR2)
α
→(q′L2, q

′
R2) ⇒se (q′L1, q

′
R1)

Since α 6∈ Σs, it must be the case that qL2 = q′L2 and qR2
α
→q′R2 in QR

′
se or qR2 = q′R2

and qL2
α
→q′L2 in QL

′
se. Without loss of generality, assume that qL2 = q′L2. From our

work in Case 1, the problem reduces to showing that (qL2, qR2)
α
→(q′L2, q

′
R2) in QB

implies (qL2, qR2)
α
⇒se(q

′
L2, q

′
R2) in QA. The argument is the same as for Case 1 except

that we need only concern ourselves with the α transition in QR
′
se. 2

Since weak observation equivalence ignores differences resulting from unobservable

τ transitions, in the weak state-event version of Theorem 3.29 below, we require that

τ not be part of the synchronization set Σs.

Theorem 3.31 Let SELTS QLi, QRi, i = 1, 2 be given. If QL1 ≈se QL2 and QR1 ≈se

QR2 then for all compatible interfaces I := (Σs, fL, fR) such that τ 6∈ Σs:

(QL1|[I]|QR1) ≈se (QL2|[I]|QR2)

Proof: By the definition of weak state-event equivalence, QL1
′
se ∼se QL2

′
se and

QR1
′
se ∼se QR2

′
se. Thus, by Theorem 3.29

(QL1)
′
se|[I]|(QR1)

′
se ∼se (QL2)

′
se|[I]|(QR2)

′
se (3.7)

79

The fact that ∼se implies ≈se together with (3.7) gives

(QL1)
′
se|[I]|(QR1)

′
se ≈se (QL2)

′
se|[I]|(QR2)

′
se

Using the definition of ≈se, we have

((QL1)
′
se|[I]|(QR1)

′
se)

′
se ∼se ((QL2)

′
se|[I]|(QR2)

′
se)

′
se

By Lemma 3.30 ((QLi)
′
se|[I]|(QRi)

′
se)

′
se = (QLi|[I]|QRi)

′
se, i = 1, 2 so

(QL1|[I]|QR1)
′
se ∼se (QL2|[I]|QR2)

′
se

which by definition of ≈se is our desired result. 2

If we restrict systems to synchronizing on observable transitions then the above

result together with the fact that for any SELTS Q ≈se Q//θw means that we can

take the synchronous product of the subsystems’ quotient systems instead of the

(typically) larger original systems. As we will see in the next chapter there are many

system properties that are preserved by weak state-event equivalence, allowing us to

use the reduced models resulting from the quotient systems for verification.

In the supervisory control of DES, the system supervisor can be viewed as another

SELTS that imposes its control actions through running in a synchronous product

with the plant. The importance of Theorem 3.31 then becomes apparent as it will

eventually allow us to design a controller using the plant’s weak quotient system in

the case when all controllable transitions are observable.

3.5 Summary

The general state-event setting of SELTS with unobservable transitions is considered

as a way of hiding complexity and inducing hierarchy through quotient systems. This

setting leads to the development of state-event observers that are applicable to a

wide variety of problems since SELTS are the underlying model of many discrete

80

event formalisms.

State-event observers of SELTS represent a unifying framework for observers, and

thereby hierarchy, in state and event based settings, enabling us to define observers

in DES settings where both states and events are important (eg. Ostroff’s TTMs).

This unification of state and event methods is evidenced by the fact that the state

observers of [Won76] and event based observation equivalences of Milner [Mil80],

[Mil89] are both special cases of state-event observers. The unification of methodolo-

gies is obtained through the algebraic characterization of strong and weak state-event

observers using the upper semilattice of compatible partitions of a SELTS. The al-

gebraic characterization then enables appeal to efficient polynomial time algorithms

for computing state-event observers based upon the Relational Coarsest Partition

problem.

The algebraic characterization of state-event equivalence using SELTS homomor-

phisms aided us in demonstrating the compositional consistency of state-event equiv-

alence. It is this important property that in the following two chapters will allow us

to perform model reduction of composite systems for temporal logic model checking

and hierarchically consistent control systems design.

81

Chapter 4

Model Reduction of Modules for

State-Event Temporal Logics

In this chapter we utilize algebraic state-event structures to model systems together

with state-event temporal logics as a means of specification. The main contribution

of the chapter is a compositionally consistent model reduction technique for a class

of “state-event stuttering-invariant” temporal formulas. In particular, the method

provides a means of “weak” model reduction for a discrete time temporal logic that

is a simplification of Ostroff’s RTTL [Ost89]. The principal ideas of this chapter were

first outlined in [LOW96]. Justification of our choice of a combined state-event and

discrete time setting can be found in Section 1.1. We will therefore begin with a

comparison of our work to previous works that outlines the sense in which our model

reduction technique is both weak and compositionally consistent.

While symbolic model-checking techniques such as [McM92] have proven effective

for some very large systems [BCM92], the largest of these systems typically come

from the digital hardware domain and have a great deal of regularity in their state

transition structure that can be exploited by the symbolic techniques to obtain com-

pact representations of large systems. If one wishes to model-check large concurrent

systems lacking in symmetry, larger digital hardware systems, or simply to reduce

the computation time required, one must perform some sort of model reduction.

In model reduction one starts out with a system for which one would like to verify

82

(model-check) formulas from a particular set of formulas or class of temporal formulas

that are of interest. To facilitate the verification process, or, in some cases, make

the problem tractable, a reduced model is obtained such that, if the reduced model

satisfies the temporal formulas under investigation, then the original system satisfies

the temporal formulas. If the model-checking of a formula on the reduced model

provides a definitive answer regarding the satisfaction of the formula in the original

(unreduced) system, we say the reduction technique is exact. If this model reduction

technique is performed so that the mutual satisfaction of formulas is only guaranteed

for a specific finite set of formulas, we say that the method is a formula-specific

model reduction technique. But if, as in this thesis, the method always guarantees

the mutual satisfaction of all formulas in a class of temporal formulas, we refer to the

technique as being formula-independent for the given class of formulas. For example,

the weak model reduction technique of Section 4.3 is formula-independent for the

class of “State-Event Stuttering-Invariant” formulas defined later in this chapter. In

addition to preserving the truth values of a particular class of temporal formulas, the

model reduction technique presented here is “compositionally consistent” in the sense

that for any formula from a defined class of formulas, the composition of two reduced

models satisfies the formula iff the composition of the two original systems satisfies

the formula.

In addition to the above terms, in our comparison of previous works with the work

at hand, we will make distinctions between “strong” and “weak” model reduction

techniques. In a strong reduction technique, a single transition in the original system

model results in a single transition in the reduced model. In weak model reduction

techniques, a single transition may be used by the reduced model to represent a finite

sequence of transitions in the original system model. The result is that weak model

reduction techniques tend to achieve a greater reduction in state size at the expense

of preserving the truth values of fewer formulas and requiring greater computational

effort to compute the reduced system. We now provide some additional motivation

for the use of weak reduction techniques.

In concurrent systems built from interacting modules, we are interested in specify-

83

ing a module’s observable behavior or “interface” with other systems. If two modules

produce identical behavior at their interfaces and differ only in their internal behavior,

then they should satisfy the same interface specification. While many temporal logics

have been successfully used to specify systems’ behaviors, straightforward application

of temporal logics is often too discriminating with respect to the internal actions of

concurrent systems. Since we want to be able to reason about observed events and

changes in the system’s state output, we define “weak satisfaction” of a temporal

formula to provide us with a class of state-event stuttering-invariant formulas which

is similar to stuttering-invariant formulas of [MP92] with some key differences as a

result of our state-event setting. The main result of the chapter provides a com-

positionally consistent, weak model reduction technique for the class of state-event

stuttering-invariant formulas by model-checking a system’s weak state-event quotient

system.

Methods based upon abstract interpretations such as [BBCS92], [CGL94] and

[DGG94], provide examples of strong, formula specific model reduction. Although

they are “strong” techniques, these methods can provide a significant reduction in

state size by an appropriate choice of abstraction. The development of the abstract

model can be an iterative process, with the mapping between concrete and abstract

domains being refined when there is insufficient information at the abstract level to

determine the truth value of one of the formulas of interest. The creation of these

abstractions typically requires some insight from the systems designer.

By dropping “immediate” operators from the temporal formulas and considering

events with interleavings that do not affect the the truth values of the formulas of in-

terest, Valmari has similarly been able to achieve substantial state reduction [Val90].

The method, which makes use of “stubborn sets,” has an extension to a “weak” ob-

servational setting, but the reduced models still suffer from the fact that they are

dependent upon the formulas to be verified. As a result of this dependency, changes

to the system’s specifications require the computation of a new reduced model. All of

the above formula dependent techniques suffer from an inability to guarantee compo-

sitional consistency. Hence, to verify a composition of systems using these methods,

84

one is forced to compute the composition of the original systems and then perform

model reduction for the specific formulas on the (generally much larger) composite

system.

For the logic CTL∗, a superset of linear and branching temporal logics, strong

bisimulation preserves the truth values of the standard satisfaction relation for all

formulas [BCG87], [Jos90]. In practice strong bisimulation equivalence is often too

strong to provide a significant reduction in the state size of the model. While this

deficiency spawned the formula specific reductions described above, it also led to

formula-independent methods that achieve greater reduction at the price of preserving

the truth values of a smaller class of formulas.

The formula-independent methods of model reduction are typically based upon

algebraic equivalences derived from the work of Hoare [Hoa85] and Milner [Mil89]. In

[KV91], [KV92], Kaivola and Valmari provide a method of “weak” model reduction

for a nexttime-less linear temporal logic based upon failure equivalence [Hoa85]. As

one might expect, the algorithm is worst case exponential. The papers deal with

state based models that are converted into event oriented models by labeling tran-

sitions with the changes they cause in the states (similar to [Law92], [LW95]). In

[Kai96] Kaivola investigates the truth preserving properties of the equivalences of

[KV91, KV92] in a compositional setting, with state and event based parallel com-

position operators. Real-time aspects are not explicitly considered in the temporal

logic used and immediate operators are forbidden. Another state-event setting is

that of [GL93] where the separation of state values and event labels allows the use of

the standard event synchronization parallel composition operators. In [GL93] Graf

and Loiseaux provide conditions under which abstractions preserving safety proper-

ties expressible in a fragment of the branching time µ-calculus are compositionally

consistent. Their underlying model of state-event systems, which is equivalent to the

State-Event Labeled Transition Systems (SELTS) used in this thesis, can model the

state-event synchronous product of systems. This is a “strong” abstraction that does

not deal with fairness properties.

In our work we provide a method for “weak,” compositionally consistent model

85

reduction for state event systems that preserves a class of safety and fairness proper-

ties related to systems’ observed behaviors. The state-event equivalence relation we

use for our form of formula-independent model reduction is an extension of Milner’s

weak observation (bisimulation) equivalence. Kaivola and Valmari rejected weak ob-

servation equivalence for model reduction on the grounds that it did not necessarily

preserve fairness properties due to its inability to distinguish divergences (infinite

sequences of unobservable events). This problem does not arise in Ostroff’s RTTL

which has the requirement that an (observable) tick of the global clock must occur

infinitely often in any legal computation.

In the following section we use SELTS to model modules that can be combined via

parallel composition operators to create new modules and systems. We also define a

simple (real-time) state-event temporal logic that can be used for system specification.

Section 4.2 demonstrates how strong state-event equivalence can be used as the basis

of a strong, compositionally consistent and computationally efficient model reduction

technique for our entire logic. Section 4.3 develops a weak model reduction technique

for the subclass of state-event stuttering-invariant temporal formulas through the

use of weak state-event equivalence and the results of the previous section. Greater

state reduction is achieved through the restriction of the formulas to be preserved. It

should be noted that all the reduced models of this chapter are computable in poly-

nomial time, thereby permitting practical application of the methods. To conclude

the chapter, we prove that our model reduction technique for SELTS can be applied

to a special case of TTM parallel composition where the TTMs being composed have

well defined “compatible” interfaces. A TTM together with an interface specification

is called TTM module.

86

4.1 A Simple Real-Time State-Event

Temporal Logic

In this section we first define the state-event sequences associated with a SELTS as a

way of capturing the behavior of a SELTS. We then introduce state-event temporal

logics as an abstract method for reasoning about SELTS behavior with particular

attention being paid to a simple real-time logic.

In general when discussing SELTS throughout this chapter AP,AP1, AP2, . . . will

represent sets of atomic propositions and the SELTS state output map will map each

state to the set of atomic propositions satisfied by the state (i.e. P : Q → P(AP)).

We make a slight modification of the state-event synchronous product operator of

Definition 2.13 to allow the straightforward application of the definition of satisfaction

of temporal formulas in subsequent sections. The state output map of the state-event

synchronous product is changed to map a state of the composite system to the union

of the state outputs for the component subsystems. This poses a problem when the

systems share some variables or atomic propositions. For example, if P1(q10) = {u =

0, v = 1} in Q1 and P2(q20) = {v = 2, w = 1} in Q2 then (q10, q20), the initial state

of the composite system, would have a state output of {u = 0, v = 1, v = 2, w = 1}

- which is not a consistent set of assignments for the shared variable v. In order

to ensure that the set of atomic propositions satisfied by a state of the composite

system remains consistent, we will restrict the state output synchronization maps of

the interface definition. We will consider interfaces of the form I := (Σs, πAP2
, πAP1

).

Otherwise the definition remains unchanged. This modification does not affect the

results of Section 3.4 regarding compositional consistency.

Definition 4.1 Given two SELTS, Qi = 〈Qi, Σi, R
i
Σ, qi0, Pi〉, i = 1, 2 where Pi :

Qi → P(APi) for i = 1, 2 and a compatible interface I := (Σs, πAP2
, πAP1

) where

Σs ⊆ Σ1 ∩ Σ2 and πAP2
: P(Q1) → P(Q1) such that A 7→ A ∩ AP2 and πAP2

:

P(Q2) → P(Q2) such that A 7→ A∩AP1. Then the I-synchronous product of Q1 and

Q2 is given by:

87

Q1|[I]|Q2 := 〈Q1 × Q2, Σ1 ∪ Σ2, RΣ1∪Σ2
, (q10, q20), P 〉

Here P : Q1 ×Q2 → P(AP1 ∪AP2) is defined by P ((q1, q2)) = P1(q1)∪P2(q2) and the

elements of RΣ1∪Σ2
= {

α
→ : α ∈ Σ1 ∪ Σ2} are binary relations over Q1 × Q2 defined

as follows: (q1, q2)
α
→(q′1, q

′
2) iff

πAP2 ◦ P1(q
′
1) = πAP1 ◦ P2(q

′
2) (†)

and

(i) α ∈ Σs, and qi
α
→q′i in Qi for i = 1, 2, or

(ii) α 6∈ Σs, q1
α
→q′1 in Q1 and q2 = q′2, or

(iii) α 6∈ Σs, q2
α
→q′2 in Q2 and q1 = q′1.

Condition (†) states that state output maps of the reachable states agree on the

subsets of propositions from AP1∩AP2 that they satisfy (e.g. P1(q
′
1)∩AP2 = P2(q

′
2)∩

AP1).

4.1.1 Computations of SELTS

Before defining the computations of a SELTS, we will introduce some notation to aid

in our discussion of generated and observed state-event sequences. We are interested

in sequences of both states and events so for notational convenience we define Σ− :=

Σ ∪ {−} and S := Q × Σ−. For s = (q, α) ∈ S, in addition to the set of atomic

propositions found in P (q) we associate the atomic proposition η = α. We refer to

η as the (next) transition variable. The computations of the SELTS Q will then be

a subset of the union of the set of all finite, non-empty, state-event sequences S+,

and the set of all infinite state-event sequences Sω. As a notational convenience, we

introduce the notation |σ|, which for σ = s0s1s2 . . . sn ∈ S+ is defined as |σ| = n and

for σ = s0s1s2 . . . ∈ Sω, |σ| = ω.

88

Definition 4.2 Given a SELTS Q, the set of computations of Q, denoted M(Q),

is the largest subset of S+ ∪ Sω such that for all σ ∈ M(Q),

σ =

s0s1 . . . sn = (q0, α0)(q1, α1) . . . (qn,−) ∈ S+, or,

s0s1 . . . = (q0, α0)(q1, α1) . . . ∈ Sω

and

(i) Initialization: q0 is the initial state of Q.

(ii) Succession: 0 ≤ i < |σ| implies αi ∈ Σ and qi+1 ∈ αQ(qi) (i.e. qi
α
→iqi+1 in

Q).

(iii) Diligence: αi = − iff i = |σ| and for all α ∈ Σ, αQ(qi) = ∅.

In Definition 4.2, the purposes of conditions (i) and (ii) are, respectively, to guar-

antee that the computation starts in the system’s initial state and that the change

from one state to the next via the given event is possible in Q. Condition (iii) states

that the only finite sequences in M(Q) are those which terminate in a state where

no transitions are possible and hence the final “event” of the state-event sequence is

denoted by −. This diligence condition differs from that of [MP92] in that there is

no idling transition in our setting so we allow finite sequences of states to be compu-

tations and modify our definition of temporal semantics accordingly [Arn94].

4.1.2 Temporal Logic of State-Event Sequences

We now give a brief summary of temporal logic and refer the reader to [MP92],

[Ost89] and [Arn94] for the full details. Following [Ost89], the state-event sequences

defined above will play the role of the state sequences in [MP92]. This will allow us to

distinguish state formulas and state-event formulas. RTTL, as an example of a state-

event temporal logic, is based upon Manna-Pnueli temporal logic with additional

proof rules for dealing with real-time (tick event) properties. To allow us to express

simple real-time properties we add a bounded “until” operator.

89

State-event formulas are arbitrary boolean combinations of atomic predicates. We

say that a state-event formula is state formula if is does not include any transition

predicates such as η = α. For example, (y ≤ 10 ∧ x = atdelay) ∨ t = 5 is both a

state formula and a state-event formula while η = α ∨ y = 3 is a state-event formula

but not a state formula. State-event formulas (and hence state formulas) do not

contain any temporal operators. For a state formula Fs and a state q, we use the

standard inductive definition of satisfaction and write q |= Fs when Fs is true in state

q. Similarly the definition of satisfaction can be extended to any state-event pair

s ∈ S and any state-event formula Fse.

In the following inductive definition of satisfaction of temporal state-event formu-

las we will consider an arbitrary (possibly finite) state-event sequence σ = s0s1 . . . =

(q0, α0)(q1, α1) . . . Henceforth σk will be used to denote the k-shifted suffix of σ,

σk := sksk+1 . . . = (qk, αk)(qk+1, αk+1) . . .

when it exists (i.e. when |σ| ≥ k). When talking about projections of computations

we will denote the prefix of σ up to position k by σ−k = (q0, α0)(q1, α1) . . . (qk, αk).

For each α ∈ Σ we use the notation #α(σ, i) to denote the number of α transitions

that occur between q0 and qi in the state-event sequence σ. If |σ| < i then #α(σ, i)

is undefined.

Definition 4.3 (Satisfaction) For temporal formulas F, F1, F2 and state-event se-

quence σ, the satisfaction relation is defined as follows:

• If F ∈ AP is an atomic predicate, then σ |= F iff s0 |= F (i.e. F ∈ P (q0))

• If F := (η = α), then σ |= F iff α0 = α

• σ |= F1 ∨ F2 iff σ |= F1 or σ |= F2

• σ |= F1 ∧ F2 iff σ |= F1 and σ |= F2

• σ |= ¬F iff σ 6|= F

90

• σ |= ©F iff σ1 exists and σ1 |= F

• σ |= F1UF2 iff σ |= F2 or ∃k > 0 such that σk is defined, σk |= F2 and ∀i, 0 ≤ i <

k, σi |= F1.

• σ |= F1U
α
[l,u]F2 iff σ |= F2 or ∃k > 0 such that σk is defined, σk |= F2 and ∀i, 0 ≤

i < k, σi |= F1 and l ≤ #α(σ, k) ≤ u.

The “next” operator © and “until” operator U are typically used to define addi-

tion operators. In particular the “eventually” operator 3F , which denotes (true)UF ,

and the “henceforth” operator 2F , which is an abbreviation of ¬3¬F . As an ex-

ample of a temporal formula, consider F := 2 © true. F is satisfied only by those

σ such that |σ| = ω. The Uα
[l,u] operator is just the until operator subject to the

restriction that for a formula F1U
α
[l,u]F2, F2 must become true after the lth occur-

rence of α and before the (u + 1)th occurrence of α. In systems in which time is

represented by discrete tick events the U tick
[l,u] operator can be used to specify that a

system meets hard time bounds. For example, any system satisfying the formula

(true)U tick
[0,2](η = β) will produce a β event before 3 time units have passed. We will

use U tick
≤k as an abbreviation for U tick

[0,k]. For example the above formula can be written

as (true)U tick
≤2 (η = β).

Definition 4.4 Given a SELTS Q and a temporal formula F , we say that F is Q-

valid, written Q |= F , iff for all σ ∈ M(Q), σ |= F .

Fairness

Typically when a given transition structure is used as the model for a system, a

designer specifies some fairness constraints which a computation must satisfy if it is to

be considered a “legal” computation of the system. For example, all systems in RTTL

have the fairness constraint that the tick event must occur infinitely often (23(η =

tick)), that is the system must not stop the clock or permit an infinite number of

non-tick transitions to occur between successive clock ticks. Given a specification as

a temporal formula F , one then is not so much interested in verifying that all the

computations of the transition structure satisfy F but rather in verifying that all the

91

legal computations satisfy F . That is Q |= ¬Ffair∨F , where Ffair is the conjunction of

all formulas that are to be satisfied by the system’s legal computations. In performing

such a verification one implicitly assumes that the set of legal computations considered

is non-empty (i.e. ∃σ ∈ M(Q), σ |= Ffair).

4.2 Strong State-Event Model Reduction

In this section we assume that while we have perfect event information (all events

including τ events are observable), only partial state information is provided via the

state output map. The main result of this section is that strongly state-event equiv-

alent systems satisfy the same temporal formulas and hence we can use a system’s

strong state-event quotient system to verify system properties. The compositional

consistency of this model reduction technique then follows immediately from the

result on strong (“algebraic”) compositional consistency of Section 3.4. While the

results obtained in this section follow easily from the truth preserving properties of

strong bisimulation equivalence, the technique employed in this section will be utilized

in the following section on weak state-event model reduction.

In the following, unless stated otherwise, we assume that we are dealing with a

SELTS Q = 〈Q, Σ, RΣ, q0, P 〉 where P is the state output map P : Q → P(AP), and

AP is the set of atomic predicates of interest.

Given a computation σ, the strongly observed computation generated by σ is given

by applying P to the state of each state-event pair in the computation. This provides

a map from sequences over Q × Σ− to sequences over P(AP) × Σ−.

P∼ : (Q × Σ−)+ ∪ (Q × Σ−)ω → (P(AP) × Σ−)∪(P(AP) × Σ−)ω

(q0, α0)(q1, α1) . . . (qn, αn) . . . 7→ (P (q0), α0)(P (q1), α1) . . . (P (qn), αn) . . .

For C, a set of computations, we define P∼(C) := {P∼(σ) : σ ∈ C}.

Lemma 4.5 Let Qi = 〈Qi, Σ, Ri
Σ, qi0, Pi〉, i = 1, 2 be SELTS. If Q1 ∼se Q2 then

P∼
1 (M(Q1)) = P∼

2 (M(Q2))

92

ββ

αα
α

β

γ

β

r2

r2

r1 r1

r1

r1

r2

r1

Q2Q1

r2
δ

γδ

Figure 4.1: Counterexample to converse of Lemma 4.5.

Proof: Follows immediately from the definitions of ∼se and P∼. 2

The systems in Figure 4.1 demonstrate that the converse of Lemma 4.5 is false.

The transition systems are shown with the state outputs generated by their respective

state output maps P1 and P2 next to each state. The initial states of the two transition

systems are marked by entering arrows. In this case P∼
1 (M(Q1)) = P∼

2 (M(Q2)) =

{r1
α
→r1

β
→r2

δ
→r2

δ
→ . . . , r1

α
→r1

β
→r2

γ
→r2

γ
→ . . .}, but one can easily verify that Q1 6∼se

Q2. By extending Hoare’s failure equivalence to a state-event failure equivalence

in a manner similar to the way that (event) observation equivalence was extended

to state-event observation equivalence, one obtains an equivalence which relates the

two systems of Figure 4.1. Unfortunately the computation of failure equivalence is

PSPACE-complete [KS83] making it unlikely that an efficient algorithm could be

found to compute any extension to the state-event setting. On the other hand strong

state-event equivalence is O(n log m) making state-event equivalence preferable as a

practical model reduction technique.

As an immediate consequence of Lemma 4.5, we obtain the following result.

Theorem 4.6 Given two SELTS as above, if Q1 ∼se Q2 then for any temporal for-

mula F , we have Q1 |= F iff Q2 |= F .

The above theorem allows us to use a system’s strong state-event quotient system

to reason about the state output and event behavior of the system since Q ∼se Q/θs.

Lemma 3.29 provides the following Corollary to Theorem 4.6.

93

Corollary 4.7 Strong state-event equivalence can be used for compositionally consis-

tent model reduction of SELTS for all formulas in state-event temporal logic.

4.3 Weak State-Event Model Reduction

We now turn our attention to the case with only partial event observations in addition

to the partial state observations provided by the state output map. We assume

that all unobservable transitions are labeled by τ . In this case we want to reason

about the sequences of observed events and changes in state output. To this end

we define a projection from computations to weakly observed computations similar

to the strongly observed computation projection of the previous section. This time

we delete a state-event pair from the strongly observed computation if the event is

an unobservable τ transition and the state output remains unchanged in the next

state (i.e. there is no way to observe whether we remain in the current state or take

the τ transition to the next state). Since weak state-event equivalence suppresses

system information regarding sequences of unobservable events that do not cause

state changes, the equivalence can only be used for model reduction with a restricted

set of temporal formulas. This restricted class, which we will call the class of State-

Event Stuttering-Invariant (SESI) formulas, is characterized as those formulas that

are satisfied by a computation iff the projected computation satisfies the formula.

We identify a set of SESI formulas, including some formulas making use of immedi-

ate operators (©, η =). The main result of the section states that weakly state-event

equivalent systems satisfy the same subset of SESI formulas. Thus for a given mod-

ule we can perform compositionally consistent model reduction by computing the

system’s weak state-event quotient system and then using the quotient system to

model-check all the formulas of interest, provided the formulas are SESI.

4.3.1 Weakly Observed Computations

For the remainder of the section, unless stated otherwise, we assume that we are

dealing with a SELTS Q := 〈Q, Σ, RΣ, q0, P 〉 where the state output map P : Q →

94

P(AP).

In [MP92] the authors use a state-based projection operator to develop a state-

only version of weak satisfaction. They define the reduced behavior of a computation

σ via a two step process that amounts to first applying P∼, the strong computation

projection of the previous section, and then replacing uninterrupted sequences of

identical “states” with a single copy of the state. In our case we are dealing with

sequences of state-event pairs rather than just sequences of states. We cannot simply

apply P∼ and then replace subsequences of uninterrupted state-event pairs by a single

state-event pair since in this case important information relating state changes and

event observations would be lost.

Consider the three state-event sequences shown below where tick is the event

representing the passage of one second on the global clock.

(q0, τ)(q0, τ)(q0, tick)(q0, α)(q1, tick) . . .

(q0, τ)(q0, tick)(q0, tick)(q0, α)(q1, tick) . . .

(q0, tick)(q0, τ)(q0, tick)(q0, τ)(q0, α)(q1, tick) . . .

If we assume that the state output map is the identity map, then following [MP92]

the first and second sequences would result in the same reduced computation:

(q0, τ)(q0, tick)(q0, α)(q1, tick) . . .

while the third sequence is its own reduced computation. This would lead us to believe

that in the first two cases the system delays for one second and then changes state from

q0 to q1 via an α transition when, in fact, the second and third computations do not

make the α transition until after 2 seconds. While we want our projection operator

to distinguish the first case from the other two, the second and third computations

differ only by unobservable transitions that do not change the state output. Upon

rewriting the three sequences in terms of the notation of weak state-event observation

95

equivalence, the differences and similarities in observed behaviors become apparent:

q0
τ
→q0

τ
→q0

tick
→q0

α
→q1

tick
→ . . .

q0
τ
→q0

tick
→q0

tick
→q0

α
→q1

tick
→ . . .

q0
τ
→q0

tick
→q0

τ
→q0

tick
→q0

α
→q1

tick
→ . . .

P
7→

q0
tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

q0
tick
⇒seq0

tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

q0
tick
⇒seq0

tick
⇒seq0

α
⇒seq1

tick
⇒se . . .

To an external observer the second and third computations would produce the same

observed state-event sequence: (q0, tick)(q0, tick)(q0, α)(q1, tick) The projection

defined below has the effect of replacing all the state-event pairs making up an ob-

served transition q1
α
⇒se, with a single state-event pair q1

α
→. The following weak state-

event sequence projection operator produces a system’s weakly observed computa-

tions.

Definition 4.8 Given an SELTS Q with state output map P : Q → P(AP) and

σ = (q0, α0)(q1, α1) . . ., σ ∈ M(Q), the weakly observed behavior of σ is denoted by

P≈(σ) which is defined inductively as follows:

P≈(q0) = P (q0)

P≈(q0
α0→q1

α1→ . . . qn
αn→qn+1) =

P≈(q0

α0→q1
α1→ . . . qn), if αn = τ ∧ P (qn) = P (qn+1)

P≈(q0
α0→q1

α1→ . . . qn)
αn→P (qn+1), otherwise

For C a set of computations, we define P≈(C) := {P≈(σ) : σ ∈ C}.

Example 4.9 In this example we consider the weak state-event observations gener-

ated by an SELTS with identity state output map P := IQ where IQ : Q → Q.

σ1 = (q0, τ)(q0, α)(q0, τ)(q1, τ)(q1, β)(q2, α) . . . = q0
τ
→q0

α
→q0

τ
→q1

τ
→q1

β
→q2

α
→ . . .

P≈(σ1) = q0
α
→q0

τ
→q1

β
→q2

α
→ . . . = (q0, α)(q0, τ)(q1, β)(q2, α) . . .

σ2 = (q0, τ)(q0, τ)(q0, τ) . . . = q0
τ
→q0

τ
→q0

τ
→ . . .

P≈(σ2) = q0 = (q0,−)

In P≈(σ1) all the τ transitions are eliminated except for the q0
τ
→q1 transition since

this τ transition can be inferred from the external observer’s observation of a state

96

τ
β βα α

Q2Q1

r r r r

Figure 4.2: Q1 ≈se Q2 but P≈
1 (M(Q1)) 6= P≈

2 (M(Q2))

change from q0 to q1 without any observed event. In this case we say that τ is an

implicitly observed transition. The computation σ2 is initially observed to be in state

q0 and then produces no state change or event observations. This is reflected in

P≈(σ2) as (q0,−), the observed state output with no defined transition. Thus an

infinite state-event sequence can result in a finite weakly observed sequence. This

is why the effort was made earlier to extend the definition of temporal operators to

finite as well as infinite sequences, allowing us to define weak satisfaction of temporal

formulas below.

As the basis of weak state-event model reduction, we would like to obtain a result

similar to Lemma 4.5 which stated that strongly state-event equivalent systems result

in the same set of strongly observed computations. In this case we have to be careful

with our treatment of the unobservable transitions that are erased by the weak pro-

jection. Consider the two weakly state-event equivalent systems shown in Figure 4.2.

Here r ∈ P(AP) is the same state output for all the systems’ states. In this case

P≈
1 (M(Q1)) = {r

α
→r

β
→r

β
→r

β
→ . . .} but P≈

2 (M(Q1)) = {r, r
α
→r

β
→r

β
→r

β
→ . . .}. The

above systems agree upon their trajectories that produce an infinite number of ob-

servations. It is the infinite sequence of unobservable τ ’s that Q2 can produce that

causes the discrepancy. This observation is formalized in the following two lemmas.

The first lemma states that a system and its observational closure (see Defini-

tion 3.17 on p. 58) produce the same infinite weakly observed computations (i.e.

{P≈(σ) : σ ∈ M(Q) and |P≈(σ)| = ω} = {P≈(σ) : σ ∈ M(Q′
∼) and |P≈(σ)| = ω}).

Lemma 4.10 Given an SELTS Q = 〈Q, Σ, RΣ, q0, P 〉, where P : Q → P(AP),

P≈(M(Q)) ∩ (P(AP) × Σ)ω = P≈(M(Q′
se)) ∩ (P(AP) × Σ)ω

Proof: M(Q) ⊆ M(Q′
se) since the transition relations of Q are a subset of those of

97

Q′
se. Thus the containment of sets in the ⊆ direction is trivial.

To show containment in the ⊇ direction we begin by assuming that

γ ∈ P≈(M(Q′
se)) ∩ (P(AP) × Σ)ω

Then there exists σr ∈ M(Q′
se) such that γ = P≈(σr). In particular, since σr produces

an infinite number of observations (i.e. it does not end with an infinite sequence of self-

looped τ transitions), for simplicity we can chose σr so that in σr = q0
α0→q1

α1→q2
α2→ . . .

there are no transitions resulting from self-looped τ transitions. Then as a result of

the definition of the observational closure operator, each transition qi
αi→qi+1 in Q′

se

can be matched by a sequence of transitions qi
αi⇒seqi+1 in Q. The silent τ transitions

that help make up the
αi⇒se relation leave the state output unchanged and hence the

sequence of states and transitions making up the qi
αi⇒seqi+1 relation will produce the

same projected results as the qi
αi→qi+1 transition in Q′

se. We simply take the finite

sequences of states and transitions making up each matching qi
αi→qi+1 relation to

obtain a σl with P≈(σl) = P≈(σr). We know σl ∈ M(Q) because it is an infinite

sequence of transitions in Q. 2

Lemma 4.11 Given two SELTS, Qi = 〈Qi, Σ, Ri
Σ, qi0, Pi〉, where Pi : Qi → P(AP),

i = 1, 2, if Q1 ≈se Q2 then

P≈(M(Q1)) ∩ (P(AP) × Σ)ω = P≈(M(Q2)) ∩ (P(AP) × Σ)ω

Proof: Let γ ∈ P≈(M(Q1)) ∩ (P(AP) × Σ)ω. Then there exists σ1 ∈ M(Q1) such

that γ = P≈(σ1). But M(Q1) ⊆ M(Q1
′
se) so σ1 ∈ M(Q1

′
se). By Lemma 4.5 there

exists σ′
2 ∈ M(Q2

′
se) such that P∼(σ1) = P∼(σ′

2) and hence P≈(σ1) = P≈(σ′
2).

Now by Lemma 4.10 there exists σ2 ∈ M(Q2) such that P≈(σ′
2) = P≈(σ2). This

shows containment in the ⊆ direction. Exchanging Q1 and Q2 in the above argument

gives the opposite direction and hence the desired result. 2

The above lemma states that weakly state-event equivalent systems produce iden-

tical infinite sequences of observations, though equivalent systems may disagree on

98

sequences that produce finite observations as in the case of the systems in Figure 4.2.

In RTTL and the simplified real-time state-event logic presented here, the fairness

constraint 23(η = tick) guarantees that the clock ticks infinitely often in all legal

computations (i.e. all legal computations result in infinite sequences of observations).

Thus if we can identify a subclass of formulas with truth values that are only depen-

dent upon the observations a computation produces, the above lemma will allow us to

use weak state-event equivalence to perform model reduction for those formulas. The

systems in Figure 4.1 that provide a counterexample to the converse to Lemma 4.5

also provide a counterexample to the converse of Lemma 4.11.

4.3.2 Weak Satisfaction

As a first step towards obtaining a subclass of temporal formulas with truth values

that are dependent upon the weakly observed computations, we will define weak

satisfaction. While our main interest in introducing weak satisfaction is to obtain

a subclass of formulas for weak state-event model reduction, weak satisfaction also

provides a means of specifying the behavior of weakly projected computations and

hence of specifying the behavior of the system at its outputs or interface with other

modules.

Definition 4.12 Given a SELTS Q and a temporal formula F , a computation σ ∈

M(Q) is said to weakly satisfy F , written σ |=≈ F , iff P≈(σ) |= F . The SELTS Q

weakly satisfies F , written Q |=≈ F , iff P≈(M(Q)) |= F .

Example 4.13 For σ1 and σ2 as in Example 4.9 we have

σ1 |=≈ η = α ∧ q = q0

σ2 6|=≈ 2 © true

In the case of σ1 we are stating that the first observed action of the computation

is an α transition that does not change the state output. In the case of σ2 we are

stating that the computation does not produce an infinite number of observations. A

99

computation σ weakly satisfies 2 © true if the weak projection of the computation

is an infinite sequence. Thus σ |=≈ 2© true becomes a concise way of saying that σ

produces an infinite number of observations.

Theorem 4.14 Given two SELTS, if Q1 ≈se Q2 then for any temporal formula F

we have Q1 |=≈ ¬(2 ¦ η = tick) ∨ F iff Q2 |=≈ ¬(2 ¦ η = tick) ∨ F .

Proof: Follows immediately from Lemma 4.11. 2

The implication of the above theorem is that weak state-event equivalence can be

used to perform model reduction for any real-time state-event temporal logic formula

provided the satisfaction relation of interest is weak satisfaction. In general we are

interested in performing model reduction for the standard satisfaction relation |=. In

the following subsection Theorem 4.14 will be the key to developing model reduction

results for the subclass of SESI formulas under the standard satisfaction relation.

4.3.3 State-Event Stuttering-Invariance and Model Reduc-

tion

We now consider those formulas with truth values that are robust with respect to

unobservable τ transitions.

Definition 4.15 Given a state-event temporal formula F over the set of atomic pred-

icates AP , we say that F is State-Event Stuttering-Invariant (SESI) if for all

SELTS Q with state output map P : Q → P(AP), for all computations σ ∈ M(Q),

the following equation holds:

σ |=≈ F iff σ |= F (4.1)

Equation (4.1) provides the link relating satisfaction to weak satisfaction that will

be used to extend Theorem 4.14 to standard satisfaction of SESI formulas. Ad-

ditionally, the existence of relatively complete proof systems, theorem provers and

model-checkers for verifying |= for variations of state-event temporal logics, together

with (4.1), allow one to use existing tools to check |=≈ for SESI formulas. We now

100

try to identify some SESI formulas before providing a formal statement that allows

us to build more general SESI formulas.

Let Fs be a state formula. Then σ |=≈ Fs iff σ |= Fs since P≈ does not affect the

value of the initial state output. The case for general state-event formulas is compli-

cated by references to the (next) transition variable η. Considering Example 4.9 we

see that σ1 |= (η = τ) but σ1 |=≈ (η = α) (i.e. the first transition of the computation

is a τ transition but the first transition of the weakly observed computation is an α

event). This difference results from the weak state-event projection operator delet-

ing all τ transitions that do not cause any change in the state output. The formula

¦(η = α) states that eventually an α transition occurs so clearly for any α 6= τ ,

σ |= ¦(η = α) iff σ |=≈ ¦(η = α) since P≈ does not erase any non-τ transitions. With

a similar argument one can also show that for p ∈ AP and α ∈ Σ− {τ}, the formula

2[(η = α) → ©p], stating that in the state following an α transition p always holds,

is SESI.

Such “base” formulas can be used to build up more complex temporal formulas

as outlined in the following lemma.

Lemma 4.16 Let σ be a computation and F, F1, F2 be SESI formulas. Then for all

α ∈ Σ − {τ}, l, u ∈ N we have ¬F , F1 ∨ F2, F1UF2 and F1U
α
[l,u]F2 are all SESI

formulas.

Proof: The cases of ¬F and F1 ∨ F2 are immediate from the definitions so let us

consider the case when F := F1UF2.

(only if) Assume P≈(σ) |= F . Then there exists i ∈ N such that P≈(σ)i |= F2 and

for all j = 0, 1, . . . , i − 1, P≈(σ)j |= F1 by definition of U .

Let ki ∈ N be the smallest integer such that P≈(σki) = P≈(σ)i. Therefore

P≈(σki) |= F2. But by our inductive assumption, P≈(σki) |= F2 iff σki |= F2.

Now, for all li ∈ {0, 1, . . . , ki − 1}, P≈(σli) < P≈(σki) (i.e. P≈(σli) is a strictly

proper prefix of P≈(σki)). Therefore there exists j ∈ {0, 1, . . . , i − 1} such that

P≈(σli) = P≈(σ)j. But as noted above, P≈(σ)j |= F1 so P≈(σli) |= F1 and hence

σli |= F1. By definition of U , we have σ |= F1UF2 as required.

101

(if) The above proof can be reversed to obtain the if part of (4.1).

The case of F := F1U
α
[l,u]F2 follows immediately from the F := F1UF2 case and

the fact that P≈ does not erase any non-τ events. 2

From the above discussion we see that all non-immediate formulas, formulas com-

posed solely of state predicates together with the ∨,∧,U ,Uα
[l,u] operators (i.e. that

do not contain the next operator © or next transition variable η) are SESI. Addi-

tionally, a formula of the form 2 ¦ (η = tick) is SESI since ¦(η = tick) is SESI and

2F = ¬ ¦ ¬F . We can now extend Theorem 4.14 to provide results about |= for

formulas that belong to the subclass of SESI formulas.

Theorem 4.17 Let F be an SESI formula. If Q1, Q2 are SELTS such that Q1 ≈se Q2

then Q1 |= ¬(2 ¦ η = tick) ∨ F iff Q2 |= ¬(2 ¦ η = tick) ∨ F .

Proof: Assume F, Q1, Q2 are as in the theorem statement. Also assume that Q1 |=

¬(2 ¦ η = tick)∨F . Using the fact that 2 ¦ (η = tick) and F are SESI together with

Lemma 4.16, we know that the formula ¬(2 ¦ (η = tick)) ∨ F must be SESI.

Therefore, by the definition of SESI, Q1 |=≈ ¬(2 ¦ η = tick)∨F . But Q1 ≈se Q2,

so applying Theorem 4.14, we have Q2 |=≈ ¬(2 ¦ η = tick) ∨ F . We can then apply

the opposite direction of the SESI definition to obtain Q2 |= ¬(2 ¦ η = tick) ∨ F .

Switching Q1 and Q2 in the above argument provides the desired result. 2

Recalling from Section 3.2 that Q ≈se Q//θw, where Q//θw is the weak state-event

quotient system of Q, Theorem 4.17 allows us to model-check SESI formulas on a

system’s quotient system and infer the result for the original system. Additionally,

Lemma 3.31 guarantees that our model reduction technique is compositionally con-

sistent. This allows one to avoid computing massive synchronous products before

performing model reduction, by first doing model reduction on the component sub-

systems and then forming their synchronous product. This ability is significant since

synchronous products typically grow as the product of the subsystem’s state spaces.

Once it is constructed we can take what should be the significantly smaller syn-

chronous product of the quotient systems and compute its quotient system to further

reduce our model.

102

4.4 Model Reduction of TTM Modules

Theorem 3.31 and Theorem 4.17 allow us to perform compositional model reduction

for real-time systems modeled as interacting systems of SELTS. Typically though,

a systems designer will want to work within a more expressive framework, such as

TTMs, that provides a more compact representation of the system. In this section

we adapt the results of the previous two chapters to the TTM setting. This is done

by considering systems composed of interacting “TTM modules” – TTMs with the

property that parallel composition at the TTM level can be modeled by state-event

synchronous composition at the SELTS level. To motivate the introduction of TTM

modules, we first provide an example of TTM parallel composition that does not

correspond to state-event synchronous composition at the SELTS level.

Example 4.18 Consider the following two simple TTMs.

M1 := 〈{y, z}, y = z = 0, T1〉, where T1 = {α := (y = z, [y : y ⊕2 1], 1, 1)} and,

M2 := 〈{y, z}, y = z = 0, T2〉, where T2 = {β := (y 6= z, [z : z ⊕2 1], 1, 1)}.

In the above transitions’ operation functions, ⊕2 denotes addition mod 2. Thus

transition α of M1 will toggle the value of y between 0 and 1 when y = z for one tick

of the global clock. Transition β of M2 performs a similar function on z when y 6= z.

The TTMs’ parallel composition is given by

M1‖M2 := 〈{y, z}, y = z = 0, T1‖T2〉

= 〈{y, z}, y = z = 0, T1 ∪ T2〉

The SELTS generated by M1‖M2 is shown in Figure 4.3. In the composite system

first α and then β alternate with tick transitions. M1 reacts to changes to its “input”

z and produces “output” y while M2 reacts to the input value of y and produces

output z.

Now let us consider the SELTS generated by the individual TTM component

systems before their composition (see Figure 4.4). M1’s α transition does not affect

the value of z. With no other transitions to change z from its initial value, after an

103

α

y = 0

tickβ

tick

tick

y = 1

z = 0

z = 1

tick

α

y = 0 y = 1

QM1‖M2

β

z = 1

z = 0

Figure 4.3: SELTS for M1‖M2.

tick

z = 0

y = 0QM1
|[I]|QM2

αtick
tick

y = 0 y = 1
tick

y = 0

z = 0z = 0 z = 0

QM1
QM2

Figure 4.4: SELTS generated by M1 and M2 and their composition synchronizing on
tick and the values of y, z.

104

initial tick, α changes the value of y to 1 and then only tick transitions are possible in

M1. This is reflected in QM1
as the tick, α sequence ending in a selflooped tick state.

Considering M2 in isolation, the transition β is not initially enabled and there are no

other transitions of M2 that could change the value of y or z to enable β. As a result,

QM2
is simply a tick selflooped at an initial state with state output (y, z) = (0, 0).

QM1
and QM2

do not have any states with state output (y, z) = (1, 1) so clearly

for any compatible SELTS interface I that synchronizes on the values of y and z,

QM1
|[I]|QM2

will not produce the same computations or even observed computations

as QM1‖M2
.

This result is not particularly surprising since the TTM parallel composition op-

erator does not place any restrictions on how one TTM may access another TTM’s

variables other than the restrictions upon transitions with shared labels. These re-

strictions in turn can allow a TTM to prevent any transition in another TTM, simply

by having a transition with the same label and a false enablement condition. In the

case of M1 and M2, these two TTMs were designed with specific interfaces in mind.

In order to produce interesting behavior, M1 expects changes in the value of z. To

avoid transition label conflicts we could associate a transition label (or labels) with

the transitions which M1 expects to change z, for example (β, z). By adding a nonde-

terministic transition β := (true, [z : 0; z : 1], 0,∞) to M1, we provide a well defined

interface for M2 without restricting how M2 may alter z. The semicolon occurring in

the operation function of this particular β transition indicates that when β occurs, a

choice is made between setting z = 0 and z = 1 in the next state (see Section 2.2.1

p. 24). Similarly we may add α := (true, [y : 0; y : 1], 0,∞) to the transition set of

M2 to provide an interface for our new M1. Denote these augmented TTMs by M̂1

and M̂2 respectively. Their generated SELTS are shown in Figure 4.5. For the sake

of legibility, selflooped β and α transitions have been omitted from all of the states

of QcM1
and QcM2

respectively. In the TTM parallel composition M̂1‖M̂2, the shared

transition α would be given by

α := (y = z ∧ true, h′
α, max(0, 1), min(1,∞))

105

α
β

tick
β

z = 0

z = 1

y = 0 y = 1

y = 0 y = 1

QcM2

α

α

α

α

α

tick

tick

tick

z = 0

z = 1

tick

tick α

β

β

tick

tick
α

β

β β

β

y = 1

y = 1

z = 1

z = 0

y = 0

y = 0

QcM1

Figure 4.5: SELTS for augmented TTMs M̂1, M̂2.

= (y = z, [y : y ⊕2 1], 1, 1)

From Definition 2.7, h′
α is the operation function that results from making transitions

only to those new state assignments that are possible in both component systems.

Since α can make arbitrary changes to y in M2, the composite transition results in

changes to y that are identical to those produced by M1. Similarly β := (y 6= z, [z :

z ⊕2 1], 1, 1) in M̂1‖M̂2. Therefore we conclude that M̂1‖M̂2 = M1‖M2.

We can now take I := ({α, β, tick}, idQ{y,z}
, idQ{y,z}

) to be our SELTS interface.

This choice of I forces synchronization on α, β, and tick events, and the value of the

shared variables which is the state output of both systems. Applying the definition

of state-event synchronous composition for QcM1
|[I]|QcM2

we obtain a SELTS that is

isomorphic to QM1‖M2
. Thus we see that when TTMs are defined with “compati-

ble interfaces”, the composition of their generated SELTS indeed produces identical

strongly observed computations to the generated SELTS of their composition .

This property is significant because in the special case of interface compatible

TTMs, it reduces composition at the TTM level to composition at the SELTS level.

Thus anything that we can say about the compositional properties of SELTS can be

106

applied to these “interface compatible” TTMs. We call these TTMs with interfaces

“TTM modules”.

In formally defining modules we assume that system components are designed

to have a particular interface with other components. This is specified in terms of

input and output variables paired with labels of transitions (events) to be executed

synchronously with other system modules when changes are made to the associated

input or output variable.

Recalling from Section 2.2.2 that for T , a set of TTM transitions, Σ(T) denotes

the set of transition labels used in T , we are now ready to define TTM modules.

Definition 4.19 A TTM module is defined to be a TTM-interface pair m := (M, I)

where M := 〈V , θ, T 〉 is a TTM and I is an interface for M such that

I := (Vin, Σin, Rin,Vout, Σout, Rout)

The components of I are:

• Vin ⊆ V is a set of input variables

• Σin is a set of input transition labels such that Σin ∩ Σ(T) = ∅

• Rin ⊆ Σin × Vin is the module’s input relation, a relation between input transition

labels and variables

• Vout ⊆ V is a set of output variables

• Σout ⊆ Σ(T) is a set of output transition labels. It includes all the transitions of

M that modify one or more output variables.

• Rout ⊆ Σout ×Vout is the module’s output relation, a relation that contains a (α, v)

pair for every output transition α that modifies an output variable v.

In the above definition, M is a TTM partially specifying the module’s behavior. It

does not specify the behavior of input transitions or input variables. The above

definition requires that transition labels occurring in Σin are not already used by

107

the TTM M and hence will not have any restrictions placed upon them by M . Such

“input transitions” will only be allowed to affect the behavior of M through modifying

the value of the input variables they are associated with in Rin. The constraint

placed upon the module’s output transition label set Σout states that if v is an output

variable then the transition label of any α transition belonging to M that affects v

must appear in Σout. The transition label/variable pair (α, v) must then appear in the

output relation Rout. More formally, for α := (e, h, l, u) ∈ T , if there exist v ∈ Vout

and state assignments q, q′ ∈ QV such that q′ ∈ h(q) (q′ is an α successor of q) and

q′(v) 6= q(v) then α ∈ Σout and (α, v) ∈ Rout.

Let us go back and redefine the TTMs M1 and M2 of Example 4.18 as TTM

modules. The systems can be described by modules mi := (Mi, Ii), i = 1, 2 where

I := (Σin,Vin, Rin, Σout,Vout, Rout)

I1 := ({β}, {z}, {(β, z)}, {α}, {y}, {(α, y)})

I2 := ({α}, {y}, {(α, y)}, {β}, {z}, {(β, z)})

Note that the interfaces of m1 and m2 appear to be “compatible” since one system’s

input relation equals the other’s output relation. We will have more to say on the

matter of TTM module compatibility following the definition of the SELTS generated

by a module.

In Example 4.18 the TTMs M1 and M2 were augmented by adding nondetermin-

istic input transitions that could make arbitrary changes to each ystem’s input vari-

ables, thereby representing all possible actions that other modules could perform at

the system’s interface. As a consequence, these augmented TTMs M̂1, M̂2 generated

SELTS that result in a SELTS composition that was isomorphic to the SELTS gen-

erated by the TTM parallel composition of the augmented TTMs. We will generalize

this result to the composition of any two “compatible” TTM modules. We begin by

defining the augmented TTM of a module. In the following definition we use the fact

that for any function f : A → B, ker(f), the equivalence kernel of f , defines a map-

ping ker(f) : A → P(A), a 7→ a/ ker(f). Here a/ ker(f) := {a′ ∈ A : f(a′) = f(a)} is

108

the ker(f) equivalence class of a.

Definition 4.20 Consider m, a TTM module as in Definition 4.19. For α ∈ Σin ∪

Σout let Vα := {v ∈ V : (α, v) ∈ Rin∪Rout}. Then the augmented TTM of m, denoted

M̂ , is the TTM M̂ := 〈V , Θ, T ′〉 where

T ′ := T ∪ {α := (true, hα, 0,∞) : α ∈ Σin and hα = ker(PQV−Vα
)}

Here PQV−Vα
: QV → QV−Vα

is the canonical projection from state assignments over

V onto the state assignments over V − Vα.

The variable set and initial condition of M̂ are identical to those of m’s TTM M , while

T ′ is obtained from T , the transition set of M , by the addition of input transitions.

For each α ∈ Σin, α’s operation function hα maps the current state assignment to

the set of all state assignments that differ only in the value of variables v ∈ Vin

such that (α, v) ∈ Rin. More formally, for α ∈ Σin, hα : Q → P(Q) such that

q 7→ q/ ker(PQV−Vα
). But

q/ ker(PQV−Vα
) = {q′ ∈ Q : PQV−Vα

(q′) = PQV−Vα
(q)}

= {q′ ∈ Q : ∀v ∈ V(α, v) 6∈ Rin implies q′(v) = q(v)}

Thus variables in V − Vα are unchanged by the occurrence of an α transition in M̂ .

Now we can define the SELTS generated by a module to be a relabeling of the

SELTS generated by the module’s augmented TTM. We relabel the SELTS events

by replacing all transitions that are not tick, input, or output transitions by τ . The

states are relabeled by projecting the state assignments (the state outputs for the

augmented TTM’s SELTS) onto the state assignments over the module’s input and

output variables. This SELTS relabeling allows us to hide internal transitions and

variables while retaining the input/output behavior of the system.

Definition 4.21 Let m be a TTM module as defined in Definition 4.19 Define r :=

109

(rΣ, rP) to be the SELTS relabeling such that

rΣ(α) =

α, if α ∈ Σin ∪ Σout ∪ {tick}

τ, otherwise

and rP := PQVin∪Vout
is the canonical projection from state assignments over V to state

assignments over Vin ∪ Vout. Then the SELTS generated by the TTM module m is

defined to be Qm := r(QcM).

In Definition 4.21 the operation functions of the augmenting “input” transitions of

M̂ map the current state assignment to all possible variations of assignments to

the input variables associated with the transition label α. Since we are restricting

ourselves to finite state SELTS with finite event sets, we must restrict ourselves to

input variables with finite range spaces. This is adequate to handle the industrial

example of Chapter 5. While it should be possible to extend the theory to handle

variables with infinite range spaces, that is beyond the scope of this thesis.

Having defined the SELTS generated by a module, we can immediately apply all

the formal methods developed for transition systems to TTM modules. For example, if

EQ is an SELTS equivalence relation then we say that module m1 is EQ equivalent to

module m2, written m1 EQ m2 iff I1 = I2 and Qm1
EQ Qm2

. Similarly the definition

of satisfaction of a temporal logic formula |= F for SELTS found in Section 4.1.2 can

be applied to a TTM module m by saying that m satisfies the temporal logic formula

F iff the SELTS generated by m satisfies F (ie. m |= F iff Qm |= F).

We now generalize the “interface compatibility” of the modules from Exam-

ple 4.18. For the formal definition of interface compatibility we will be dealing with a

pair of modules m1,m2 and referencing specific elements of these modules’ interfaces.

As a notational convenience we will parameterize the interface specification of the

TTM module definition by the module name.

Definition 4.22 Let TTM modules m1 := (M1, I(m1)) and m2 := (M2, I(m2)) be

110

given. For i = 1, 2 Mi := 〈Vi, Θi, Ti〉, write and

I(mi) := (Σin(mi),Vin(mi), Rin(mi), Σout(mi),Vout(mi), Rout(mi))

Then we say that m1 and m2 are interface compatible modules iff all the following

conditions hold:

(i) Σ(T1) ∩ Σ(T2) = {tick}

(ii) for i = 1, 2, V1 ∩ V2 ⊆ Vin(mi) ∪ Vout(mi)

(iii) for i 6= j, Rout(mi) ∩ [Σout(mi) × (V1 ∩ V2)] ⊆ Rin(mj)

(iv) for i 6= j, Rin(mi) ∩ [Σin(mi) × (V1 ∩ V2)] ⊆ Rin(mj) ∪ Rout(mj)

Condition (i) states that for interface compatible modules m1 and m2, their TTMs

M(m1) and M(m2) only share the tick transition. Since Σout(mi) ⊆ Ti, this condition

implies that Σout(m1)∩Σout(m2) = ∅ so there can be no conflicts with output transi-

tion labels. By (ii) shared variables are required to appear in Vin(mi) and/or Vout(mi)

of both modules to insure that interacting TTMs do not have naming conflicts of in-

ternal variables. Condition (iii) requires that all output transition labels associated

with a shared variable in one system must be paired with the shared variable in the

other system’s Rin(mj) relation. Finally (iv) demands that if v is a shared variable

and α is an input transition label for v in mi, then in mj α is either an input transi-

tion label for v or an output transition label. In this way input to a shared variable

is expected to come from an outside source to both systems via the same transition

label, or mj is supplying the input to mi via its output transition label α.

Note that the above conditions do not rule out the possibility of v ∈ V1∩V2 being

both an input and an output to both systems. Conditions (iii) and (iv) force any

event label one system uses for output of v to be used for input of v in the other

system. The other system can then use a different transition label for its output of v

which then must similarly be used for input of v in the first module.

111

After defining interface compatibility we can now define the composition of mod-

ules. The definition below relies on the intuition that while only one system can

output to a shared variable at a given time, many systems can simultaneously receive

that output at their inputs (via a broadcast mechanism). Hence the Rout relation of

the composite system is simply the union of the Rout(mi) relations of the component

systems. Even if a transition label/variable pair that is the output of one system is

the input to the other system, the label/variable pair is removed from the composite

system’s Rin relation. It remains an output pair of the composite system to enable

other systems to receive changes to the variable in further synchronous products.

Definition 4.23 Given interface compatible modules m1,m2, as in Definition 4.22,

the synchronous composition of m1 and m2 is defined to be the TTM module

m1‖m2 := (M1‖M2, I(m1‖m2))

where the components of I are:

• Σin(m1‖m2) = (Σin(m1) ∪ Σin(m2)) \ (Σout(m1) ∪ Σout(m2))

• Vin(m1‖m2) = {v ∈ Vin(m1) ∪ Vin(m2) : ∃α ∈ Σin(m1‖m2), (α, v) ∈ Rin(m1‖m2)}

• Rin(m1‖m2) = (Rin(m1) ∪ Rin(m2)) \ (Rout(m1) ∪ Rout(m2))

• Σout(m1‖m2) = Σout(m1) ∪ Σout(m2)

• Vout(m1‖m2) = Vout(m1) ∪ Vout(m2)

• Rout(m1‖m2) = Rout(m1) ∪ Rout(m2)

In the above definition we can not merely set Vin(m1‖m2) = (Vout(m1) ∪ Vout(m2)) \

(Vout(m1) ∪ Vout(m2)) as one might expect given the formulas for Σin(m1‖m2) and

Rin(m1‖m2). To avoid output transition label conflicts in other systems, a given

input transition label α (and hence transition label/variable input pair (α, v)) can

only be used by one module with the output transition label α. This restriction does

112

not prevent another module from writing to v via another input transition label as a

given variable may have multiple input transitions.

In the case of the modules associated with the systems of Example 4.18, m1‖m2 :=

(M1‖M2, I(m1‖m2)) where

I(m1‖m2) := (∅, ∅, ∅, {α, β}, {y, z}, {(α, y), (β, z)})

The absence of any input transition labels, variables and input pairs indicates that

M1‖M2 is a closed system that does not require input from an external source. Hence

M1‖M2 completely specifies the behavior of the output variables y, z.

The following lemma will help us to prove that for interface compatible modules,

the SELTS generated by the composition of the modules and the SELTS resulting

from the composition of the SELTS generated by each module, differ only in the

labeling of their underlying state sets. Hence they produce identical sequences of

state outputs and connecting events. Thus our ultimate goal is to show that for an

appropriate SELTS interface I, Qm1‖m2
is isomorphic to Qm1

|[I]|Qm2
. We begin by

showing that Q
M̂1‖M2

is isomorphic to QcM1
|[I]|QcM2

. The desired result then follows

by applying relabelings to these systems to produce Qm1‖m2
and Qm1

|[I]|Qm2
.

Lemma 4.24 Let m1,m2 be two interface compatible TTM modules as in Defini-

tion 4.22, and I := (ΣI , PQV1∩V2
, PQV1∩V2

) be the SELTS interface, where

ΣI := [(Σin(m1) ∪ Σout(m1)) ∩ (Σin(m2) ∪ Σout(m2))] ∪ {tick}

and PQV1∩V2
is the canonical projection onto the state assignments over V1∩V2. Then

the reachable parts of Q
M̂1‖M2

and QcM1
|[I]|QcM2

are isomorphic.

113

Proof: As a notational convenience, let

QL := Q
M̂1‖M2

= 〈QL, ΣL, RΣL
, qL0, PL〉

QR := QcM1
|[I]|QcM2

= 〈QR, ΣR, RΣR
, qR0, PR〉

Q1 := QcM1
= 〈Q1, Σ1, RΣ1

, q10, P1〉

Q2 := QcM2
= 〈Q2, Σ2, RΣ2

, q20, P2〉

First we establish that ΣL = ΣR. From Definitions 4.21 and 4.23 it follows that

ΣL = Σ(T1‖T2) ∪ Σin(m1‖m2)

= (Σ(T1) ∪ Σ(T2)) ∪ [(Σin(m1) ∪ Σin(m2)) \ (Σout(m1) ∪ Σout(m2))]

By def. 2.7 and Def. 4.23

= Σ(T1) ∪ Σin(m1) ∪ (Σ(T2) ∪ Σin(m2))

Since Σout(mi) ⊆ Σ(Ti) for i = 1, 2

= Σ1 ∪ Σ2 by def. 4.21

= ΣR by def. of |[I]|

We now examine the underlying state sets of QL and QR. Recall from Section 2.2.3,

p. 30, that in order to obtain a finite state representation of a TTM M := 〈V , Θ, T 〉,

for α := (e, h, l, u) ∈ T , the range space of cα, the counter variable associated with

α, is defined to be:

RangeM(cα) :=

{n ∈ N : n < l} ∪ {ω}, if u = ∞

{n ∈ N : n ≤ u}, otherwise

QL, the state set of QL, is the set of extended state assignments for M̂1‖M2 (ie.

the cross product of the state assignments over the variables of the TTM and the

range spaces of the TTM transition counter variables). For α ∈ Σin(m1‖m2), in

ML := M̂1‖M2 we have the “input transition” α := (true, hα, 0,∞). Therefore in this

114

case RangeML
(cα) = {ω}. Thus,

QL = QV1∪V2
×

∏

α∈ΣL

RangeML
(cα)

= QV1∪V2
×

∏

α∈Σ(T1)∪Σ(T2)

RangeML
(cα) ×

∏

α∈Σin(m1‖m2)

RangeML
(cα)

= QV1∪V2
×

∏

α∈Σ(T1)∪Σ(T2)

RangeML
(cα) ×

∏

α∈Σin(m1‖m2)

{ω}

= QV1∪V2
×

∏

α∈Σ(T1)∪Σ(T2)

RangeML
(cα) × {ω}|Σin(m1‖m2)|

From the definition of |[I]| we know that the state set of QR is the cross product

of the state sets of QcM1
and QcM2

. The state set Qi is the set of extended state

assignments of M̂i for i = 1, 2. We now apply the method used in the development

of QL to obtain QR.

QR = QV1
×

∏

α∈Σ(T1)

RangecM1
(cα) ×

∏

α∈Σin(m1)

RangecM1
(cα)

×QV2
×

∏

α∈Σ(T2)

RangecM2
(cα) ×

∏

α∈Σin(m2)

RangecM2
(cα)

= QV1
×

∏

α∈Σ(T1)

RangecM1
(cα) × {ω}|Σin(m1)|

×QV2
×

∏

α∈Σ(T2)

RangecM2
(cα) × {ω}|Σin(m2)|

By the definition of interface compatible modules (def. 4.22) it follows that M̂1

and M̂2 only share the tick transition label. Thus by the TTM parallel composition

definition, (def. 2.7) if α1 := (e, h, l, u) ∈ T1, then

α1 := (e, h′, l, u) ∈ T1‖T2

h′ := h ⊗ idQV2\V1

(‡)

Thus the only difference in the transitions is that h′ has been extended appropriately

to V1 ∪ V2. But then RangecM1
(α1) = RangeML

(α1). By identical reasoning for

α2 := (e, h, l, u) ∈ T2, we also know that RangecM2
(α2) = RangeML

(α2)

115

From the above discussion, we see that a typical qL ∈ QL is

qL = (q, cα11
, . . . , cα1m

, cα21
, . . . , cα2n

, ω, . . . , ω)

where α11, . . . , α1m ∈ T1 and α21, . . . , α2m ∈ T2, while q ∈ QV1∪V2
. Thus we can define

an embedding of QL into QR, denoted f : QL → QR, by

f(qL) = (PQV1
(q), cα11

, . . . , cα1m
, ω, . . . , ω, PQV2

(q), cα21
, . . . , cα2n

, ω, . . . , ω)

Clearly f is one to one. It is not onto QR if V1 ∩ V2 6= ∅ since for v ∈ V1 ∩ V2

there are elements (q1, q2) ∈ Q1 ×Q2 such that q1(v) 6= q2(v). But, by the definition

of synchronous composition, these states are not reachable in QR because of their

conflicting state output values. Therefore while f is not onto, the set of reachable

states of QR is a subset of f∗(QL).

For any state such as qL, the state output of qL in QL is PL(qL) = q. In QR,

PR(f(qL)) = PQV1
(q)∪ PQV1

(q) = q. Thus in order to show that f defines an isomor-

phism of the reachable parts of QL and QR, all that remains is to show that for all

α ∈ ΣL and qL, q′L ∈ QL, qL
α
→q′L in QL iff f(qL)

α
→f(q′L) in QR.

This follows immediately from form the following two facts: First (‡) above guar-

antees that any non-input transition has time bounds and an operation function that

are unchanged in the composite system. Thus the occurrence of a transition in the

composite system produces the same variable and transition clock updates as in the

individual components. Second, in the composition at either the TTM level or the

SELTS level, a transition of one component is never block by the other TTM or

SELTS. This follows from the interface compatibility of the modules ensuring that

an input transition, if required, is always available to match another system’s output

transition. 2

The relabeling that produces Qm from QcM results in a coarser state output map

to the system’s input and output variables and relabels by τ internal transitions that

do not take part in any synchronizations with compatible modules. Therefore as an

116

immediate consequence of Lemma 4.24 we obtain the following corollary.

Corollary 4.25 Given two interface compatible TTM modules m1 and m2 then for

SELTS interface I as defined in Lemma 4.24, the reachable part of Qm1‖m2
is isomor-

phic to the reachable part of Qm1
|[I]|Qm2

.

We do not have to worry about stopping time when composing interface com-

patible TTMs. Since each system allows arbitrary combinations of input events, the

progress of time is never blocked by composition at the SELTS level, as it was in

Example 4.18 when Q2 could not match the state output change of Q1.

We can now state the TTM module version of Theorem 3.31 as an immediate

consequence of Corollary 4.25.

Theorem 4.26 Let mLi,mRi be TTM modules such that mLi and mRi are interface

compatible for i = 1, 2. If mL1 ≈se mL2 and mR1 ≈se mR2 then

(mL1‖mR1) ≈se (mL2‖mR2)

This result together with Theorem 4.17 allow us to perform compositionally con-

sistent model reduction of TTM modules.

4.5 Summary

The main contribution of this chapter is the development of a computationally effec-

tive weak model reduction technique for a simple discrete time temporal logic. The

model reduction is done in a compositionally consistent way as a result of using the

systems’ state-event quotient systems.

The method works for the subclass of state-event stuttering-invariant formulas

defined in Section 4.3.3. These formulas are robust with respect to state-event “stut-

tering,” changes in the length of subsequences of unobservable events that do not

cause observable state changes. In developing the subclass of SESI formulas we de-

fined the notion of weak satisfaction of a temporal formula. Weak satisfaction, which

117

can be thought of as a satisfaction relation capturing a system’s observable behavior,

reduces to standard satisfaction for SESI formulas. TTM modules were defined to

allow the model reduction results for SELTS to be applied to systems modeled by

TTMs.

118

Chapter 5

Design and Verification of an

Industrial Real-time Controller

This chapter illustrates, via the design of a reactor shutdown system, the use of

state-event equivalence as both a model reduction technique for the real-time lin-

ear temporal logic specification/verification method and an equivalence verification

method in its own right. In the process we demonstrate how a design can benefit

from the combined application of these two formal methods.

Traditionally in equivalence verification one has a “low level” detailed model of

the implementation and a “high level” abstract model of the specification. One

then verifies via computational or transformational methods, that the two models

are equivalent in a well defined sense. In the case of the reactor shutdown system,

equivalence-preserving transformations (Appendix A) have been used to demonstrate

that an implementation TTM module is weakly state-event equivalent to a speci-

fication module (see Appendix B). This is the point where traditional equivalence

verification schemes are finished with a verification problem. The assumption is that

the specification model properly characterizes the requirements of the system. In the

example presented here, after performing equivalence verification we then use real-

time temporal logic as an alternative means of specification. Model checking is then

used to verify that the specification TTM module satisfies the temporal logic spec-

ifications. By Section 4.4, the model checking results for the implementation TTM

119

module can then be inferred from the specification module results. In the case that

the high level system (and hence the low level system) fails to satisfy the desired tem-

poral properties, the system is redesigned to satisfy the properties. One could then

perform a top down design by using the equivalence preserving transformation to re-

fine the redesigned specification into a workable implementation which is guaranteed

to satisfy the temporal logic specifications.

We will see that model checking helps to identify subtle bugs that are often in-

corporated into high level specifications and therefore go undetected when only using

equivalence verification techniques. Conversely, the ability to model check high level

models and infer the results for low level models has the potential to dramatically

improve the performance of model checking and in, some case, perform model checks

that would otherwise be impossible due to the state explosion resulting from the

composition of low level models.

The above concepts will be illustrated by the “simple” real-time control software

verification problem that is described in Section 5.1. The equivalence verification

proof that was done previously in [Law92] can be found in Appendix B. We take the

software verification problem a step further through the application of temporal logic

model-checking in Section 5.2. The scope of the verification problem is then widened

in Section 5.3 to consider the behavior of the closed-loop system with redundant con-

trollers operating concurrently. We attempt to verify the temporal logic specifications

of the previous section’s single controller implementation with interesting results.

5.1 The Delayed Reactor Trip System

In general it is easier to understand a mathematical theory if one can relate the

theory to a physical example. This section introduces the Delayed Reactor Trip

(DRT) problem, a real-time software verification example from the nuclear industry.

After describing the DRT setting the software verification problem is recast as a TTM

module equivalence verification problem. The solution to an equivalent formulation

of the DRT example was first put forward in [Law92] and [LW95] is included in

120

Appendix B.

For the next generation of reactors a company hopes to use microprocessor imple-

mentations for many of the control systems that were previously implemented using

discrete and analog components. The main reasons for the switch to digital control

systems are the cost savings and greater flexibility typically associated with micropro-

cessor based systems. A question that now arises is whether the new systems behave

the same as the old systems. That is, are the two implementations equivalent?

5.1.1 Setting and Assumptions

The DRT system is typical of many real-time problems from industry. When a certain

set of circumstances arises, we want the system to produce the correct response in a

timely fashion. In this case when the reactor pressure and power exceed acceptable

safety limits in a particular way, we want the DRT control system to trip a relay

causing the reactor to shut down. The result of the DRT system failing to shut down

Trip Relay State
Reactor Power

Reactor Pressure
System

Reactor Trip

Figure 5.1: Block Diagram for the DRT System

the reactor could be catastrophic. Conversely, each time the reactor is improperly

shut down, the utility operating the reactor may lose hundreds of thousands of dollars

as fossil fuel powered generating stations have to be brought on line to meet demand.

Clearly it is important that the DRT behave in a very specific manner.

The desired input/output relationship for the DRT block diagram has the follow-

ing informal description: if the power exceeds power threshold PT and the pressure

exceeds delayed set point DSP, then wait for 3 seconds. If after 3 seconds the power

is still greater than PT, then open the relay for 2 seconds. The old implementation

of the DRT using timers, comparators and logic gates is shown in Figure 5.2. The

hardware implementation is almost a direct translation of the above informal spec-

ification. When the reactor power and pressure exceed PT and DSP respectively,

the comparators cause Timer1 to start. Timer1 times out after 3 seconds, sending

121

ANDAND RelayTimer 2Timer 1

Power

Pressure

Figure 5.2: Analog Implementation of the DRT System

a signal to one input of the second AND gate. The other input of the second AND

gate is reserved for the output of the power comparator. The output of the second

AND gate causes Timer2 to start if the power is exceeding its threshold and Timer1

has timed out. Once Timer2 starts it runs for 2 seconds while signaling the relay to

remain open.

The new DRT system is to be implemented on a microprocessor system with a

cycle time of 100ms. That is, the system samples the inputs and passes through

a block of control code every 0.1 seconds. We assume that the input signals have

been properly filtered and that the sampling rate is sufficiently fast to ensure proper

control. Figure 5.3 contains the pseudocode for a proposed control program for the

microprocessor. The program makes use of the variables Pressure, Power and Relay

for the sampled DRT system inputs and output respectively. Also, the code mimics

the original analog implementation by using integer counter variables c1 and c2 in

place of Timer1 and Timer2 respectively. In the pseudocode we say that a counter

is “reset” when it is set to its initial value (ie. 0 in the pseudocode TTM model

below). A counter variable may then be incremented in place of starting the timer it

represents. With each subsequent pass through the block of code, the counter variable

is incremented to represent the passage of another 100ms since the represented timer

was started. Once the counter variable is equal to or exceeds a value appropriate for

the particular timer and given cycle time (30 for c1 and 20 for c2 in the case when the

cycle time is 100ms), we say that the counter variable has “timed out”. The use of the

122

terms “reset” and “timed out” in the pseudocode abstracts from the implementation

details so that the pseudocode does not have to be rewritten if the cycle time of the

microprocessor is changed.

That the original hardware implementation satisfies the informal specification

seems obvious at a glance. The answer to the question of whether a microprocessor

implementing the algorithm of Figure 5.3 satisfies the informal requirements above

is somewhat more problematic. To help answer this question we now pose the DRT

problem in the TTM framework.

5.1.2 Modeling the Delayed Reactor Trip Specification

By modeling the DRT specification as a TTM we can remove any ambiguities from

the informal specification and ensure that the input/output behavior of the micro-

processor system is completely determined. When the DRT is implemented in the

actual reactor there are three identical DRT systems running in parallel, with the final

decision on when to shut down the reactor implemented on a majority rule basis (see

Section 5.3). As a result it is important that an individual system be able to recover

when it is in disagreement with the other two systems. Also a system should never

deadlock. For instance, after the power and pressure have exceeded their critical val-

ues and the system has waited 3 seconds to check the power level again, if the power

is below its threshold value PT, then we wish the system to reset and go back to

monitoring both inputs. This is implicit in the informal specification. Unfortunately,

as most systems designers are painfully aware, computers require explicit instructions

if their behavior is to be predictable.

In order to facilitate the verification process, the TTM representation of the de-

sired I/O characteristics for the DRT is put in a form that closely resembles the

microprocessor behavior. A tick of the global TTM clock is assumed to represent

100ms, the cycle time of the microprocessor. As mentioned in the previous subsec-

tion, we assume proper filtering of the input signals and a sufficiently high sample

rate. Thus in the TTM specification SPEC of Figure 5.4, the enablement conditions

of a transition must be satisfied for at least one clock tick before the transition can

123

If Power ≥ PT then

If counter c1 is reset then

If counter c2 is reset then

If Pressure ≥ DSP then

increment c1]µ1

Endif

Else If counter c2 timed out then

reset c2]γ
Else

increment c2 eµ2

open Relay c
Endif

Endif

Else If counter c1 timed out then

open Relay e
reset c1 |α
increment c2 c

Else

increment c1]µ1

Endif

Endif

Else If counter c1 is reset then

If counter c2 is reset then

close Relay]β
Else If counter c2 timed out then

close Relay eρ2

reset c2 c
Else

increment c2 eµ2

open Relay c
Endif

Endif

Else If counter c1 timed out then

reset c1]ρ1

Else

increment c1]µ1

Endif

Endif

Endif

Figure 5.3: Pseudocode for Proposed DRT Control Program

124

β

ρ2, γ

ρ1

ω19αω29µ

edcba

SPEC Transition Table

Θ := x = a ∧ Relay = CLOSED

µ := (eµ, [], 1, 1)

α := (Power ≥ PT, [Relay : OPEN], 1, 1)

ω29 := (True, [], 29, 29)

ω19 := (True, [], 19, 19)

ρ1 := (Power < PT, [], 1, 1)

ρ2 := (Power < PT, [Relay : CLOSED], 1, 1)

γ := (Power ≥ PT, [], 1, 1)

where

eµ := Power ≥ PT ∧ Pressure ≥ DSP

Figure 5.4: SPEC: TTM Representation of DRT Specification

125

occur. The transition µ has lower and upper time bounds of 1, exemplifying this

filtering assumption.

After transition µ occurs, SPEC waits in activity b for 29 clock ticks (2.9 seconds)

before proceeding to activity c. Activity c is where the power level is checked again.

If the power is too high then the system opens the relay via transition α, else the

system resets via ρ1 to continue monitoring both inputs in activity a. After α the

system waits in activity d for 19 clock ticks (1.9 seconds) and then moves to e. At e,

as an added safety feature, the system is once again required to evaluate the power

level. If Power ≥ PT, the system returns to activity a with the relay still open via

transition γ. Otherwise the system resets to a via ρ2 while closing the relay.

From the above paragraph it is apparent that the TTM SPEC gives a more thor-

ough description of what is required of the DRT, expanding upon the previous infor-

mal specification. It now remains to model the microprocessor system in the TTM

framework before formalizing the verification problem.

5.1.3 Modeling the Microprocessor DRT Implementation

On the right hand side of Figure 5.3 is a list of transition names. Each time the

microprocessor passes through the block of code represented by the pseudocode it

performs one of the group of operations identified by a transition name. Identical

groups of operations on the program variables are identified by identical transition

names. A group of program operations then becomes the operation function of the

transition. The enablement conditions for these transitions are formed by taking

the conjunction of the conditions specified by the ‘If’ statements for each occurrence

of a given transition name’s program operations. As an example consider eµ2
, the

enablement condition for µ2. The first occurrence of µ2 happens if Pressure ≥

DSP, Power ≥ PT, c1 is reset, ¬(c2 is reset) and ¬(c2 has timed out). The second

occurrence is executed if ¬(Pressure ≥ DSP), c1 is reset, ¬(c2 is reset) and ¬(c2

has timed out). Counting off 20 consecutive cycles through the code translates to

an elapsed time of 2 seconds, the minimum time the relay is to remain open. If we

consider the counter variables to be reset when they are equal to zero and counter c2

126

as timed out when c2 ≥ 20, µ2’s enablement condition becomes:

eµ2
= (Pressure ≥ DSP ∧ Power ≥ PT ∧ c1 = 0 ∧ c2 6= 0 ∧ c2 < 20)

∨(Pressure < DSP ∧ c1 = 0 ∧ c2 6= 0 ∧ c2 < 20)

= ((Pressure ≥ DSP ∧ Power ≥ PT) ∨ Pressure < DSP)

∧c1 = 0 ∧ 0 < c2 < 20

In the final step we use the fact that c2 can never be negative since it starts at c2 = 0

and all transitions reset c2 to zero or increment it.

γ, ρ1, ρ2)

selfloop(µ1, µ2, α, β,

PROG Transition Table

Θ := c1 = c2 = 0 ∧ Relay = CLOSED

µ1 := (eµ1
, [c1 : c1 + 1], 1, 1)

µ2 := (c1 = 0 ∧ 1 ≤ c2 ≤ 19, [c2 : c2 + 1, Relay : OPEN], 1, 1)

α := (Power ≥ PT ∧ c1 ≥ 30, [c1 : 0, c2 : c2 + 1, Relay : OPEN], 1, 1)

β := (Power < PT ∧ c1 = c2 = 0, [Relay : CLOSED], 1, 1)

γ := (Power ≥ PT ∧ c1 = 0 ∧ c2 ≥ 20, [c2 : 0], 1, 1])

ρ1 := (Power < PT ∧ c1 ≥ 30, [c1 : 0], 1, 1)

ρ2 := (Power < PT ∧ c1 = 0 ∧ c2 ≥ 20, [c2 : 0, Relay : CLOSED], 1, 1)

where

eµ1
:= (Power ≥ PT ∧ Pressure ≥ DSP ∧ c1 = c2 = 0) ∨ (1 ≤ c1 ≤ 29)

Figure 5.5: PROG: TTM Representation of Pseudocode for DRT

Similarly we can obtain the enabling conditions for the other transitions. As

mentioned earlier, with each pass through the code, the microprocessor picks out one

of the labeled blocks of code. The block chosen is the one whose enabling conditions

are satisfied. The program then loops back to the start and re-evaluates all the

enabling conditions in the next cycle. Hence each transition has a lower and upper

time bound of one.

All of the above information is used to construct the simple TTM PROG (see

127

Figure 5.5). The single activity is representative of the fact that the program is

basically a large case statement implemented using If statements, the appropriate

case being selected out of all possible cases on each pass through the code.

5.1.4 The Verification Problem in Terms of TTM Modules

Having modeled the internal workings of the specification and pseudocode as TTMs in

the two preceding subsections, we can now create modules detailing the two models’

interfaces. This will then allow us to recast the original question: ‘Does the program

do what we want?’ in terms of module equivalence.

We will use spec to denote the module for the specification and prog for the module

for the program. The modules’ input variables are clearly Power and Pressure.

With each of these variables we associate an input transition label: αw for Power

and αp for Pressure. This gives us Σin := {αw, αp}, V := {Power, Pressure} and

Rin := {(αw, Power), (αp, P ressure)}. The set of output variables for both modules

is Vout := {Relay}. Then by Definition 4.19 the set of output transition labels for

both systems is Σout := {α, β, ρ2}, identifying the set of transitions that modify Relay

in both systems. Hence letting Rout := {(α,Relay), (β,Relay), (ρ2, Relay)} we define

spec := (SPEC, I) and prog := (PROG, I) for

I := (Σin,Vin, Rin, Σout,Vout, Rout)

as defined above.

The DRT verification problem has now been reduced to checking whether spec ≈se

prog. In [Law92] and [LW95] Equivalence Preserving Transformations were used to

prove that SPEC and PROG would produce weakly equivalent timed input/output

behavior. For completeness Appendix A contains a modified description of the the-

oretical explanation of equivalence preserving transformations that first appeared

in [LW95] while Appendix B provides the proof of the input/output equivalence of

SPEC and PROG that first appeared in [Law92]. In [Zha96] the algorithms for

computing state-event equivalence outlined in Section 3.1 and Section 3.2 were im-

128

plemented and used to verify the weak state-event equivalence of modified versions

of the underlying SELTS for spec and prog. Since spec and prog have been defined

with identical interfaces, the equivalence of Qspec and Qprog establishes that indeed

spec ≈se prog.

5.2 Model Checking the DRT

In [Law92],[LW95] and [Zha96], the DRT verification problem was deemed to be

solved, in effect, as soon as prog was verified to be weakly state-event equivalent

to spec. While the equivalence verification process proved to be useful (an error

in the original pseudocode was found and fixed in [Law92]), the problem with such

equivalence verification techniques is that while the implementation has been verified,

its correct operation still depends upon the abstract specification model correctly

capturing the desired system properties. An equivalent implementation is only as

good as its specification. How can one verify that the original specification was

correct? Is there any guarantee that the equivalence used in the verification process

preserves the relevant system properties?

For the DRT we will attempt to state some desired system properties as SESI

temporal logic formulas. By verifying the temporal logic specification formulas on

the DRT specification module spec using model-checking, the satisfaction preserving

properties of weak state-event equivalence will guarantee that the property holds in

any equivalent implementation module. Each temporal logic formula that is model-

checked on the specification will also be model-checked on the equivalent implemen-

tation. Verification of the detailed implementations provides some empirical confir-

mation of the correctness of Theorem 4.17, and also illustrates the computational

benefits of using reduced models for verification purposes. We will see in one par-

ticular case from Section 5.3 that the state explosion of the detailed implementation

as redundant controllers are added to the system, quickly causes the verification to

become intractable while the reduced model experiences a roughly linear increase in

time and space requirements.

129

5.2.1 Modeling the Reactor

Before model-checking our DRT design we have to “close the loop” by composing a

model of our plant (the reactor system) with our controller model (spec or prog).

Among computer specialists, modeling the plant is commonly referred to as “specify-

ing the operating environment” of the “embedded system” (controller). Initially we

will use an extremely simple model of the plant that places only minimal restrictions

upon the behavior of the reactor Power and Pressure variables. Later we will make

some further assumptions about the plant in order to guarantee desirable system

properties and illustrate the compositional model reduction theory of the previous

chapters.

A block diagram and the initial TTM model of the internal structure of the re-

actor are shown in Figure 5.6. PLANT consists of two TTMs running in parallel.

OUTPUT models the “dynamics” of PLANT ’s outputs Power and Pressure as

Relay
Reactor

(PLANT)

Pressure
Power
xRELAY

closed open

RELAY

PLANT := RELAY ‖OUTPUT

ρo

ρc

αw

OUTPUT

a

αp,

PLANT Transition Table

Θ := xRELAY = closed ∧ Relay = CLOSED

∧xOUTPUT = a ∧ Power = LO ∧ Pressure = LO

ρo := (Relay = OPEN, [], 0, 0)

ρc := (Relay = CLOSED, [], 0, 0)

αw := (true, [Power : LO; Power : HI], 1,∞)

αp := (true, [Pressure : LO; Pressure : HI], 1,∞)

Figure 5.6: PLANT := RELAY ‖OUTPUT - TTM model of the plant.

130

variables that both initially have LO values (values below their respective threshold

values – HI will be assigned to Power or Pressure to indicate values exceeding the

respective thresholds). Each variable may be altered at most once between successive

clock ticks by αw (for Power) and αp (for Pressure).

The reactor’s relay is modeled by TTM RELAY . We assume that RELAY ’s

activity variable xRELAY represents the current state of the reactor’s relay. A change

to the reactor’s input variable Relay causes an “instantaneous” change in XRELAY

(ie. before the next clock tick, provided Relay’s value remains at the new value) so

that after ρo or ρc occurs XRELAY = Relay.

Although RELAY provides the possibility of non-Zeno behavior, an infinite num-

ber of successive non-tick transitions, this would require non-Zeno behavior of the

input variable Relay. In both SPEC and PROG, all TTM transitions have lower

time bounds ≥ 1 and so each can only perform a finite number of transitions between

successive clock ticks. Similarly the OUTPUT portion of PLANT has all transition

lower time bounds equal to 1 while the remaining RELAY portion of the plant can

only perform a single action without changes to its input variable Relay. Thus the

composite system is guaranteed to have an infinite number of ticks in all computa-

tions and hence control‖plant |= 23(η = tick) for control ∈ {spec, prog}. Therefore

we may drop the ¬23(η = tick) disjunction that occurs in Theorem 4.17 since it is

false for all computations of control‖plant.

We finish this subsection by formally defining the plant module to be plant :=

(PLANT, Iplant) where the plant module interface is basically I for spec and prog

with the input and output elements swapped and xRELAY , the reactor relay state,

added to the set of output variables. We add xRELAY to the other plant output

variables Power and Pressure because we wish to prove properties about the timed

behavior of all these variables in the closed-loop system. Thus

Iplant := (Σout(spec),Vout(spec), Rout(spec),

Σin(spec),Vin(spec) ∪ {xRELAY }, Rin(spec))

131

and so by Definition 4.22, plant is interface compatible with both spec and prog.

5.2.2 Model-Checking Details

The TTMs of the plant and controller systems were entered using a recent extension

of the State-Time Tool developed by Ostroff et. al. at York University [Ost95]. State-

Time is a visual modeling tool for the creation of StateChart-like hierarchical TTM

systems. The reader is referred to [Ost95] for a full description of the State-Time tool

and [Har87] for an introduction to StateCharts.

There has been a preliminary attempt to develop real-time model-checkers to allow

the direct interpretation of TTMs and RTTL formulas [Ost92]. While the Verify tool

of [Ost92] supports the data variables and interleaved, discrete-time semantics of

TTMs, it cannot efficiently handle the large state spaces that are generated by the

composite systems of Section 5.3 and hence was not employed in this thesis. The

Verify tool has been applied to a single controller case of the DRT in [Ost95] but in

that work it became apparent that the tool would not be able to handle the full 3

controller DRT version dealt with in Section 5.3.

In order to profit from the development effort already invested in untimed model-

checking, StateTime has implemented a facility for translating its TTM models into

(untimed) fair transition systems with integer variables and tick events [ON96] that

can be used by the Stanford Temporal Theorem Prover (STeP) [Man94]. STeP has a

Linear Temporal Logic (LTL) model-checker that can then interpret the fair transition

system models and verify LTL properties. Recently StateTime has added integer

“timer variables” that can be started or stopped and, while running, are decremented

(or incremented) from their initial values with the occurrence of each tick transition.

The timer variables enable the creation of “observer” systems that allow real-time

properties to be verified by checking untimed temporal properties of the systems

StateTime exports to STeP.

In the following model-checking results we will say that a real-time temporal logic

formula F has been model-checked or verified for a given timed system when, in

fact, we have verified an untimed temporal logic formula F ′ on the untimed system

132

that incorporates timer variables and additional TTM transitions to “observe” the

timed property. The construction of F ′ and the TTM transitions to be added to the

system before it is translated into an untimed fair transition system can be difficult.

Often the untimed model-check will fail to capture precisely the desired real-time

behavior but may verify something close enough to the original real-time behavior

to suit the designer’s purposes. Below we assume that the untimed model-checks

are “close enough” when stating that a timed property has been verified by the

untimed model-check. In the absence of a powerful model-checking tool for RTTL,

the untimed model-checks will have to suffice to illustrate our compositional model

reduction theory.

All of the model checking results below are for the Solaris version of STeP-1.1

running on an UltraSparc1 with 288MB of RAM. The timing results are taken from

STeP’s estimate of the CPU time utilized in its computations. The state numbers

below do not correspond to the number of states of the system being verified but

rather to the number of states in a verification table used by STeP that is dependent

upon the size of the system model and the formula to be model-checked [Man94].

5.2.3 Verification of System Response

This subsection demonstrates that specification models and formulas do not always

embody the properties one initially thinks they capture. The first property we would

like to check for our specification module, and hence the implementation module, is

correct response to stimulae from the plant. The informal DRT system requirements

from Section 5.1.1 may be restated in a form more suggestive of a Temporal Logic

translation as:

Henceforth, if Power and Pressure simultaneously exceed their threshold

values for at least 2 ticks and 30 ticks later Power exceeds its threshold

for another 2 ticks, then within 30 to 32 ticks open the reactor relay for

at least 20 ticks.

133

In the rephrased informal specification we have added “at least 2 ticks” requirements

to ensure that the DRT has time to react to the changes to its input.

We call our temporal logic translation of this formula the System Response for-

mula, FRes:

2[2<2(Power ≥ PT ∧ Pressure ≥ DSP) ∧ 3302<2Power ≥ PT

→ 3[30,32]2<20xRELAY = open]

The first 2 operator with the square braces around the rest of the formula says that

the property contained within holds in the initial state of the computation and at all

later points (all suffixes) of the computation. For a formula F , 3[30,32]F is shorthand

notation for true U[30,32]F which translates directly as “eventually after at least 30

but no more than 32 ticks, F is true”. 330F and 2<2F are used to denote 3[30,30]F

and ¬3[0,1]¬F . We can paraphrase 2<2F as “From now until 2 ticks have occurred,

F holds”.

As stated earlier, the STeP model checker does not explicitly support real-time

properties. Thus in order to verify the real-time aspects of FRes we will add the timer

variable Tr to the RELAY part of PLANT to time how long xRELAY = open. We

assume that initially Tr = 0. The operation functions of ρo and ρc become [cd(Tr, 20)]

and [stop(Tr)] respectively. Here cd(Tr, 20) in the operation function of ρo has the

effect of initializing Tr to a value of 20 whenever xRELAY changes from closed to open.

Tr will then count down with each tick until it reaches a value of 0 or is halted at

its current value via the stop(Tr) operation. Thus if Tr = 0 and xRELAY = open,

the reactor relay has been open for 20 ticks. The addition of the Tr operations to

RELAY will allow the untimed system to “observe” the 2<20xRELAY = open part

of FRes. The rest of the formula will be dealt with in the untimed system by an

additional “property observer” TTM RES (see Figure 5.7) that will run in parallel

with the rest of the system.

When Power and Pressure simultaneously exceed their threshold values, the

ψstart transition of RES starts the timer Tw counting down from 32. If Power or

Pressure drop below their threshold values before two ticks of the the clock have

134

ψstop2

ψcont
ψstart

ψstop1

30 ≤ Tw ≤ 32 Tw ≤ 30

a b c

RES Transition Table

Θ := xRES = a ∧ Power = LO ∧ Pressure = LO ∧ Tw = 0

ψstart := (Power ≥ PT ∧ Pressure ≥ DSP, [cd(Tw, 32)], 0, 0)

ψstop1 := (Power < PT ∨ Pressure < DSP, [stop(Tw)], 0, 0)

ψstop2 := (Power < PT ∧ 0 ≤ Tw ≤ 2, [stop(Tw)], 0, 0)

ψcont := (Tw = 30, [], 0, 0)

Figure 5.7: RES – TTM Observer for FRes used in creating untimed formula F ′
Res.

occurred (ie. before Tw = 30) then ψstop1 occurs, stopping timer Tw. If Tw counts

down to 30 then 2<2Power ≥ PT ∧ Pressure ≥ DSP is true. Transition ψcont

occurs to “observe” this fact. We then wait to check the power when 0 ≤ Tw ≤ 2

(30 to 32 ticks after Power and Pressure first exceeded their threshold values). If

during that time Power < PT , then the 3302<2xRELAY Power ≥ PT conjunct in

the antecedent of FRes is violated so RES resets via ψstop2, stopping Tw. On the

other hand, if RES is in activity c and Tw = 0, then 3302<2Power ≥ PT is true

and previously 2<2Power ≥ PT ∧Pressure ≥ DSP was true since ψcont occurred to

bring us to c in the first place. Thus we will approximate the antecedent of FRes by

Tw = 0 ∧ xRES = c. Combining the above observations we have the untimed formula

F ′
Res that we will model-check with STeP:

2[(Tw = 0 ∧ xRES = c) → 3(xRELAY = open ∧ Tr = 0)]

Now that we have the formula F ′
Res without timed operators we translate our sys-

tem with the additional counter variables and property observer TTM into STeP

compatible input and model-check F ′
Res in place of property FRes. Verifying F ′

Res

135

with the STeP model-checker produces the following surprising results: We conclude

control Result States Time(sec)

spec fail 52375 2854
prog fail 101689 21039

Table 5.1: Summary of model checking results of System Response property F ′
Res for

control‖plant

spec‖plant 6|= FRes and prog‖plant 6|= FRes. The computational results are summa-

rized in Table 5.1. The counterexample computation generated by STeP reveals why

our system specification module, implementation module, and indeed the original

hardware implementation, all fail to satisfy this property.

While Timer 1 is running (SPEC is in activity b or PROG has a non-zero value

of c1), the system is effectively ignoring its inputs. Consider the possible input timing

diagram in Figure 5.8. Power and Pressure simultaneously exceeding their threshold

T T + 10 T + 20 T + 30 T + 40 T + 50

Power

Pressure

Figure 5.8: Input sequence generating a counter example to FRes

values at time T will cause Timer 1 to start but at time T + 30, Power = LO so

the Relay = open “signal” is not sent and the system goes back to monitoring its

inputs. However, while Timer 1 was running, at T + 10 Power and Pressure also

exceeded their threshold values and 30 ticks later at time T + 40 Power is exceeding

its threshold. Because Timer 1 was already running at T + 10 in response to the

conditions at time T , it is unable to respond to the conditions at T +10. The system

therefore has no way of knowing that it should check the value of Power at time

T + 40 and consequently open the relay.

While it is possible to design a relatively simple software implementation that

does satisfy FRes through the use of registers as bit arrays, for illustrative purposes

136

we will assume that we are trying to design a software system that provides similar

input/output behavior to the original system. In this case FRes is an inappropriate

temporal logic specification. Changing the antecedent of FRes to require that the

DRT controller be in its initial state (ie. neither timer is running) when Power and

Pressure exceed their threshold values, we can alter FRes to obtain a formula cap-

turing the behavior of the original system. We call this new property the Initialized

System Response formula, FIRes:

2[ΘCONTROL ∧ 2<2(Power ≥ PT ∧ Pressure ≥ DSP) ∧ 3302<2Power ≥ PT

→ 3[30,32]2<20XRELAY = open]

Here ΘCONTROL := ΘSPEC or ΘCONTROL := ΘPROG depending on whether we are

model-checking control spec or control prog.

The untimed formula F ′
Res used in place of FRes can be used as the untimed formula

F ′
IRes to model-check in place of FIRes provided we modify the property observer TTM

RES. We add the Θcontrol conjunct to the enablement condition of ψstart to obtain

the new property observer TTM IRES. Thus the new enablement condition for ψstart

is ΘCONTROL ∧ Power ≥ PT ∧ Pressure ≥ DSP .

control Result States Time(sec)

spec pass 6305 55
prog pass 12063 218

Table 5.2: Summary of model checking results of Initialized System Response property
F ′

IRes for control‖plant

The results of model-checking F ′
IRes with its observer system are contained in

Table 5.2. show that for both the specification and implementation, control‖plant |=

F ′
IRes.

The above pair of model checking results have helped us to gain a deeper under-

standing of the behavior of our system and, by the agreement of results for the use

of spec and prog as the control, have illustrated Theorem 4.17. We will have more to

say about the results regarding the space (number of states) and time requirements

137

in Section 5.3.

5.2.4 Verification of System Recovery

In the original hardware implementation a signal to open the reactor relay is only

sent during the 2 seconds that Timer 2 is running. As an added safety feature in

our microprocessor design, SPEC was set up to continue sending the Relay = open

signal until Power was no longer exceeding its threshold. Since the DRT is but

one of many reactor control systems operating in the actual reactor, a reasonable

requirement might be that the closed-loop system “recover” in a timely fashion after

the Relay = OPEN signal has been sent for at least 20 ticks (2 seconds) and Power

returns to normal operating levels. An informal statement of this property might be:

Henceforth if xRELAY = open for the next 20 ticks and after the 20th tick

Power < PT for at least 2 ticks, then before the 22nd tick XRELAY =

closed.

We translate this statement into the System Recovery formula FRec:

2[(2<20XRELAY = open ∧ 3202<2Power = LO) → (3<22XRELAY = closed)]

As we did for FRec, we can use the addition of the timer Tr to RELAY to check

the subproperty 2<20XRELAY = open. Again the remainder of the formula will be

handled by a property observer TTM. Figure 5.9 contains REC, the TTM property

observer for FRec.

The transition ψstart occurs once the reactor relay has been open for 20 ticks

(xRELAY = open ∧ Tr = 0) and Power is LO (Power < PT). It starts timer Tw

counting down from an initial value of 2. If Power becomes HI or the reactor relay

closes, transition ψstop takes place, immediately stopping the timer Tw and returning

REC to activity stop. Thus if REC is in activity run and Tw = 0 then the reactor

relay has been open for 20 ticks, and subsequently Power has been LO for more than

2 clock ticks. This is a violation of FRec. Therefore we can reduce model-checking

138

runstop

ψstop

ψstart

REC Transition Table

Θ := xREC = stop ∧ Tw = 0 ∧ xRELAY = closed ∧ Power = LO

ψstart := (xRELAY = open ∧ Tr = 0 ∧ Power < PT, [cd(Tw, 2)], 0, 0)

ψstop := (xRELAY = closed ∨ Power ≥ PT, [stop(Tw)], 0, 0)

Figure 5.9: REC – TTM Observer for FRec used in creating untimed property F ′
Rec.

the timed property FRec to model-checking the untimed safety property F ′
Rec:

2¬(Tw = 0 ∧ xREC = run)

Thus F ′
Rec says that it is never the case that Tw = 0 when TTM REC is in activity

run.

While it seems plausible that our current spec and prog will force the closed

loop system to satisfy FRec, model-checking proves the contrary (see Table 5.3). The

counterexamples generated by STeP show that the γ transitions of SPEC and PROG

are at the root of the closed-loop systems’ failures to meet the recovery specification.

Consider the TTM SPEC in Figure 5.4 (p. 125). Activity e is where the value of

Power is reevaluated after Relay = OPEN has been true for the required 20 ticks in

activity d. If Power ≥ PT then SPEC returns to activity a via transition γ, leaving

Relay = OPEN. If upon returning to a, Pressure ≥ DSP then transition µ can

occur, starting another cycle of the transition graph; only this time Relay = OPEN.

The Power may return to an acceptable level immediately following the µ transition,

but the system will take 30 ticks to return to activity a and “recover” by finally

executing a β transition that sets Relay = CLOSED.

139

control Result States Time(sec)

spec fail 1400 1
prog fail 2528 2
specr pass 4745 8
progr pass 9161 16

Table 5.3: Summary of model checking results for System Recovery property F ′
Rec for

control‖plant

Removal of the γ transition will ensure that SPEC remains at activity e until

Power < PT . If Power is less than PT while SPEC is in e, then before two clock

ticks ρ2 occurs, setting Relay = CLOSED, and thereby ensuring satisfaction of FRec.

With the removal of γ, the β transition that resets Relay in activity a becomes

redundant, since the only way that SPEC can enter a when Relay = OPEN is via

ρ2. We will also delete the γ and β of PROG. Call the revised systems formed by the

elimination of these transitions SPECr and PROGr. The new modules associated

with these systems, similarly denoted by specr and progr, can be obtained from their

unprimed predecessors simply by removing all references to β from their interfaces.

While the new systems are smaller and perhaps agree more closely with the designer’s

intuition of how the system should behave, changing the systems brings into question

their equivalence and the satisfaction of the Initialized Response formula FIRes, while

creating the possibility that the closed-loop system will now satisfy FRec.

From Table 5.3 we see that specr‖plant |= FRec and progr‖plant |= FRec. Further

model-checks also confirm that specr‖plant |= FIRes and progr‖plant |= FIRes. This

mutual satisfaction of FRec and FIRes by spec and prog was not merely accidental.

It was forced by Theorem 4.17 because specr ≈se progr. The Equivalence Preserving

Transformation proof of spec ≈se prog in Appendix B can be used virtually without

change to provide a proof of specr ≈se progr. This is not particularly surprising given

the simple structure of the systems and the one-to-one correspondence between β and

γ transitions in spec and prog.

140

5.3 Model-Checking Concurrent Controllers

So far we have typically seen a factor of 2 improvement in model-checking time and

space by using the reduced spec models instead of the full prog model. If this were

always the case it would be hard to justify the additional complexity of the O(n3)

weak state-event equivalence model reduction computation or the additional effort to

reduce the system by hand using Equivalence Preserving Transformations. More dra-

matic gains from our model reduction technique can be made when there are multiple

controllers running in parallel. Such redundant controller schemes, in particular 3-

version control with majority voting logic, have been recommended for safety critical

systems such as nuclear power plants [PAM91]. Each controller module is identical.

Therefore, because of the compositional consistency of weak state-event equivalence

for TTM modules, the model reduction computation or proof need only be performed

once for a single controller module. The reduction can be used for each controller

module added to the system providing a multiplicative effect in the reduction of the

state size without any additional computational or manual effort. To illustrate the

preceding concept, this section extends the basic DRT closed-loop system to 2 and 3

copies of our revised DRT controllers running in parallel with the plant. The enable-

ment conditions of the plant’s RELAY transitions are changed to accommodate the

additional controllers and the plant module’s interface is modified accordingly.

We will attempt to verify FIRes and FRec for compositions of the reduced and

unreduced revised DRT models. The results demonstrate that the real benefits of

modular model reduction are realized when multiple reduced models are composed.

We will see that composition of reduced models can lead to a multiplicative effect in

the reduction of the composite model that soon makes model-checking the unreduced

system intractable due to memory limitations. Another interesting conclusion of the

model-checking results for the composite systems is that properties satisfied by the

single controller version do not necessarily hold for the multiple controller versions.

We will begin by considering the two controller case. The TTMs SPECr and

PROGr can have their transitions and internal and output variables subscripted by

141

integers i = 1, 2 to avoid transition label and variable name conflicts. The Power

and Pressure variables and their associated input transition labels αw and αp are the

only parts of the controller TTMs that need not be subscripted. The reactor TTM

PLANT supplies these inputs to the multiple controllers. Thus when defining the

modules, the input part of the control modules’ interfaces remains the same. The

new modules are, for i = 1, 2, specri
:= (SPECri

, Ii) and progri
:= (PROGri

, Ii)

where

Ii := (Σin(specr),V(specr), Rin(specr),

{alphai, ρ2i
}, {Relayi}, {(alphai, Relayi), (ρ2i

, Relayi)})

In interfacing the plant with the two controllers we assume that the plant will only

change the state of the reactor relay xRELAY when both controllers are in agreement.

To accomplish this we modify the PLANT TTM of Figure 5.6 to obtain the TTM

PLANT2 as follows:

(i) Initial condition ΘPLANT2
is obtained from ΘPLANT by removing the Relay =

CLOSED conjunct and replacing it with Relay1 = CLOSED∧Relay2 = CLOSED.

(ii) The enablement conditions for ρc and ρo are changed to Relay1 = CLOSED ∧

Relay2 = CLOSED and Relay1 = OPEN ∧ Relay2 = OPEN respectively.

We then have the two version plant module plant2 := (PLANT2, I2) where I2 is

an appropriately defined modification of the interface used in plant. The results of

model-checking are shown in Table 5.4. In this table and Table 5.5 below, ‘?’ as a table

entry indicates that the results of the attempted model-check were indeterminate as

the computation out of memory and failed to terminate successfully.

We see that for the control1‖control2‖plant2 case the model-checks of property

FIRes ran out of memory for both the reduced controli := specri
case and the detailed

controli := progri
case. This can be attributed to the PSPACE-completeness of

Linear Temporal Logic model checking [SC85]. Model-checking algorithms typically

employed for Linear Temporal Logic have a complexity of O(|Qm|
|F |), where |F | is

142

F ′
IRes - System Response F ′

Rec - System Recovery
in ‖ control Result States Time(sec) Result States Time(sec)

1 specr pass 6305 55 pass 4745 8
progr pass 12063 218 pass 9161 16

2 specr ? ? ? fail 1141 1
progr ? ? ? fail 8025 10

Table 5.4: Summary of model checking control‖plant and control1‖control2‖plant2

the number of temporal operators in F and |Qm| is the number of transitions plus

the number of states of the SELTS generated by the module m [LP85]. In the case

of FIRes any state space reduction achieved by the use of specr was negated by the

|FIRes| exponent.

The results of the model-check for the somewhat simpler property FRec show a

definite improvement in the time and space required to decide the property using the

reduced models. The answer is somewhat unexpected. While operating in the single

control environment both specr and progr result in closed loop systems that satisfy

FRec but when run concurrently with another control, the closed-loop system fails to

satisfy FRec. The counterexamples generated by STeP show that controllers can get

out of synchronization from their initial states. If Power ≥ PT while Pressure <

DSP then the following state-event sequence can occur in specr1
‖specr2

‖plant2:

(HI, LO, a, a)
αp

→(HI, HI, a, a)
tick
→(HI, HI, a, a)

µ1

→(HI, HI, b, a)
αw→(LO, HI, b, a)

tick
→ . . .

The 4-tuples represent the value of the variables (Power, Pressure, xSPECr1
, xSPECr2

).

We see that once Pressure = HI for one tick, module specr1
reacts, but before specr2

can react, αw occurs setting Power = LO and disabling µ2. The two systems are

now out of synchronization and the situation deteriorates from there to a point where

the reactor relay, once opened for more than 20 ticks will in some cases not close

even if Power < PT for up to 19 ticks! At first one might think the failure of the

2 controller system to satisfy FRec is the result of the lower time bounds of 1 on the

reactor OUTPUT transitions αw and αp but putting reactor outputs through a low

143

pass filter to increase the lower bounds up to at least 19 would still fail to eliminate

all possible counterexamples.

Instead we must place some restrictions upon our plant to ensure that multiple

controllers are reacting to the same output samples. The plant behavior restrictions

are implemented by replacing the TTM OUTPUT in PLANT with the new TTM

OUTPUTsh, a TTM that implements a sample and two tick hold on the reactor

outputs. This change eliminates the previous problem. The sample and hold version

of the plants for the one, two and three controller cases are shown in Figure 5.10.

PLANTsh1
and PLANTsh2

are sample and hold versions of PLANT and PLANT2

respectively while PLANTsh3
implements a majority vote scheme in the enablement

conditions of ρo3
and ρc3 . For XRELAY , the reactor relay state, to change in PLANTsh3

at least 2 of the three control modules must agree to the change.

As was the case for plant, for n = 1, 2, 3 control‖plantshn
|= 23(η = tick).

Although µh, αp and αs have lower and upper time bounds of 0 in OUTPUTsh, at

most only one of each of these transitions can occur before the next µs transition.

Since µs has a lower time bound of 2, OUTPUTsh can only generate a finite number of

transitions between successive ticks. The remaining closed loop system components

are the same as for the PLANT case so the same arguments can be applied. Thus we

can continue to check the desired system properties without adding the disjunctive

clause ¬23(η = tick) of Theorem 4.17.

The results of model-checking for the sample and hold closed-loop systems are

shown in Table 5.5. Due to memory limitations we are still unable to verify the

response property FIRes for the multiple controller case.

The results for the verification of FRec are very promising. Model reduction pro-

vides the same positive answer as the unreduced system in the one and two controller

cases with the unreduced (progr control) closed-loop taking approximately twice the

number of states and time for the single controller closed-loop system and four times

the number of states and time for the dual controller closed-loop system. This is in

keeping with the multiplicative effect that the theory predicted would result from the

composition of reduced models. When we go to the 3 control majority vote closed-

144

F ′
IRes - System Response F ′

Rec - System Recovery
in ‖ control Result States Time(sec) Result States Time(sec)

1 specr pass 7023 129 pass 7965 11
progr pass 13342 398 pass 16191 29

2 specr ? ? ? pass 9489 101
progr ? ? ? pass 34523 456

3 specr ? ? ? pass 12897 35
progr ? ? ? ? > 540000 > 105min

Table 5.5: Summary of model-checking control1‖plantsh, control1‖control2‖plantsh2

and control1‖control2‖control3‖plantsh3

loop system, the results are even more dramatic. The state size of the reduced (specr

control) closed-loop system continues to grow in a roughly linear fashion but there

is a sudden state explosion that results in the unreduced case that prevents us from

finishing the model-check (the computation runs out of memory). The state explosion

is in large part due to the interleavings of events that increment the internal counter

variables of progri
. Fortunately there is no need to model-check the unreduced 3 con-

troller closed-loop system. We can already conclude that this system satisfies FRec

because specr1
‖specr2

‖specr3
‖plantsh3

|= FRec.

5.4 Summary

The model-checking results confirm the correctness of Theorem 4.17. Weakly state-

event equivalent systems did satisfy the same formulas on all their computations in

which time advances. The benefits of compositionally consistent model reduction

have been demonstrated by the multiple controller FRec model-checking results. In

this example verification of the composite system composed of unreduced models was

impossible on the given hardware, but the model-check of the composition of reduced

system was easily handled. This allowed us to know what the result for the unreduced

composition would be without having to compute it.

We also discovered that model reduction alone is not enough in some cases (eg.

FIRes with two or more controllers). In such cases the reduced system model may still

145

result in a composite system that is too large to be verified on the available hardware.

This is particularly true of linear temporal logics where the complexity of the model

checking algorithms grows exponentially with the number of temporal operators. In

these cases a designer may wish to investigate the possibility of using branching

time temporal logics such as CTL to express system properties. Unfortunately the

StateTime tool does not currently support the transition system formats of other

untimed model checking systems, so we leave the investigation of other temporal

logic frameworks for future research.

During the temporal logic model-checking process two interesting additional points

came to light. First, we found that specification models used in equivalence verifica-

tion may not always accurately capture the designer’s concept of the system require-

ments. Temporal logic model checking of specification models used in the equivalence

verification process can be most useful for identifying any errors in the specification

model, helping the designer to discover whether the correct specification model has

been chosen. The counter example generation features of the model-checker are par-

ticularly useful in this regard. The counter examples from the failed model-checks

of the DRT system illuminated system behavior that otherwise would not have been

considered in the system design. The model-checking in turn benefited from the

compositionally consistent equivalence verification technique as it provided a means

of compositionally consistent model reduction. In the case of the DRT design, the

combination of equivalence verification and model-checking were mutually beneficial,

leading to a better design than would have been achieved by the application of either

method in isolation.

146

PLANTshn
:= RELAYn‖OUTPUTsh

RELAY
ρon

ρcn

µs

µh

µh

µh

αwαw

αp

αp

hold

sample3

OUTPUTsh

sample2

sample1

closed open

PLANTshn
, n = 1, 2, 3 Transition Table

Θ := xRELAY = closed ∧
∧

i=1,...,n

Relayi = CLOSED

∧xOUTPUT = hold ∧ Power = LO ∧ Pressure = LO

ρon
:= (eon

, [], 0, 0)

ρcn
:= (ecn

, [], 0, 0)

µh := (true, [], 0, 0)

µs := (true, [], 2, 2)

αw := (true, [Power : LO; Power : HI], 0,∞)

αp := (true, [Pressure : LO; Pressure : HI], 0,∞)

where

eρo1
:= (Relay1 = OPEN)

eρc1
:= (Relay1 = CLOSED)

eρo2
:= (Relay2 = OPEN ∧ Relay2 = OPEN)

eρc2
:= (Relay2 = CLOSED ∧ Relay2 = CLOSED)

eρo3
:= (Relay1 = OPEN ∧ Relay2 = OPEN) ∨ (Relay1 = OPEN

∧Relay3 = OPEN) ∨ (Relay2 = OPEN ∧ Relay3 = OPEN)

eρc3
:= (Relay1 = CLOSED ∧ Relay2 = CLOSED) ∨ (Relay1 = CLOSED

∧Relay3 = CLOSED) ∨ (Relay2 = CLOSED ∧ Relay3 = CLOSED)

Figure 5.10: PLANTshn
:= RELAYn‖OUTPUTsh - TTM models for plants with

sample and hold on outputs.

147

Chapter 6

Conclusions

We have investigated State-Event Labeled Transition Systems (SELTS) with unob-

servable transitions, as a framework in which complexity may be hidden, and hi-

erarchy induced through quotient systems. This effort has led to the discovery of

unifying constructs, called state-event observers, which subsume both determinis-

tic state observers [Won76] and event based observation equivalences [Mil80, Mil89].

The close relationship between state-event observers and (event) observation equiva-

lences makes possible efficient polynomial time algorithms for computing state-event

observers for finite state SELTS. Strong and weak state-event equivalences for com-

parison of SELTS are derived from state-event observers.

A SELTS synchronous composition operator is defined that models both shared

transitions and shared variables. The algebraic characterization of state-event equiv-

alence using SELTS homomorphisms was used to demonstrate that state-event equiv-

alence is a congruence for the SELTS synchronous composition operator. Thus in a

synchronous composition one may replace the system’s modules (components) with

equivalent quotient modules. Typically the resulting system has a smaller state space

and is equivalent to the original composition. The size of a composite system’s state

space grows as the product of the sizes of the components’ state spaces, so any re-

ductions to system modules will have a multiplicative effect. In this way the state

explosion problem is dealt with at the component level before it occurs in the com-

posite system.

148

Any two strongly state-event equivalent systems are shown to satisfy identical sets

of formulas of a simple discrete time temporal logic derived from Ostroff’s RTTL. This

result is extended to the preservation of truth values by weak state-event equivalent

systems for the class of state-event stuttering invariant formulas. The latter result,

together with the fact that state-event composition is a congruence for synchronous

product, allows one to perform compositionally consistent model reduction. TTM

modules are defined to allow the model reduction results for SELTS to be applied to

systems modeled by TTMs.

The effectiveness of compositionally consistent model reduction techniques in deal-

ing with the state explosion problem is illustrated by the application of weak state-

event model reduction to the Delayed Reactor Trip (DRT) system. In this case

the greatest return on model reduction efforts is seen when more than one identical

module appears in a parallel composition, as in the case of redundant controllers

implementing a majority vote scheme. In this case the reduction is performed once

for a single module, and the reduced module is then substituted for all copies of the

component.

6.1 Limitations and Future Research

In this thesis we have not addressed many of the details involved in creating working

implementations. No attempt was made to deal with problems such as numerical

overflow, data conversion errors and other troubles that often result in system failure.

A method of dealing with these important issues in a rigorous fashion would go a

long way towards bridging the gap between theory and practice in the design of

safety critical systems.

As evidenced by the failure of our model reduction technique in dealing with the

system response properties for the multiple controller cases of the DRT, there are

cases when weak state-event model reduction alone does not succeed in making a

verification problem tractable. The inability to verify the system response property

was in no small part due to the particular choice of temporal logic used for specifi-

149

cations. As mentioned in the previous chapter, model-checking algorithms employed

for Linear Temporal Logic (LTL) have a complexity of O(|Qm|
|F |), where |F | is the

number of temporal operators in F and |Qm| is the number of transitions plus the

number of states of the SELTS generated by the module m [LP85]. On the other

hand model-checking for the branching time temporal logic CTL can be done in time

O(|Qm| ∗ |F |) [CES86]! Although the expressive powers of LTL and CTL are incom-

parable, when a complex property can be expressed in both logics, CTL is clearly

the preferable choice for model-checking purposes. In this circumstance, a real-time

state-event extension to CTL should hold considerable promise for proving real-time

properties of TTMs via model checking. The alternative definition of Milner’s obser-

vation equivalence given in Section A.2 makes the branching nature of observation

equivalence apparent with its use of existential quantifiers. Two states are equivalent

iff they have the same future choices of observable events to equivalent states. Thus

state-event equivalence should be better suited to performing model reduction for

branching time logics. Results similar to those obtained for our RTTL style logic

should be attainable for any similar real-time extensions of CTL.

While the initial model-checking results are promising, further practical applica-

tion of weak state-event model reduction to industrial problems is needed to establish

the method’s advantages and limitations. Although the transformational technique

of Appendix A was adequate for performing model reduction of the DRT example,

an automated method for computing a finite state system’s weak state-event quotient

system would greatly facilitate the use of the equivalence in larger practical examples.

One possible solution to this problem is the use of model-checkers for the µ-calculus

[Par81] to compute the weak state-event quotient systems. In [BCM92] the authors

provide not only a µ-calculus characterization of observation equivalence that could

be easily adapted to computing weak state-event equivalence, but also characteriza-

tions of LTL and CTL, enabling a µ-calculus model-checking tool to perform both

the model reduction and model-checking.

The power of state-event equivalence to support compositional model reduction

and equivalence verification, its simple algebraic characterization, and the above-

150

noted future research possibilities, indicate that further investigation of the state-

event theory is warranted.

151

Appendix A

Equivalence Preserving

Transformations of TTMs

This appendix summarizes the theoretical results of [Law92],[LW95] and points out

some of the work’s limitations that we attempt to address in this thesis. These

previous results are covered in detail since they motivated much of the present work

and are applied to the detailed example of Chapter 5.

We begin by detailing the model of TTM input/output behavior and resulting

definition of equivalence that formed the basis of the transformations. Next we use

bisimulations to define Milner’s strong and weak observation equivalences that were

used as the notion of system equivalence and then detail the equivalence preserving

TTM transformations. Finally the limitations of the results are briefly discussed.

A.1 Equivalence of TTMs

In this section Labeled Transition Systems (LTS) are used to describe the behavior of

TTMs and thus allow us to develop a notion of equivalence for TTMs. LTS have been

used by De Nicola [DeN87] to compare different notions of equivalence proposed for

concurrent systems. We now borrow some of the definitions and notation of [DeN87].

A Labeled Transition System Q := 〈Q, Σ, RΣ, q0〉 is simply a SELTS without the

state output map. Following the notation of [Mil80] and [Mil89], the special symbol

152

τ ∈ Σ, is used to denote internal (unobservable) actions. Hence q
τ
→q′ means that the

system can move from q to q′ via an unobservable or silent transition.

The following notation is also helpful:

Σo := Σ \ {τ} denotes the set of observable actions.

Σ∗ denotes the set of finite strings of actions.

a
s
→a′ where s = α1α2 . . . αk ∈ Σ∗ denotes (∃q1, . . . , qk−1 ∈ Q) q

α1→q1
α2→ . . . qk−1

αk→q′

and q
s
→ will mean (∃q′ ∈ Q)q

s
→q′.

q
α
⇒q′ means

q

τmατn

→ q′, α ∈ Σo

q = q′ or q
τmατn

→ q′, α = τ
for m,n ∈ N.

The idea behind the relation
α
⇒ is that the system can move from q to q′

while producing observation α. As before we will write q
α
⇒ as a short form for

(∃q′ ∈ Q)q
α
⇒q′.

One of the operations of [Mil89] that we will find useful is that of relabeling an

LTS. In this operation the structure of an LTS is left unaltered while the transition

labels are changed in a consistent way. That is, if one instance of a label is changed

to a new label, then all instances of the label must be changed to the same new label

in the relabeled LTS.

Definition A.1 Let r be a function from transition labels to transition labels and

Q := 〈Q, Σ, RΣ, q0〉 be an LTS. Then the r relabeling of Q is given by:

r(Q) := 〈Q, {r(α) : α ∈ Σ}, Rr(Σ), q0〉

We now consider QM , the Labeled Transition System generated by a TTM M :=

〈V , Θ, T 〉. There are many possible LTS that represent the legal trajectories of a given

TTM but for simplicity we adopt tree structures with all possible next transitions

exiting the current LTS state to new LTS states. It is often the case that the transition

names are unimportant. What is important is the effect the transitions have upon the

variables of interest and how the latter affect the ordering of transitions. Accordingly

153

the event labels of QM are the actual operation functions of the TTM transitions. We

will see in the example below that hα (where hα = [w : w + 1, y : y + z]) is written in

QM when transition α occurs in the legal trajectory of M . A convenient state set for

QM is the set of all finite strings of transitions T ∗. We then let the initial state of QM

be ε, the empty string. The transition relations follow naturally by defining for any

s ∈ T ∗, s
hα→sα if, starting from its unique initial state assignment, M can perform

the transitions sα as the initial sequence of transitions of a legal trajectory. More

formally, for a TTM M := 〈V , Θ, T 〉 we have QM := 〈T ∗, {hα : α ∈ T }, R{hα}, ε〉.

As we have defined them, each TTM has a unique initial state and the operation

functions of the TTM’s transitions are deterministic. Thus the effect on a TTM’s

variables can be completely determined by knowing the sequence of transitions that

has taken place. This is what will allow us to compare the behavior of TTMs by

comparing forms of the LTS that they generate. From now on the LTS representing

the behavior of a TTM will be the LTS QM as described above.

Consider M , the simple TTM of Figure A.1. The LTS representing the behavior

bac

α

β

γ

Θ := x = a ∧ v = w = y = z = 0

α := (w = 0, [w : w + 1, y : y + z], 0, 1)

β := (true, [w : w − 1, z : z − 1], 0, 0)

γ := (w = 0 ∧ y ≤ 0, [w : −1, v : v + 1], 1, 2)

Figure A.1: Simple TTM M := 〈V , Θ, T 〉

of M , which we denote by QM , is shown in Figure A.2. Note that the tick transitions

of the clock have been included in QM and that at each state all legal continuations of

the trajectory are possible. The self-looped htick transition at the end of some paths

is for display purposes only and helps indicate that the path can only be continued

by an infinite string of ticks.

We now consider the restriction of an LTS (representing the behavior of a TTM)

154

hα

hβ

hα hβhα

hα

hβ

hαhα

hβ

hα

hγ

hγ

hβ

hγhtick

htick

htick

htick

htick

. . .

. . .

htick

. . .

. . .

Figure A.2: QM - the LTS reachability tree for M

[t : t + 1]

[t : t + 1]

[t : t + 1]

τ

[z : z − 1]

[z : z − 1]

[z : z − 1]

[z : z − 1]

τ
[y : y + z]

[y : y + z] [y : y + z]

[y : y + z]

[y : y + z]

τ

[y : y + z]

[t : t + 1]

[t : t + 1]

. . .

. . .

[t : t + 1]

[y : y + z]
[z : z − 1]

Figure A.3: TM |{y, z} = r(QM) the restricted LTS for M

to a subset of variables of interest. We need some preliminary definitions.

Definition A.2 For a TTM M with variable set V and a subset of variables U ⊂ V,

we define the state assignments over U , denoted by QU , to be the product of the

ranges of the variables in U . Hence

QU := ×vi∈URange(vi)

The natural projection PU : Q → QU maps a state assignment to its corresponding

state assignment over U .

Definition A.3 Suppose M := 〈V , Θ, T 〉 is a TTM, U ⊂ V is a set of variables,

and α ∈ T is a transition. Let hα : Q → Q be the operation function of α and

PU : Q → QU be the natural projection from the state assignments Q to QU , the state

155

assignments over U . Then the map induced in QU by hα, when it exists, is the

map hα : QU → QU such that PU ◦ hα = hα ◦ PU .

The relationship between hα and hα is illustrated in the commutative diagram, Fig-

ure A.4.

?
-

-

?

Q
hα Q

PU

QU
hα

PU

QU

Figure A.4: Commutative Diagram for Induced Operation Function

For a given U , hα will exist if the operations of hα upon the elements of U are

independent of the values of the variables in V − U . For instance with hα := [w :

w + 1, y : y + z] = [w : w + 1, y : y + z, z : z] and U = {y, z} we have hα = [y : y + z].

Note that hα is not defined for U = {w, y} since the new value of y depends upon

the current value of z. The existence condition for hα can be formally stated as the

mapping kernel condition ker(PU) ≤ ker(PU ◦ hα).

We now have the machinery to define the timed behavior of a TTM M restricted

to a subset of its variables.

Definition A.4 For M := 〈V , Θ, T 〉, U ⊂ V and QM := 〈T ∗, {hα : α ∈ T }, R{hα}, ε〉

we define the restriction of QM to U as follows. Let r be the LTS relabeling function

such that r(hα) = hα where hα is the map induced in QU ′ by hα when U ′ := U ∪ {t}.

Then

QM |U := r(QM) = 〈T ∗, {r(hα) : α ∈ T }, Rr({hα)}, ε〉

We then denote the timed behavior of M restricted to U by M |U := QM |U .

Note that QM |U is defined iff (∀α ∈ T) hα exists. When QM |U is defined we say that

U is restrictable for M .

156

If the variables of interest for the TTM M of Figure 1 are U = {y, z} (and

implicitly t to guarantee the timing) then the LTS of the behavior of M over these

variables can be obtained by replacing the transitions’ operation functions with their

induced maps. For example we replace hα in QM with hα := [y : y + z]. In the case

of the transition γ, hγ := [] the identity or ‘silent’ function for {y, z, t}. TM |{y, z},

the restriction of QM as described above, is shown in Figure A.3. Here we replace

hγ with the silent transition τ to help it stand out in the graph. Starting from the

initial state of TM |{y, z}, if the first transition is a clock tick, the next event may be

y changing to y + z or the system moving unobservably via τ to a state where no

further changes can be made to {y, z}.

The example of Figure A.3 illustrates how restriction can create systems that

can move unobservably to a deadlocking state - a state with only strings of ticks as

possible legal continuations. We shall use a notion of equivalence that can distinguish

between a deadlocking and a non-deadlocking system.

The main purpose of looking at the LTS generated by a TTM is to develop a

notion of equivalence for TTMs. We will consider two TTMs to be equivalent over a

set of variables U if their initial states agree on all variables in U and their respective

LTS are equivalent when restricted to the variables of interest. More formally:

Definition A.5 Given two TTMs M1 := 〈V1, Θ1, T1〉 and M2 := 〈V2, Θ2, T2〉 and

EQ, an equivalence relation over the set of all LTS. Let Q1 and Q2 be the sets of

state assignments for M1 and M2 and P1 : Q1 → QU ′ and P2 : Q2 → QU ′ be their

respective natural projections, for some U , a set of variables. We say that M1 is EQ

equivalent over U to M2, written M1 EQ/U M2, if and only if

(i) If q1 ∈ Q1 and q2 ∈ Q2 then q1(Θ1) = true and q2(Θ2) = true implies

P1(q1) = P2(q2)

(ii) QM1
|U EQ QM2

|U

where QM1
and QM2

are the LTS generated by M1 and M2 respectively.

In practice usually U ⊂ V1 ∩V2 though this need not be the case in general. The first

condition in the definition guarantees that the systems start out in state assignments

157

that are identical when restricted to U while the second condition guarantees that

observed changes to variables in U will be equivalent.

A.2 Observation Equivalence

We begin this section by introducing an equivalence that is much stronger than what

we require. The strong observation equivalence of [Mil89] treats silent τ transitions

as if they were observable. Informally it requires that in a system each state reached

by s, a string of transitions, there must be a state reachable by s in the equivalent

system that has the same choice of next transitions (including the unobservable τ

transition) at each step along the way and in the end state. We begin by defining the

notion of a strong bisimulation that will help us to capture this informal property.

More formally, let Q1 := 〈Q1, Σ, R1
Σ, q10〉 and Q2 := 〈Q2, Σ, R2

Σ, q20〉.

Definition A.6 A unary relation S ⊆ Q1×Q2 is a strong bisimulation if (q1, q2) ∈

S implies (∀α ∈ Σ),

(i) Whenever q1
α
→q′1 then (∃q′2 ∈ Q2) q2

α
→q′2 and (q′1, q

′
2) ∈ S.

(ii) Whenever q2
α
→q′2 then (∃q′1 ∈ Q1) q1

α
→q′1 and (q′1, q

′
2) ∈ S.

From [Mil89] we know that the set of strong bisimulation relations over Q1 × Q2 is

closed under union and thus there is always a largest strong bisimulation relation ∼,

relating the states of Q1 and Q2. Note that

∼ := ∪{S|S is a strong bisimulation over Q1 × Q2}

We will often use infix notation and write q1 ∼ q2 when (q1, q2) ∈∼.

We can now formally define strong equivalence for LTS. We will use ∼ to denote

this binary relation over LTS as well as the largest strong bisimulation relation over

the state sets of a pair of LTS. This should not cause any confusion as the relation

we wish to refer to will usually be clear from the context in which ∼ is used.

158

Definition A.7 Strong Equivalence ∼: Suppose Q1 := 〈Q1, Σ, R1
Σ, q10〉 and Q2 :=

〈Q2, Σ, R2
Σ, q20〉 are LTS. Then

Q1 ∼ Q2 iff (∃S ∈ {strong bisimulations over Q1 × Q2}) (q10, q20) ∈ S

Thus Q1 ∼ Q2 iff q10 ∼ q20, which is the reason ∼ is used to denote both the relation

over LTS and the relation over the state sets of two LTS.

αα

τ β

∼
α

τ β τ β τ

6∼
αα

β

Figure A.5: Strong Equivalence Example

In Figure A.5, the first two LTS are strongly equivalent since they have the same

choices after executing the same strings of events. The third LTS is not in the same

equivalence class because there is no state reachable by executing α that can be

continued by both β and τ . One can think of strongly equivalent systems deciding

which futures will be possible at the same points in their execution. For example the

third LTS chooses what transition will follow α when α actually occurs. The first and

second systems are still free to choose the next transition after α happens. Having

equivalent systems make their choices of possible future events at the same junctions

in their execution eliminates the problems associated with mere string equivalence.

Figure A.6 demonstrates that strong equivalence is more discriminating than we

would like because it “observes” τ . If we ignore τ transitions then after observing an

α, both systems are in states that can be observably continued by β. To deal with

this situation we now consider a weaker equivalence that is defined in a way that

closely parallels strong equivalence.

Reducing the problem of TTM equivalence to one of LTS equivalence allows us

to choose from the multitude of LTS equivalence relations in [DeN87]. For deadlock

159

α

6∼

β

α

τ

β

Figure A.6: Illustrating the need for a weaker equivalence

avoidance and other control properties described in [Law92], we will use Milner’s weak

observation equivalence (see [Mil89]). Recalling that q
α
⇒q′ denotes q

τmµτn

→ q′ for some

m,n ∈ N when α 6= τ and q=q’ or q
τmµτn

→ q′ for α = τ , we now give the definition of

Milner’s observation equivalence.

Definition A.8 Let Q1 := 〈Q1, Σ, R1
Σ, q10〉 and Q2 := 〈Q2, Σ, R2

Σ, q20〉 be LTS. A

relation S ⊆ Q1 × Q2 is a weak bisimulation if (q1, q2) ∈ S implies

for all α ∈ Σ (including α = τ),

(i) Whenever q1
α
→q′1 then (∃q′2 ∈ Q2) q2

α
⇒q′2 and (q′1, q

′
2) ∈ S.

(ii) Whenever q2
α
→q′2 then (∃q′1 ∈ Q1) q1

α
⇒q′1 and (q′1, q

′
2) ∈ S.

In other words, two states q1 ∈ Q1, q2 ∈ Q2, are weakly bisimilar if any move

from q1 to a new state q′1 can be matched by a finite sequence of moves from q2, that

produces the same observation and leads to a state q′2 that is weakly bisimilar to q′1.

Also, any move from q2 must be matched in a similar fashion. From [Mil89] we know

that the set of weak bisimulation relations over Q1 × Q2 is closed under union and

thus there is always a largest weak bisimulation relation ≈, relating the states of Q1

and Q2. That is

≈ := ∪{S|S is a weak bisimulation over Q1 × Q2}

We write q1 ≈ q2 when (q1, q2) ∈≈.

160

We can now formally define weak observation equivalence for LTS. We will use

≈ to denote both this binary relation over LTS and the largest weak bisimulation

relation over the state sets of a pair of LTS.

Definition A.9 Weak Observation Equivalence ≈: Let Q1 := 〈Q1, Σ, R1
Σ, q10〉

and Q2 := 〈Q2, Σ, R2
Σ, q20〉 be LTS. Then Q1 ≈ Q2 iff there exists a weak bisimulation

S over Q1 × Q2 such that (q10, q20) ∈ S

Thus Q1 ≈ Q2 iff a0 ≈ b0.

The relation ≈ is an equivalence relation over the set of LTS; the reader is referred

to [Mil89] for the details in the setting of Milner’s process algebra.

A.3 Equivalence Preserving Transformations

The purpose of this section is to explain transformations and their use. After demon-

strating an intuitive notion of transformation with a simple example, we define a set

of behavior preserving transformations and conclude by proving that these preserve

the formal observation equivalence of TTMs.

A transformation is behavior preserving if it changes a TTM in such a way that

the timed behavior of the transformed TTM restricted to the variables of interest, is

equivalent (for a specified LTS equivalence relation) to the restricted timed behavior

of the original TTM. Consider the two TTMs M1 and M2 of Figure A.7. Suppose

d

ddd d¡
¡

¡¡µ

--
aa

c c

b

Θ1 := (z = 0) ∧ (x1 = a)

α : z = 0 → [y : y + 1]

M1

β : z = 2 → [w : w − 2]

⇐⇒

M2

α : z = 0 → [y : y + 1]

Θ2 := (z = 0) ∧ (x2 = a)

Figure A.7: An example of Transition Addition/Transition Deletion

we are only interested in the timed behavior of the variables y and z. The initial

condition Θ1 prevents β from ever being enabled. If α has the same time bounds in

both systems then it is apparent that M1 and M2 allow the same timed trajectories

161

over y and z. In fact, since β is never enabled we could delete this transition from

M1 to transform M1 into M2. Similarly we could add a β transition to M2 without

changing its set of legal trajectories as the initial condition Θ2 would prevent the new

transition from ever occurring. Thus M2 can also be transformed into M1.

This is the idea behind the transformational technique of equivalence verification.

Given a set of variables of interest U , if it is possible to change one TTM into another

by a set of behavior preserving transformations, then the two TTMs’ timed behavior

restricted to U will be equivalent (ie. QM1
|U ≈ QM2

|U) and hence the TTMs will

behave equivalently in a well defined sense. Clearly if our transformational method

is correct, the transformations must abstract away unimportant details in such a way

that the key features of the structure of QM |U are preserved.

The addition of transition β to M2 to form M1 is an example of the Transition

Addition transformation (TA). Going from M1 to M2 is an application of the dual

of TA, the Transition Deletion transformation (TD). Below we describe these and

the other transformation pairs needed to solve the verification problem of [LW95].

Throughout the section the transformations refer to the “set of variables of interest”

U . These are the variables we wish to “observe” so the transformations are designed

to produce TTMs that generate equivalent timed behaviors when restricted to the

variables in U .

TA/TD Transition Addition/Transition Deletion: As demonstrated above one may

add an instance of a transition to a TTM without changing its timed behavior

if the transition’s enablement condition is never satisfied in the new source

activity. More formally, consider a TTM M with the transition α := (e, h, l, u),

where α’s full enablement condition from the transition graph of M is eα :=

e ∧ (x = a1 ∨ x = a2 ∨ . . . ∨ x = an) implying that there are instances of α

exiting activities a1, . . . , an in the transition graph. One may add an instance

of α exiting activity a 6∈ {a1, . . . , an}, with any other activity as its destination,

provided that in any reachable state assignment q of M it is the case that

q(x) = a implies q(e) = false. The new full enablement condition for α after

the transformation is eα := e ∧ (x = a1 ∨ x = a2 ∨ . . . ∨ x = an ∨ x = a)

162

Similarly one can change the full enablement condition of the transition α from

eα := e ∧ (x = a1 ∨ x = a2 ∨ . . . ∨ x = an ∨ x = a) to eα := e ∧ (x = a1 ∨ x =

a2 ∨ . . . ∨ x = an), thereby removing the instance of α exiting activity a in the

transition graph of M if in all the reachable state assignments q of M it is the

case that q(x) = a implies q(e) = false. That is, one may remove an instance of

a transition from a TTM if the transition’s enablement condition is always false

in the source activity from which the instance of the transition will be deleted.

CA/CD Control Addition/Control Deletion: This transformation lets one add or

remove a condition from a transition’s enablement condition under certain con-

ditions. Consider a transition α with eα := e and let p be some first order

predicate over the variables in V . If whenever a source activity for α is entered,

p is true (p is false), then enew
α := e ∧ p (enew

α := e ∨ p).

Conversely if eα := e ∧ p (eα := e ∨ p) and, in every activity that α exits, p is

guaranteed to be true (false), then enew
α := e.

AM/AS Activity Merge/Activity Split: This transformation is defined only when

the activity variable x is not in the set of variables of interest (ie. x 6∈ U). The

basic idea of this transformation is that two activities can be merged if they have

the same future. Hence, two activities may be merged if they have the same

exiting transitions going to the same destination activities. In the example

of Figure A.8, the activity merge transformation changes δ’s full enablement

condition from eδ := e ∧ (x = a1 ∨ x = a2 ∨ . . .) to eδ := e ∧ (x = a ∨ . . .). For

the merged activity one must be careful to choose a name that differs from the

remaining TTM activities.

b

ca2 a c

ba1

σ
δ

σ δ
σ

α1

α3

α2 ⇐⇒

α1 δ

α3

α2

Figure A.8: Activity Merge/Activity Split

For activity splitting, if activity a is the destination activity of transitions

α1, . . . , αk, αk+1, . . . , αn then split a into a1 and a2. α1, . . . , αk will have des-

163

tination activity a1 and αk+1, . . . , αn will have destination activity a2. a1 and

a2 will be the source activities for the same transitions to the same destination

activities as in the case of activity a.

RT Rename Transition: This transformation is its own dual. It renames one or more

instances of a transition with a new name provided the latter does not conflict

with another name or change the structure of QM |U . Consider Figure A.9,

d d

d

d d

d

d d

¡¡ª@
@R

-
¡

¡ª
@
@R

££

M1 M2

⇐⇒

α:4:4 β:1:2 β:1:2α:4:4

γ:5:7 γ′:5:7γ:5:7

a

c c
γ:5:7

a
b db d

Figure A.9: A Problem with the Rename Transition Transformation

where one instance of the transition γ is renamed γ′, altering the behavior of

the system. If the numbers immediately following the transition labels denote

the lower and upper time bounds respectively, it is apparent that transition γ

is enabled across activities a and b in M1 so although α happens before γ, γ

has been enabled long enough that it can occur before β. On the other hand in

M2 γ is always preempted by α and γ′ is always preempted by β.

In general, when it is possible for a transition to remain enabled when moving

from one activity to another, then it is not possible to rename the two instances

independently (ie. in any application of RT the two instances must be given

the same name).

OM Operation Modification: If a variable does not occur in the enablement condition

of any transition or the operations affecting any other variables and is not in

U , the set of variables of interest, then any operations affecting the variable can

be added or deleted from any transition.

Let v ∈ V−U and PV−{v} : Q → QV−{v} be the natural projection from the state

assignments to state assignments over QV−{v}. Then the OM transformation

is defined if for all α ∈ T , the enablement condition eα of α is independent

164

of v, and ker(PV−{v}) ⊆ ker(PV−{v} ◦ hα) (ie. there exists an induced operation

function hα : QV−{v} → QV−{v} such that hα ◦ PV−{v} = PV−{v} ◦ hα). If v

satisfies these conditions then for any α ∈ T , hα can be replaced with the hα

induced by PV−{v}.

The rationale behind this transformation is that the value of v has no effect

upon how the TTM operates on the variables in U , hence we can set v to any

value we wish, or ignore it altogether.

WM/WS (Wait Merge/Wait Split): A commonly occurring transition is the “wait”

transition that serves the purpose of marking the passing of a fixed number

of clock ticks. This transformation is a statement of the intuitive notion that

waiting for n ticks and then waiting for m ticks is equivalent to waiting for n+m

ticks. For technical reasons we require that n ≥ 1.

d d d d d- --
where ωi := (True, [], i, i)

ωn ωm ⇐⇒
ωn+m

Figure A.10: Wait Merge/Wait Split

Theorem A.10 Let M := 〈V , Θ, T 〉 be a TTM, U ⊂ V and T be one of the TTM

transformations of subsection A.3. If T(M) is defined, then M |U ≈ T(M)|U .

More transformations can be added to those listed in subsection A.3. One has to

verify that each new transformation preserves observation equivalence. Theorem A.10

implies that any TTM derived from another TTM via a finite sequence of the trans-

formations of subsection A.3 is observationally equivalent to the original TTM.

A.4 Limitations of Transformations

In [Law92] the set of transformations of Section A.3 is shown to be incomplete for

proving observation equivalence of TTMs and it is further demonstrated that no fi-

nite set of transformations is complete for proving observation equivalence of general

165

TTMs. The proof closely follows a similar proof in Milner’s process algebra [Mil89].

As in Milner’s setting, the incompleteness property does not prevent the theory from

being potentially useful in many practical applications. Indeed the exponential state

explosion that occurs with the addition of new variables can make exhaustive verifica-

tion routines impractical for even finite state TTMs. Thus heuristic methods such as

the transformational technique introduced in this appendix provide a useful method

of real-time system verification. Also, the transformations may be used to synthesize

an implementation from a specification that is correct by construction. That is, the

implementation resulting from the transformations will be guaranteed to be observa-

tionally equivalent to the specification, thereby eliminating the need to perform an

exhaustive equivalence verification.

166

Appendix B

Equivalence Verification of the

DRT

We now solve the DRT verification problem by applying the transformations described

in Appendix A to formally check the equivalence of PROG and SPEC over the set

of variables of interest U := {Power, Pressure,Relay, t}. The inclusion of t in U

guarantees that the timing as well as the ordering of changes to the inputs and

outputs of the two systems will be the same. In future we will omit t since we are

dealing with real-time systems and so the timing is assumed to always be of interest.

The proof that follows relies upon the system designer’s intuition in places for

the choice of the next applicable transformation. Starting from PROG with SPEC

as our final goal, we progressively try to make PROG look more like SPEC until, if

all goes well, we are left with a copy of SPEC at the end. At each step we check

that the desired transformation is applicable and describe its effect. Starting with

PROG0:=PROG, at each step i we apply a transformation to PROGi−1 to obtain

PROGi.

Claim B.1 PROG is behaviorally equivalent to SPEC over U (ie. PROG ≈ /USPEC).

Proof: (PROG −→ SPEC Over U)

0. The original PROG TTM is shown in Figure 5.5.

167

1. AS The first transformation to be applied is the Activity Split transformation.

We only have to make sure that instances of every transition exit both of the

new activities. Since all the transitions are self-looped to the only activity in the

Θnew := ΘPROG ∧ x = a

ρ1, ρ2, γ, β µ1, µ2, α

µ1, µ2, α

ρ1, ρ2, γ, β

ba

Figure B.1: TTM for PROG1

original system, we have some choice over how we distribute their destination

activities. The reasons for the choice shown in Figure B.1 will become apparent

in the next few steps. Although at this point it does not matter, we choose

activity a as the initial activity for reasons that again will become clear later.

2. TD The Transition Deletion Transformation is applied next to remove the in-

stance of the transition β exiting activity b and the instances of transitions α

and ρ1 exiting activity a. We are justified in these actions since:

i. All transitions entering b increment either c1 or c2.

ii. All transitions either increment or reset ci to 0 so in any activity ci ≥ 0.

iii. All transitions entering a either set c1 = 0 or leave c1 unaffected while

requiring c1 = 0 in their enablement conditions. Therefore in activity a

c1 = 0.

Hence by (i), (ii) and (iii) we know that:

x = b ⇒ c1 > 0 ∨ c2 > 0

⇒ eβ = false

and

x = a ⇒ eα = eρ1
= false

168

Thus we are justified in deleting the β exiting activity b and the α and ρ1 exiting

activity a.

Θnew := ΘPROG ∧ x = a

ρ2, γ, β µ1, µ2, α

µ1, µ2

ρ1, ρ2, γ

ba

Figure B.2: TTM for PROG2

3. AS This time we split activity b with α exiting b to the newly formed c activity

(see Figure B.3). This is an effort to make the transformed PROG look more

like SPEC. Notice that in splitting activity b into b and c we have not altered

the dynamics. Both b and c have the same possible futures as activity b in

PROG2.

c

µ1, µ2, α

α

ρ1, ρ2, γ

Θnew := ΘPROG ∧ x = a

ρ2, γ, β

µ1, µ2

µ1, µ2

ρ1, ρ2, γ
ba

Figure B.3: TTM for PROG3

4. TD Upon entering activity c we know that c1 = 0∧ c2 > 0 since hα := [c1 : 0, c2 :

c2 + 1, Relay : OPEN] and by 2(ii) we know that ci ≥ 0 in activity b. But eµ1

requires that either c1 = c2 = 0 or 1 ≤ c1 ≤ 29, so eµ1
is initially false in activity

c. Also the other transitions entering c (α and µ2) leave c1 unaltered and only

increment c2. Hence

x = c =⇒ c1 = 0 ∧ c2 > 0

=⇒ eµ1
= eρ1

= eα = false

Conclusion: delete the instances of µ1, ρ1, and α with source activity c.

169

5. TD The initial condition Θnew starts PROG4 out in activity a with c2 = 0. The

only transitions that affect c2 are µ2 and α. Transition µ2 requires c2 > 0 to

occur. Hence, starting from the initial state, α must precede µ2. Once α has

occurred we have x=c with only ρ2 and γ exiting c. Both these transitions set

c2 = 0 so (i)c2 > 0 iff x=c. Thus

(i) =⇒ (eµ2
= true ⇐⇒ x = c)

also

eρ2
= true ⇐⇒ x = c

eγ = true ⇐⇒ x = c

Conclusion: delete all instances of µ2, ρ2 and γ except those with source activity

cba

c1 = 0
c2 > 0 c2 > 0

c1 = 0 c1 = 0

µ2

α

ρ2, γ

Θnew := ΘPROG ∧ x = a

β µ1

µ1

ρ1 c2 > 0

Figure B.4: TTM for PROG5

c. This leaves us with PROG5 as shown in Figure B.4. The range of values

that c1 and c2 take on in each activity can be easily deduced from 5(i) and 2(iii)

so we include this information in Figure B.4 as well.

6. RT Referring to Figure B.4, we can rename the instance of µ1 exiting activity a

without affecting the dynamics of the variables of interest because µ1 is now

the only transition entering activity b and after a transition occurs, if it re-

mains enabled, its time bounds are reset. This means that a problem like that

illustrated in RT Figure A.9 cannot occur as a result of renaming only one of

the instances of µ1 since its time bounds are not carried across any group of

activities. The new transition exiting a will be called µ. Of course µ := µ1.

170

7. CD Considering the enablement conditions in PROG6 we have:

eµ := eµ1
:= (Power ≥ PT ∧ Pressure ≥ DSP ∧ c1 = c2 = 0)︸ ︷︷ ︸

p

∨ (1 ≤ c1 ≤ 29)︸ ︷︷ ︸
q

When x=a by 2(iii) and 5(i) we know that c1 = c2 = 0 and when x=b by 2(ii)

we know that c1 > 0. This gives:

(i)x = a =⇒ q = false

(ii)x = b =⇒ p = false

Using the Control Deletion transformation with (i) as justification, we can

change eµ to enew
µ := p. Similarly using (ii) and Control Deletion again we

obtain enew
µ1

:= q.

Now consider enew
µ and eβ:

enew
µ := Power ≥ PT ∧ Pressure ≥ DSP ∧ c1 = c2 = 0

eβ := Power < PT ∧ c1 = c2 = 0

but

x = a =⇒ c1 = c2 = 0

Applying CD yet again to simplify further we now have:

enew
µ := Power ≥ PT ∧ Pressure ≥ DSP

enew
β := Power < PT

In a similar fashion, again applying CD:

x = c =⇒ c1 = 0

so

enew
ρ2

:= Power < PT ∧ c2 ≥ 20

171

enew
γ := Power ≥ PT ∧ c2 ≥ 20

8. AS The activity b is now split into thirty different activities with µ1 taking the

TTM from one new b activity to the next as c1 is incremented. After µ occurs

we are in an activity where c1 = 1. µ1 takes us to the next activity where c1 = 2

c1 = 2
. . .

µ1

ca

c1 = 1 c1 ≥ 30c1 = 29

α

µ1µ1

Θnew := ΘPROG ∧ x = a

c1 = 0
c2 > 0

c1 = 3 c1 = 0

µ2

α

ρ2, γ

β

µ1µ

ρ1
c2 > 0

Figure B.5: TTM for PROG8

and so on until we reach an activity where c1 ≥ 30 and µ1 is self-looped. For

each value of c1 between 1 and 29, b has been spit into a new activity, with an

additional activity for c1 ≥ 30. We are attempting to ‘press out’ the TTM’s

dependence on c1 by flattening out the TTM to a point where for each value

of c1 between 1 and 30 there is an individual activity. Again note that we are

in no way changing the dynamics of the system over U as the same transitions

exit each of the new activities.

9. TD Knowing the value of c1 in each of the newly added activities allows us to

delete all instances of α and ρ1 except for the activity where c1 ≥ 30 since both

transitions enablement conditions require c1 ≥ 30. Also, the µ1 transition self-

looped at the c1 ≥ 30 activity may be removed because eµ1
:= (1 ≤ c1 ≤ 29) in

PROG8.

10. CD Now that transition µ1 has as source activities only those activities for which

1 ≤ c1 ≤ 29, eµ1
is always true in any of µ1’s source activities. Thus we can

172

remove the c1 dependence from eµ1
. The same can be done for α and ρ1 giving:

enew
µ1

:= true

enew
α := Power ≥ PT

enew
ρ1

:= Power < PT

11. OM Variable c1 no longer occurs in any transition’s enabling conditions or op-

eration functions that affect other variables. Hence we can drop the variable

from all transition operations. The modified transitions are

µnew := (Power ≥ PT ∧ Pressure ≥ DSP, [], 1, 1)

µnew
1 := (true, [], 1, 1) = ω1

12. WM All occurrences of µ1 are now merged into one ω29 by the Wait Merge

transformation (See Figure B.6).

ω29

cb30b1a

µ2

α

ρ2, γ

Θnew := Relay = CLOSED ∧ c2 = 0 ∧ x = a

β
µ1

ρ1

Figure B.6: TTM for PROG12

13-17. Now repeat steps 8-12 for activity c and transition µ2 to map out the dynamics

of variable c2 and we have the desired result, a TTM identical to SPEC.

2

By transforming PROG into SPEC above we have shown that the corrected pseu-

docode implements an algorithm that satisfies the behavior requirements expressed

173

by SPEC. The transformational proof above is sufficient to guarantee the formal

observation equivalence of SPEC and PROG over U.

174

Bibliography

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time

systems. In Proc. of the 5th IEEE Symposium on Logic in Computer

Science, pages 414–425, 1990.

[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and

Algorithms. Addison-Wesley, 1983.

[AM75] M. A. Arbib and E. G. Manes. Arrows, Structures and Functors: The

Categorical Imperative. Academic Press, 1975.

[Arn94] A. Arnold. Finite Transition Systems. Prentice Hall, 1994.

[BBCS92] S. Bensalem, A. Bouajjani, C.Loiseaux, and J. Sifakis. Property preserv-

ing simulations. In Proc. of 4th Conf. on Computer Aided Verification,

number 663 in LNCS, pages 260–275. Springer-Verlag, 1992.

[BC89] B. Bolognesi and M. Caneve. Equivalence verification: Theory, algo-

rithms and a tool. In C. Vissers P. van Eijk and M. Diaz, editors, The

Formal Description Technique LOTOS, pages 303–326. North-Holland,

1989.

[BCG87] M.C. Brown, E.M. Clarke, and O. Grümberg. Characterizing kripke

structures in temporal logic. In G. Levi H. Erhig, R. Kowalski and

U. Montanari, editors, TAPSOFT’87, vol. I, number 249 in LNCS, pages

256–270. Springer-Verlag, 1987.

175

[BCM92] J.R. Burch, E.M. Clarke, and K.L. McMillan. Symbolic model checking:

1020 states and beyond. Information and Computation, 98:142–170, 1992.

[BFH+92] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ratel.

Minimal state graph generation. Science of Computer Programming,

18:247–269, 1992.

[BH93] Y. Brave and M. Heymann. Control of discrete event systems modeled as

hierarchical state machines. IEEE Trans. Autom. Control, 38:1803–1819,

December 1993.

[BS81] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra.

Springer-Verlag, 1981.

[BW94] B. Brandin and W.M. Wonham. Supervisory control of timed discrete-

event systems. IEEE Trans. Autom. Control, 39(2):329–342, Feb 1994.

[CE81] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons

for branching time temporal logic. In IBM Logic of Programs Workshop,

number 131 in LNCS, pages 52–71. Springer-Verlag, May 1981.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM

Trans. Programming Languages and Systems, 8(2):244–263, April 1986.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstrac-

tion. ACM Trans. Programming Languages and Systems, 16(5):1512–

1542, September 1994.

[DeN87] R. DeNicola. Extensional equivalences for transition systems. Acta In-

formatica, 24:211–237, 1987.

[DGG94] D. Dams, O. Grümberg, and R. Gerth. Abstract interpretation of reac-

tive systems: Abstraction preserving ∀CTL∗,∃CTL∗ and CLT∗. In E.-

R. Olderog, editor, Programming Concepts, Methods and Calculi, pages

573–592. North-Holland, 1994.

176

[EMSS92] E.A. Emerson, A.K. Mok, A.P. Sistla, and J. Srinivasan. Quantitative

temporal reasoning. Real-Time Systems, 4:331–352, 1992.

[ES84] E.A. Emerson and A.P. Sistla. Deciding full branching time logic. In-

formation and Control, 61:175–201, 1984.

[FG89] M. K. Franklin and A. Gabrielian. A transformational method for ver-

ifying safety properties in real-time systems. In Proc. of 10th IEEE

Real-Time Systems Symposium, pages 112–123, December 1989.

[FZ91] J. Fa and Y. Zheng. Bi-observability of discrete event systems. In Proc.

of IFAC Workshop on Discrete Event System Theory and Applications in

Manufacturing and Social Phenomena, pages 71–74. International Aca-

demic Publishers, Schenyang, China, June 1991.

[GF91] A. Gabrielian and M.K. Franklin. Multilevel specification of real-time

systems. Communications of the ACM, 34(5):50–60, May 1991.

[GL93] S. Graf and C. Loiseaux. Property preserving abstraction under paral-

lel composition. In M.-C. Gaudel and J.-P. Jouannaud, editors, TAP-

SOFT’93, number 668 in LNCS, pages 644–657. Springer-Verlag, 1993.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8(3):231–274, 1987.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International Series

in Computer Science. Prentice-Hall International, Englewood Cliffs, NJ,

1985.

[Jos90] B. Josko. A context dependent equivalence relation between kripke struc-

tures. In Proc. of 2nd Conf. on Computer Aided Verification, number

531 in LNCS, pages 204–213. Springer-Verlag, 1990.

[Kai96] R. Kaivola. Equivalences, Preorders and Compositional Verification for

Linear Time Temporal Logic and Concurrent Systems. PhD thesis, Uni-

177

versity of Helsinki, Department of Computer Science, Helsinki, Finland,

1996. Appears as Report A-1996-1.

[KS83] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes,

and three problems of equivalence. In Proc. of 2nd ACM Symposium

on the Principles of Distributed Computing, pages 228–240, Montreal,

Canada, August 1983. ACM.

[KV91] R. Kaivola and A. Valmari. Using truth-preserving reductions to improve

the clarity of kripke-models. In Proc. of CONCOUR’91, number 527 in

LNCS, pages 361–375. Springer-Verlag, 1991.

[KV92] R. Kaivola and A. Valmari. The weakest compositional semantic equiv-

alence preserving nexttime-less linear temporal logic. In Proc. of CON-

COUR’92, number 630 in LNCS, pages 207–221. Springer-Verlag, 1992.

[Law92] M.S. Lawford. Transformational equivalence of timed transition models.

Master’s thesis, Dept. of El. Eng., Univ. of Toronto, Canada, January

1992.

[Lee91] L. Lee. The Day the Phones Stopped. Donald I. Fine Inc., New York,

1991.

[Lio96] J.L. Lions and et. al. Rapport de la Commission d’enquête Ariane 501:

Echec du vol Ariane 501. Communiqué de presse conjoint, ESA-CNES,

Paris, France, 1996.

[LOW96] M. Lawford, J.S. Ostroff, and W.M. Wonham. Model reduction of

modules for state-event temporal logics. In R. Gotzhein and J. Bred-

ereke, editors, Formal Description Techniques IX: Theory, application

and tools, Proceedings of FORTE/PSTV’96, pages 263–278. Chapman

& Hall, 1996.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-

grams satisfy their linear specification. In Proc. of 12th ACM Symposium

178

on Principles of Programming Languages, pages 97–107, New Orleans,

January 1985.

[LW90] F. Lin and W.M. Wonham. Decentralized control and coordination of

discrete-event systems with partial observation. IEEE Trans. Autom.

Control, 35(12):1330–1337, December 1990.

[LW92] M. Lawford and W.M. Wonham. Equivalence preserving transformations

for timed transition models. In Proc. of 31st Conf. Decision and Control,

pages 3350–3356, Tucson, AZ, USA, December 1992.

[LW95] M. Lawford and W.M. Wonham. Equivalence preserving transformations

of timed transition models. IEEE Trans. Autom. Control, 40:1167–1179,

July 1995.

[McM92] K.L. McMillan. Symbolic Model Checking. Kluwer, 1992.

[Man94] Z. Manna and et. al. The Stanford Temporal Theorem Prover. Techni-

cal Report STAN-CS-TR-94-1518, Dept. of Computer Science, Stanford

University, CA, USA, 1994.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.

Springer-Verlag, New York, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, New York,

1989.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag, New York, 1992.

[ON96] J.S. Ostroff and H.K. Ng. Verifying real-time systems using untimed

tools. In Proc. of 3rd AMAST Workshop on Real-Time Systems, pages

132–146. ONR and Iowa University, Salt Lake City, Utah, March 1996.

[Ost89] J.S. Ostroff. Temporal Logic for Real-Time Systems. RSP. Research

Studies Press / Wiley, 1989. Taunton, UK.

179

[Ost90] J.S. Ostroff. Deciding properties of timed transition models. IEEE Trans.

Parallel and Distributed Systems, 1(2):170–183, April 1990.

[Ost92] J.S. Ostroff. A verifier for real-time properties. Real-Time Journal, 4:5–

35, 1992.

[Ost95] J.S. Ostroff. A CASE tool for the design of safety critical systems. In

H. A. Müller and R. J. Norman, editors, Proc. of CASE’95, pages 370–

380. IEEE Computer Society Press, July 1995.

[OW90] J.S. Ostroff and W.M. Wonham. A framework for real-time discrete

event control. IEEE Trans. Autom. Control, 35(4):386–397, April 1990.

[PAM91] D.L. Parnas, G.J.K. Asmis, and J. Madey. Assesment of safety-critical

software in nuclear power plants. Nuclear Safety, 32(2):189–198, 1991.

[Par81] D. Park. Concurrency and automata on infinite sequences. In 5th GI

Conference on Theoretical Computer Science, pages 167–183. Berlin,

Germany: Springer-Verlag, 1981. LNCS-104.

[PT87] R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM

J. of Computing, 16(6):973–989, December 1987.

[RW87] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of dis-

crete event processes. SIAM J. Control Optim., 25(1):206–230, January

1987.

[Sah74] S. Sahni. Computationally related problems. SIAM J. of Computing,

3(3):262–279, 1974.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear

temporal logic. J. ACM, 32:733–749, 1985.

[Val90] A. Valmari. A stubborn attack on state explosion. In Proc. of 2nd Conf.

on Computer Aided Verification, number 531 in LNCS, pages 156–165.

Springer-Verlag, 1990.

180

[Wan91] Y. Wang. CCS + Time = an Interleaving Model for Real Time Systems,

volume 510 of LNCS, pages 217–228. Springer–Verlag, 1991.

[Won76] W.M. Wonham. Towards an abstract internal model principle. IEEE

Trans. Systems Man and Cybernetics, 6(11):730–752, November 1976.

[Won94] K.C. Wong. Control Architecture of Discrete-Event Systems: An Alge-

braic Approach. PhD thesis, Dept. of El. Eng., Univ. of Toronto, Canada,

June 1994.

[WW92] K.C. Wong and W.M. Wonham. Hierarchical and modular control of

discrete-event systems. In Proc. of 30th Allerton Conference on Com-

munication, Control and Computing, pages 614–623, Champaign, IL,

USA, September 1992.

[Zha96] Y. Zhang. Software for state-event observation theory and its applica-

tion to supervisory control. Master’s thesis, Dept. of El. Eng., Univ. of

Toronto, Canada, Canada, July 1996.

[ZW90] H. Zhong and W.M. Wonham. On the consistency of hierarchical

supervision in discrete-event systems. IEEE Trans. Autom. Control,

35(10):1125–1134, October 1990.

181

	Introduction
	Setting and Issues
	Related Work
	Algebraic Equivalence Verification
	Temporal Logic, Model-Checking and Model Reduction

	Contributions

	Preliminaries
	Notation and Mathematical Preliminaries
	Products, Projections and Equalizers
	Properties of Functional Operators

	System Models
	Timed Transition Models
	TTM Semantics
	State-Event Labeled Transition Systems

	State Observers for a Class of Deterministic LTS

	Observers for State-Event Labeled Transition Systems
	Strong State-Event Observers
	Compatible Partitions
	Computation of Strong State-Event Observers
	Strong Quotient Systems and Homomorphisms

	Weak State-Event Observers
	Example: Weak State-Event Observer of a Simple Real-Time System
	Compositional Consistency
	Strong Compositional Consistency
	Weak Compositional Consistency

	Summary

	Model Reduction of Modules for State-Event Temporal Logics
	A Simple Real-Time State-Event Temporal Logic
	Computations of SELTS
	Temporal Logic of State-Event Sequences

	Strong State-Event Model Reduction
	Weak State-Event Model Reduction
	Weakly Observed Computations
	Weak Satisfaction
	State-Event Stuttering-Invariance and Model Reduction

	Model Reduction of TTM Modules
	Summary

	Design and Verification of an Industrial Real-time Controller
	The Delayed Reactor Trip System
	Setting and Assumptions
	Modeling the Delayed Reactor Trip Specification
	Modeling the Microprocessor DRT Implementation
	The Verification Problem in Terms of TTM Modules

	Model Checking the DRT
	Modeling the Reactor
	Model-Checking Details
	Verification of System Response
	Verification of System Recovery

	Model-Checking Concurrent Controllers
	Summary

	Conclusions
	Limitations and Future Research

	Equivalence Preserving Transformations of TTMs
	Equivalence of TTMs
	Observation Equivalence
	Equivalence Preserving Transformations
	Limitations of Transformations

	Equivalence Verification of the DRT

